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ABSTRACT

The scattering of internal gravity waves at finite topography in two dimensions is studied theoretically and
numerically for a finite depth ocean. A formal solution is derived using a mapping function based on ray tracing.
The solution satisfies radiation conditions. Energy is conserved. The incoming energy flux is redistributed in
physical and modenumber space. Numerical solutions are calculated for a single plane wave propagating from
the ocean side onto slope–shelf configurations where a flat shallow shelf is connected to a flat deep ocean by
linear slopes, staircases, convex or concave parabolic profiles, and half-cosine slopes. The fraction of the incoming
energy flux transmitted onto the shelf and reflected back to the deep ocean and the distribution of these fluxes
in modenumber space are calculated. The results depend on the parameters of the incident wave and of the
topography. Especially important is the distinction between supercritical topography, where the slope of the
topography exceeds the wave slope, and subcritical topography. Results obtained are (i) for subcritical topography
nearly all of the incoming energy flux is transmitted onto the shelf ; (ii) for supercritical topography part is
transmitted onto the shelf and part is reflected back to the deep ocean; the partition depends on the incident
modenumber and the shelf to ocean depth ratio; (iii) for a linear slope the distribution of the transmitted and
reflected fluxes in modenumber space shows peaks at modenumbers roughly consistent with reflection laws; (iv)
more of the incident wave energy flux is scattered to higher than to lower modenumbers, especially for near-
critical topography; (v) convex slopes are more efficient in scattering the energy flux to high modenumbers than
concave slopes; (vi) major differences occur when a linear slope is represented by a series of steps, especially
for subscritical topography and high incident modenumbers; and (vii) the scattering results differ in important
aspects from the results obtained by reflection theory, especially for supercritical topography and low incident
modenumbers. Scattering at ridge configurations is also considered. The results can be inferred from the results
for the slope–shelf configurations. The extension to a superposition of incident waves with a realistic spectrum
and the implications for internal wave-induced boundary mixing are treated in Part II.

1. Introduction

The scattering of linear internal gravity waves at bot-
tom topography redistributes the incoming energy flux
both in physical and wavenumber space. The details of
this redistribution depend on the frequency and wave-
number of the incident wave and on the properties of
the topography. The reflection off an infinite straight
slope was studied in two dimensions by Phillips (1966)
and later in three dimensions by Eriksen (1982). The
somewhat peculiar reflection laws arise from the fact
that the internal-wave wavenumber vector maintains its
angle with the vertical axis rather than with the normal
vector of the topography, as in specular reflection. Spe-
cifically, the reflection laws imply ‘‘critical’’ reflection
when the slope of the wave approaches the slope of the
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topography. The reflected wave then has an infinite
wavenumber and zero group velocity. Energy and shear
increase beyond bound at the sloping topography.

The reflection off a straight slope is an appropriate
limit only for short waves whose wavelengths are small-
er than the radius of curvature of the topography. For
longer waves, one must take the full structure of the
topography into account and must consider the scatter-
ing off a curved surface. The scattering in two dimen-
sions was first studied by Baines (1971a,b) for the case
that an internal wave propagates from above onto an
ocean bottom. The ocean has no upper surface. Baines
showed that the scattering problem can be reduced to
solving a coupled pair of Fredholm integral equations
of the second kind. In particular, he showed that the
implementation of radiation conditions leads to the
backscattering of internal wave energy off curved bot-
tom topography, a process that is absent in the reflection
theory applied earlier to the scattering problem (e.g.,
Longuet-Higgins 1966). Reflection theory determines
the scattered wave field by applying the reflection laws
to the tangent plane of the topography.
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In this paper, we study the two-dimensional scattering
problem for a finite depth ocean. The wave propagates
in from the side. This geometry must be adopted for
the generation of internal tides by the barotropic surface
tide (see Baines 1974, 1982; Sandstrom 1976) and is
the more appropriate geometry for oceanic applications
since most of the oceanic internal wave energy resides
in low modenumber waves that have vertical scales only
slightly less than the ocean depth. Furthermore, we
study the scattering at finite topography. The topography
can have an arbitrary height and shape, except that it
must be localized. The bottom must be flat in the far
field. The topographic configurations that we have in
mind are slope–shelf and ridge configurations. The scat-
tering at infinitesimal topography has been studied by
perturbation methods (e.g., Cox and Sandstrom 1962;
Rubenstein 1988; Müller and Xu 1992). The expansions
require that (i) the height of the topography be smaller
than the vertical wavelength of the wave and (ii) that
the slope of the topography be smaller than the wave
slope. Because the wave slope approaches zero as the
wave frequency approaches the Coriolis frequency, the
perturbation expansions break down for near-inertial in-
ternal gravity waves, which, again, contain most of the
oceanic internal wave energy. While consideration of a
finite depth ocean and of finite topography are steps
towards realism, the restriction to two dimensions is, of
course, a major idealization.

In Part I of this paper, we consider the scattering of
a single incoming plane wave of specified frequency
and modenumber. Results for a more complicated in-
coming wave field can be obtained by superposition
since the scattering problem is linear in the incident
internal wave amplitude. The oceanographically rele-
vant case of an incoming internal wave field with a
Garrett and Munk spectrum is studied in Müller and Liu
(2000, hereafter Part II), with particular emphasis on
how much mixing can be induced by the scattering pro-
cess.

Part I is organized as follows. First, we derive a for-
mal solution to the scattering problem. It uses charac-
teristic coordinates and a mapping function based on
ray tracing (Sandstrom 1976). An important property of
the solution is that the depth-integrated energy flux is
constant. The incoming energy flux is partly transmitted
or forwardscattered and partly reflected or backward-
scattered and redistributed in modenumber space. Sec-
tion 3 discusses the two analytical solutions that are
known to us: the scattering at a knife edge barrier (Lar-
sen 1969) and the scattering at topography with a linear
mapping function. Section 4 introduces our numerical
solution technique. We test its accuracy against the knife
edge analytical solution and show that it converges with
increasing resolution. In section 5, we numerically cal-
culate the scattering of a single plane wave propagating
from the ocean side onto a slope–shelf configuration
where a flat shallow shelf is connected to a flat deep
ocean by a variety of slope profiles. Results for ridge

configurations can easily be inferred from the results
for the slope–shelf configurations. The redistribution of
the incoming energy flux depends on the frequency and
modenumber of the incoming wave and on the prop-
erties of the topography. We compare our results to the
results from reflection theory and investigate issues such
as replacing a slope by a series of steps and the differ-
ence between convex and concave curvature. Section 6
summarizes and discusses our major findings from these
studies.

2. Theory

a. Wave equation

In two dimensions the internal wave equation is given
by (see appendix A)

[N 2(z) 1 ] tt]]xxc 1 (] tt 1 f 2)]zzc 5 0, (1)

where x is the horizontal coordinate, z the vertical co-
ordinate, t the time coordinate, N(z) the Brunt–Väisälä
frequency, f the Coriolis frequency, and c(x, z, t) the
streamfunction such that u 5 ]zc is the horizontal ve-
locity and w 5 2]xc the vertical velocity component.
This wave equation has to be solved for a prescribed
incoming internal wave field at x 5 1` subject to the
boundary conditions that c 5 0 at the surface z 5 0
(rigid lid condition) and at the bottom z 5 2h(x) and
subject to the radiation condition that the scattered field
is an outgoing field at x 5 6`. Scattering of linear
internal waves at bottom topography does not change
the frequency. For an incoming monochromatic wave
of frequency v the streamfunction can thus be written

c(x, z, t) 5 C(x, z) exp(2ivt) (2)

and the wave equation and boundary conditions become
2] C 2 c (z)] C 5 0 and (3)xx zz

C 5 0, at z 5 0, z 5 2h(x), (4)

where

2 2v 2 f
c(z) 5 (5)

2 2!N (z) 2 v

is the wave slope. The wave slope is both the slope of
the group velocity vector and the slope of the wave
crests since the group velocity vector is perpendicular
to the wavenumber vector for internal gravity waves.
We will assume N 5 N0 5 const and hence c 5 c0 5
const in the following. In terms of the characteristic
coordinates

z dz
j 5 x 1 (6a)E c00

z dz
h 5 x 2 (6b)E c00
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FIG. 1. Sketch of slope–shelf configuration with characteristics and
T-periods.

FIG. 2. Mapping function for the half-cosine slope shown in Fig.
1. T1 is the T-period on the ocean side, T2 is the T-period on the
shelf side; maps onto T2, onto itself, and T2 onto . TheT9 T0 T91 1 1

mapping function is discontinuous at the points j1, . . . ,j5.

the wave equation (3) then has the general solution

C 5 Ïc [ f (j) 1 g(h)] (7)0

with arbitrary functions f (j) and g(h). Baines (1973)
showed that (7), with c0 replaced by c(z), is also the
solution for stratifications that lead to profiles c(z) 5
c0(1 1 c1z)2 with c0 and c1 being constants. We will
not consider this possible generalization regarding the
assumptions of linear waves and two-dimensionality as
the more severe restriction. Lines of constant j and h
are called characteristics or rays. They have slope 6|c|.
The solution (7) shows that ‘‘influence’’ propagates
along these rays. The functions f and g have to be
determined by the boundary and radiation conditions.
The surface boundary condition C 5 0 at z 5 0 implies

f (j) 5 2g(j) (8)

so that one only needs to determine the function f. In
his study of internal tide generation Baines (1974)
showed that the implementation of the bottom boundary
and radiation conditions reduces the problem to solving
a pair of coupled Fredholm integral equations of the
second kind for f (j). However, the numerical algorithms
that he used to solve these integral equations, which
have a singular kernel, turned out to be unstable. We
therefore resort to an alternative approach, an approach
that was inspired by the work of Sandstrom (1976) and
uses the mapping function to be introduced next.

b. Mapping function

Consider the slope–shelf configuration in Fig. 1 with
open ends on both sides. The bottom boundary condition
C 5 0 at z 5 2h(x) implies

f (j) 5 f (j 1 T(j)), (9)

where T(j) is the surface distance between two char-
acteristics emanating from a bottom boundary point.
The function f is thus periodic. The period depends on
j. The function T(j) is called T-period by Sandstrom
(1976). It reflects the structure of the bottom topogra-
phy. For a flat bottom T is a constant. Consider two
T-periods T1 and T2, one on each side of the topography
in the far field. If one traces a characteristic from one
T-period, say T1, one will end up again in one of the

far fields, in either T1 or T2. In which T-period depends
on whether the characteristics intersect the topography
at points where the slope of the bottom is sub- or su-
percritical. The slope of the topography is called sub-
critical, critical, or supercritical if it is smaller, equal,
or larger than the slope |c| of the characteristics. If the
characteristic encounters a subcritical slope, it is traced
forwardly, as the characteristic j2 in Fig. 1. If it en-
counters a supercritical topographic slope, it is traced
backwardly, as the characteristic j1 in Fig. 1.

In general, the tracing establishes a mapping

j9 5 M(j) (10)

of the two T-periods onto themselves with M(M(j)) 5
j. If the slope of the topography is subcritical every-
where, then a full T-period on one side is mapped onto
a full T-period on the other side. If the topography has
supercritical slopes on the plus side, then T1 consists
of a part that is mapped onto T2 and a part thatT9 T01 1

is mapped onto itself. This is the situation depicted in
Fig. 2. If the topography has supercritical slopes on both
sides, then T1 5 < and T2 5 < suchT9 T0 T9 T01 1 2 2

that is mapped onto , onto itself, ontoT9 T9 T0 T91 2 1 2

and onto itself.T9 T01 2

Note that the explicit form of the mapping function
depends on the choice of the T-periods. The mapping
function shown in Fig. 2 exhibits discontinuities at j1,
. . . , j5. Of these, the discontinuities at j1, j2, and j4

can be removed by choosing different T-periods. The
discontinuities at j3 and j5 are not removable. They
occur for characteristics that intersect the bottom at
points where the slope is critical. The mapping M de-
pends on the frequency and on the profile of the to-
pography. It is implicitly defined by
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N

M (j) 5 j 6 2 h(x )/c, (11)O i
i

where xi (i 5 1, · · · , N) are the intersections of the
characteristics with the bottom. The plus sign must be
used if the characteristic is traced forwardly and the
minus sign if it is traced backwardly. The first derivative
of the mapping function is given by

NdM 1 6 h9(x )/ci5 , (12)P
dj 1 7 h9(x )/ci51 i

where h9 5 dh/dx. If one introduces the mapping func-
tion into the periodicity condition (9), it takes the form

f (j) 5 f (M(j)). (13)

c. Formal solution

We now construct the formal solution. Consider again
the situation depicted in Fig. 1. In the far fields, the
bottom is flat with depths H6. The half lengths of the
T-periods in the far fields are

0 dz
g 5 . (14)6 E c02H6

An incident plane wave with modenumber ni and am-
plitude ai that propagates onto the topography from the
plus side has the form

in p
i if (j) 5 a exp 2i j . (15)1 1 2g1

The sign in the exponent of (15) is chosen such that
(15) represents an incoming wave with a group velocity
or energy flux toward the topography. The complete
wave field in the far fields is

i sf (j) 5 f (j) 1 f (j) (16a)1 1 1

sf (j) 5 f (j), (16b)2 2

where (j) is the backscattered or reflected field andsf 1

f (j) the forwardscattered or transmitted field. If wes
2

substitute this representation into the periodicity con-
dition (13), we obtain

s f (M (j)) j ∈ T9 , M (j) ∈ T92 1 2i n p
(17a)s i if (j) 1 a exp 2i j 5  n p1 s i1 2g f (M (j)) 1 a exp 2i M (j) j ∈ T 0, M (j) ∈ T 01 1 1 11 2g1

 in p s if (M (j)) 1 a exp 2i M (j) j ∈ T9 , M (j) ∈ T9s 1 2 1f (j) 5 1 22 g1
(17b)


sf (M (j)) j ∈ T 0, M (j) ∈ T 0 2 2 2

for the subintervals of the T-periods.
In the far field (j) are periodic functions with pe-sf 6

riods 2g6. They can thus be represented by Fourier
series

n5` np
s 6f (j) 5 a exp 6i j , (18)O6 n 1 2gn50 6

where the Fourier index n is also the modenumber. The
coefficients for negative integers vanish since the ra-
diation condition requires that the scattered field is an
outgoing field with the group velocity or energy flux
vector pointing away from the topography. The two con-
stant terms and enter (17) only in the combination1 2a a0 0

2 . We thus can set 5 0 without loss of gen-1 2 2a a a0 0 0

erality. If we substitute this Fourier representation into
the periodicity condition (17) and project onto the mth

Fourier mode, we obtain the following set of equations

n5` n5`

1 2 i 1(d 2 A )a 2 B a 5 2a S ,O Onm nm n nm n m
n50 n51

m 5 0, · · · , ` (19a)

n5` n5`

2 1 i 2(d 2 C )a 2 D a 5 2a S ,O Onm nm n nm n m
n51 n50

m 5 1, · · · , `, (19b)

where

1 np mp
A 5 exp i M (j) exp 2i j djnm E 1 2 1 2T g g1 1 1T 01

1 np mp
B 5 exp 2i M (j) exp 2i j djnm E 1 2 1 2T g g1 2 1T 91

1 mp
1 iS 5 exp(2ik M (j)) exp 2i j djm E 1 2T g1 1T 01

1 np mp
C 5 exp 2i M (j) exp i j djnm E 1 2 1 2T g g2 2 2T 02

1 np mp
D 5 exp i M (j) exp i j djnm E 1 2 1 2T g g2 1 2T 92
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1 mp
2 iS 5 exp(2ik M (j)) exp i j dj. (20)m E 1 2T g2 2T 92

Equations (19) determine the modal amplitudes of6an

the forward- and backscattered field. The formal inver-
sion of (19) yields

`

m i mm9 m9a 5 a R SO On nn9 n9
m956 n950

m 5 6, n 5 0, 1, 2, · · · , (21)

where is the (not explicitly known) inverse of themm9Rnn9

matrix operator constituting the left-hand side of (19).
The scattered field depends on the parameters of the

incident wave and of the topography. The scattered field
is proportional to the incident amplitude ai. The hori-
zontal wavenumber ki 5 nip/g1 of the incident wave
enters through . The topography and the frequencym9S n9

enter both and through the mapping functionmm9 m9R Snn9 n9

M. If one introduces the nondimensional coordinates x̃
5 xc0/H0 and z̃ 5 z/H0, the mapping function depends
only on the scaled topography,

z̃ 5 2h(x̃H0/c0)/H0 5 2h̃(x̃). (22)

The most important parameters of the scaled topography
are the relative height of the topography and the nor-
malized slope h9(x)/c0. Note that the scattering problem
is reversible. If (j) and (j) is a solution, so isi sf f1 6

(2j) and (2j) consisting of wave fields (2j)s i sf f f6 1 6

propagating toward the topography and a plane wave
(2j) propagating away from it.if 1

Equation (19) is obtained by implementing the ra-
diation condition that the scattered field must be an out-
going field. Reflection theory determines the scattered
field by simply tracing the amplitude along character-
istics, f (j) 5 f i(M(j)), or explicitly

0 j ∈ T9 , M (j) ∈ T91 2sf (j) 51 i i5a exp(2ik M (j)) j ∈ T 0, M (j) ∈ T 01 1

(23a)

i ia exp(2ik M (j)) j ∈ T9 , M (j) ∈ T92 1sf (j) 52 50 j ∈ T 0, M (j) ∈ T 0.2 2

(23b)

The modal amplitudes can be obtained by Fourier trans-
formation. Reflection theory has been used in earlier
studies (e.g., Longuet-Higgins 1966). It does not satisfy
the radiation condition. In section 5 we will compare
the two solutions.

d. Energy flux

The wave equation (3) and the boundary condition
(4) imply

d
F(x) 5 0, (24)

dx

where
02 2v 2 f

22F(x) 5 c (C*] C 2 C] C*) dz. (25)E 0 x x4iv
2h(x)

With the formulas given in appendix A, it can be shown
that

01
F(x) 5 (pu* 1 p*u) dz. (26)E4

2h(x)

Thus, F(x) is the vertically integrated energy flux and
(24) states that this flux is constant, that is, independent
of x. This is a consequence of the conservation of energy
for our problem.

If we express C in terms of f and substitute the
Fourier representation (18), the energy conservation law
implies

` `

s s i iF (v, m) 1 F (v, m) 5 F (v, n ), (27)O O2 1
m51 m51

where
2 2p(v 2 f )

F(v, m) 5 maa* (28)
v

is the magnitude of the energy flux of a single plane
wave of amplitude a, frequency v, and modenumber m.
Equation (27) states that the incoming energy flux Fi(v,
ni) is only redistributed. It is partially transmitted and
partially reflected and scattered to different modenum-
bers. This redistribution of the incoming energy flux
will be our major diagnostic tool to describe the effect
of scattering.

3. Analytical solutions

Larsen (1968) found an analytical solution for the
scattering at a knife edge by matching a superposition
of plane waves on both sides across the knife edge.
Below we show that we can reproduce his results, which
serves as a check on our derivation of (19). The ana-
lytical knife edge solution will also be used in section
4 to test the accuracy of our numerical solution tech-
nique. Bottom topographies for which the mapping
function is linear also allow analytical solutions. These
are the only cases known to us.

a. Knife edge

Consider a knife edge at x 5 0 of height d in an ocean
of depth H. Choose the T-periods on the right and left
side as

H 2 d 3H 2 d 3H 2 d H 2 d
, and 2 , 2 .1 2 1 2c c c c0 0 0 0

The mapping function then becomes
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FIG. 5. Difference between analytical and numerical solutions for
three different resolutions R 5 4M, 8M, and 16M with M 5 256.
The difference of the reflected energy fluxes is given as a function
of modenumber. Relative height of knife edge barrier d̃ 5 0.75. In-
cident modenumber ni 5 1.


4H H 1 d 3H 2 d

2 1 j j ∈ T9 5 ,1 1 2c c c0 0 0

2H H 2 d H 1 d
2 j j ∈ T 0 5 ,1 1 2c c c0 0 0M (j) 5 

4H 3H 2 d H 1 d
1 j j ∈ T9 5 2 , 22 1 2c c c0 0 0

2H H 1 d H 2 d2 2 j j ∈ T 0 5 2 , 22 1 2c c c0 0 0

(29)

and the coefficients (20) become

A 5 C 5 2B 5 2Dnm nm nm nm

n1m(21)
5 sin(n 1 m)pd̃, n 1 m ± 0

p(n 1 m)

A 5 C 5 d̃ B 5 D 5 1 2 d̃00 00 00 00

in 2m(21)
1 2 i iS 5 2S 5 sin(n 2 m)pd̃, m ± nm m ip(n 2 m)
1 2S 5 d̃ S 5 1 2 d̃,0 0 (30)

where d̃ 5 d/H. With these coefficients, we find from
(19)

(31)1 2 ia 1 a 5 a d n 5 1, 2, 3, · · ·in n n n (31)

and
` inp n p

1 ia sin j 5 a sin j j ∈ T 0O n 1g gn51

` np
1a cos j 5 0 j ∈ T 0. (32)O n 1gn50

These equations are different but equivalent to Eqs.

(2.10) and (2.14) in Larsen (1968). For incident mode-
number ni 5 1, the solution to (32) was derived by
Larsen and is given by

1a 11 25 sin (d̃p /2) 2 P (cosd̃p)2ia 21

1
21 2 sin (d̃p /2) P (cosd̃p)11 22

1nan 25 sin (d̃p /2)[P (cosd̃p) 2 P (cosd̃p)]n21 nia1

1
1 [P (cosd̃p) 1 P (cosd̃p) 2 P (cosd̃p)n n22 n112

2 P (cosd̃p)] for n . 1,n21 (33)

where Pn are the Legendre polynomials. Using Larsen’s
solution technique, we also derived the solution for
modenumbers ni 5 2 and 3. They are given in appendix
B.

Note that the solution depends only on the relative
height d̃ 5 d/H and is independent of the frequency v
or the wave slope c0. This is to be expected since d̃ is
the only parameter appearing in the scaled topography
(22).

b. Linear mapping

Consider subcritical topography for which both T01
and are null intervals and henceT02

Anm 5 Cnm 5 5 0.1S m (34)

Furthermore, assume that the topography is of a form
such that the mapping function is linear, say

 g2c 1 j for j ∈ T1 1 g1M (j) 5 (35)
g1c 1 j for j ∈ T ,2 2g 2

where c1 and c2 are constants depending on the choice
of the T-periods. Then

2B 5 D 5 0 S 5 d ,inm nm m n m (36)

and hence

i0 for m ± n
1 2a 5 0 a 5 (37)m m i i5a for m 5 n .

The incident wave is fully transmitted and retains its
modenumber. The vertical wavenumber will of course
change if the ocean depths are different on the two sides
of the topography, as in the slope–shelf configuration.

For a linear slope (or triangle ridge) the mapping
function is linear if

lL21 b 1 1
2 1 a 1 1 5 b(a 2 1), (38)O 1 2b 2 1l51
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where a 5 H1/H2, b 5 c0/h9, and L 5 1, 2, · · · is the
number of times a characteristic intersects the slope be-
fore reaching the shelf (or the top of the ridge). For
given topography (38) is a condition on b and hence
on the wave slope c0 or the wave frequency v. A linear
slope and a triangle ridge are transparent to waves with
frequencies that satisfy (38). Specifically, we find

a 1 1
b 5 for L 5 1

a 2 1

2
a 1 1 a 1 1

b 5 1 1 1 for L 5 2. (39)1 2!a 2 1 a 2 1

4. Numerical method

To investigate other types of topography, we need to
solve (19) numerically. This requires a number of steps.
First, we numerically trace R characteristics from each
T-period, either to the other T-period or onto itself. This
tracing provides values of the mapping function M(j)
at 2R discrete points. For our case studies we will choose
R 5 1024 or 2048. Second, we calculate the coefficients
(20) for this mapping function using FFT algorithms.
Third, we invert (19) by truncating the Fourier sum at
a maximum modenumber M. Specifically, we use lower
triangular and upper triangular matrix (LU) decompo-
sition by Crout’s method with implicit pivoting (Press
et al. 1989). The truncation modenumber M can be cho-
sen independently from the resolution R, except that it
must be smaller than R. For our case studies we will
always use M 5 R/4, that is, M 5 256 or 512. To assess
the performance of our numerical procedure we cal-
culate the scattered modal amplitudes for a knife edge
with d̃ 5 0.75 and compare the numerical results to the
analytical results of the previous section.

Figure 3 compares the reflected and the transmitted
energy fluxes as a function of modenumber for an in-
cident modenumber ni 5 1. Most of the energy flux is
reflected. The numerical solution reproduces the ana-
lytical solution very well. The difference is shown in
Fig. 4. The difference is of the order of 1024. The largest
difference occurs at the lowest modenumber, with the
difference still being smaller than 1023. The total re-
flected and transmitted energy fluxes are 0.9787 and
0.0212 from the numerical calculation and 0.9785 and
0.0214 from the analytical calculation. The differences
for incident modenumber ni 5 3 are similar (lower panel
on Fig. 4). The numerical solutions also prove to be
independent of frequency, with deviations of less than
6 3 1026. Numerical calculations for a step slope, the
results of which should also be independent of fre-
quency, gave similar relative deviations.

Figure 5 shows that the numerical solution rapidly
converges to the analytical solution as the resolution is
increased from R 5 4M to R 5 8M and R 5 16M with
the truncation modenumber held constant at M 5 256.
From this we conclude that our resolution of the map-

ping function is sufficient for the calculation of the co-
efficients (20).

The situation is different for the truncation mode-
number M. Choosing M 5 256 or 512 is sufficient for
the knife edge where the energy flux is scattered pri-
marily to low modenumbers, smaller than M. This trun-
cation modenumber, however, becomes insufficient
when the topography contains critical or near-critical
slopes and the energy flux is also scattered to mode-
number larger than M. Since we are not interested in
the detailed distribution of the scattered energy flux at
high modenumbers, we keep the truncation mode-
number at M 5 256 or 512, even when the topography
contains critical or near-critical slopes. In Part II we
demonstrate that the amount of aliasing is tolerable. We
can thus estimate the total energy flux scattered to the
unresolved modenumbers as the difference between the
incoming energy flux and the flux scattered to the re-
solved modenumbers.

There is also a physical reason for choosing a low
truncation modenumber. Our theory only applies to low
modenumbers that can propagate long distances before
being affected by nonlinear and dissipative processes.
High modenumber waves do not propagate far. They
break, cause mixing, and dissipate. In Part II we cal-
culate the energy flux scattered beyond a certain critical
modenumber in order to assess the amount of internal
wave energy available for mixing.

5. Case studies

In order to understand the basic parameter depen-
dencies, we numerically evaluate in this section the scat-
tering of a single incident plane wave off the slope–
shelf and ridge configurations listed in Table 1. In the
slope–shelf configuration a flat shallow shelf is con-
nected to a deep flat ocean by different slope profiles.
The wave is incident from the ocean side. The ridge
configurations are obtained by mirroring the slope–shelf
configurations. Emphasis is on the slope–shelf config-
urations. The results for the ridge configurations are
easily explainable in terms of the results for the slope–
shelf configurations.

a. Parameter space

The incident wave is characterized by its mode-
number ni and by its frequency v. The topography is
characterized by its height, its slope, and higher deriv-
atives. As pointed out in section 2, the frequency and
the topography enter the solution only through the
scaled topography (22). For the slope–shelf configura-
tions the basic parameters of the scaled topography are
the depth ratio

H2d 5 (40)
H1

and the normalized slope
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TABLE 1. Topographic profiles for which numerical calculations
have been performed. All cases were run for the eight depth ratios
1/32, 2/32, 4/32, 8/32, 12/32, 16/32, 20/32, and 24/32 and for 76
frequencies between f 5 7.3 3 1025 s21 (lat 5 308) and v 5 10f.
The width of the topographic profiles is adjusted to keep the maximum
slope at the given value. The resolution for all cases is R 5 4M.

FIG. 7. Total reflected energy flux as a function of scaled incident
modenumber nid for the eight depth ratios 1/32, 2/32, 4/32, 8/32,
12/32, 16/32, 20/32, and 24/32 (from top to bottom). Linear slope
with supercritical slope s̃ 5 1.715.

FIG. 8. Reflected energy flux as a function of depth ratio d and
normalized slope s̃ for linear slope. Incident modenumber ni 5 10.
Upper panel: Total reflected energy flux. Middle panel: energy flux
reflected to modenumbers larger than the incident modenumber. Low-
er panel: energy flux reflected to modenumbers smaller than the in-
cident modenumber.

FIG. 6. Total reflected and transmitted energy flux as a function of
incident modenumber for a supercritical linear slope. Depth ratio d
5 1/8; normalized slope s̃ 5 1.715.
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FIG. 9. Reflected and transmitted energy flux as a function of modenumber for a supercritical
(s̃ 5 1.715) and a subcritical (s̃ 5 0.636) linear slope. Depth ratio d 5 1/8. Incident modenumber
ni 5 21.

h9
s̃ 5 . (41)

c0

When the maximum bottom slope exceeds the wave
slope (s̃max . 1), the topography is supercritical. For
given topography this is the case for frequencies v
smaller than the critical frequency

2h9 1max2 2v 5 N 1 f . (42)c 2 21 1 h9 1 1 h9max max

For frequencies larger than vc the topographic slope is
smaller than the wave slope everywhere and the topog-
raphy is subcritical. This distinction between sub- and
supercritical topography is most important.

Our basic diagnostic tool is the redistribution of the
incoming energy flux. We investigate how this redis-
tribution depends on ni, d, s̃, and some higher order
characteristics of the topography. All energy fluxes are
normalized by the incident energy flux.

b. Linear slope

In this case a linear slope connects a shelf of depth
H2 to an ocean of depth H1. For an infinite linear slope

the reflection law asserts that the wave is forward re-
flected if the slope is subcritical and backward reflected
if the slope is supercritical. This remains largely true
for a subcritical finite linear slope since all the char-
acteristics from the deep ocean end up on the shelf. Ray
tracing for a finite slope also suggests that not all of the
incoming energy flux is backreflected for supercritical
slopes, but that some of it is transmitted onto the shelf.
This is indeed the case, as can be seen from Fig. 6 which
shows the total reflected and transmitted energy flux as
a function of incident modenumber. The reflected energy
flux as a function of the scaled incident modenumber
nid is shown in Fig. 7 for various depth ratios d. For
low incident modenumbers, nd , 1, most of the energy
flux is reflected. For high incident modenumbers, nd
. 1, a fraction O(d) is transmitted and a fraction O(1
2 d) is reflected. These fractions are nearly independent
of s̃, except for near-critical slopes, as can be seen in
Fig. 8. This figure also shows that most of the energy
flux is reflected to higher modenumbers, especially for
near critical slopes. This is a consequence of the fact
that a unit length of slope receives more downward
pointing rays that reflect to higher modenumbers than
upward pointing rays that reflect to lower modenumbers.
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FIG. 10. ‘‘Reflected’’ and ‘‘transmitted’’ energy fluxes as a function
of modenumber from reflection theory. Supercritical linear slope with
d 5 1/8 and s̃ 5 1.715. Incident modenumber ni 5 1.

FIG. 11. Difference between scattering and reflection theory. The
difference of the reflected energy fluxes is given as a function of
modenumber. Supercritical slope with d 5 1/8 and s̃ 5 1.715. Incident
modenumber ni 5 1.

The distribution of the reflected and transmitted en-
ergy flux in modenumber space is given in Fig. 9 for
an incident modenumber ni 5 21, both for a super- and
subcritical case. For the supercritical case, the reflected
energy flux has peaks at

s̃ 2 1
(1) in 5 n (43a)r s̃ 1 1

s̃ 1 1
(2) in 5 n . (43b)r s̃ 2 1

These are the modenumbers predicted by the reflection
laws for a wave propagating downward and upward onto
an infinite slope. The transmitted waves have a peak at
modenumber

nt 5 nid (44)

or at a vertical wavenumber that is the same as the one
of the incident wave. This result is again expected from
ray tracing where the transmitted waves are those whose
rays do not intercept the slope.

For subcritical slopes, ray tracing implies peaks at

Ls̃ 1 1
in 5 n d , (45)t 1 2s̃ 2 1

where L 5 1, 2, · · · is the number of times that a ray
intercepts the slope before it reaches the shelf. The L
5 1, 2 peaks can indeed be seen in Fig. 9. Overall, the
scattering at a finite linear slope is largely explainable
by ray tracing and application of reflection laws, es-
pecially for high incoming modenumbers.

c. Comparison with reflection theory

Reflection theory traces wave amplitudes along char-
acteristics. The formal result is given by (23). One ex-
pects reflection theory to do the worst for low incident
modenumbers. This is indeed the case. Figure 10 shows
the distribution of the scattered energy flux at x 5 1`
and x 5 2` as a function of modenumber for an in-
cident modenumber ni 5 1. The topography is a su-
percritical linear slope. The energy flux at negative
modenumbers is incident onto the topography, in vio-
lation of the radiation condition. This violation is es-
pecially pronounced for the ‘‘transmitted’’ energy flux
at x 5 2` where nearly half of the flux is going in the
wrong direction. However, the ‘‘reflected’’ energy flux
at x 5 1` is also severely distorted as can be seen in
Fig. 11 which shows the difference between the reflec-
tion and the scattering theory (for positive modenum-
bers only).

For subcritical topography, all characteristics are for-
wardly traced and reflection theory predicts no back-
scattering at all, in contrast to the scattering theory,
where some of the incoming energy flux is backscat-
tered.

Overall, the comparison suggests that it is important
to implement the radiation conditions, especially for su-
percritical topography and low incident modenumbers.

d. Staircase

Bottom slopes are often represented by a series of
steps, for numerical and other reasons. For example,
Sjoberg and Stigebrandt (1992) use such a step topog-
raphy to estimate the energy flux scattered from the
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FIG. 16. Reflected energy flux as a function of depth ratio d and
normalized slope s̃max for half-cosine slope. Incident modenumber ni

5 10. Upper panel: Total reflected energy flux. Middle panel: energy
flux reflected to modenumbers larger than the incident modenumber.
Lower panel: energy flux reflected to modenumbers smaller than the
incident modenumber.

surface tide into internal tides. To assess the involved
errors we replace the sub- and supercritical linear slopes
of Fig. 9 by seven steps. The result is shown in Fig. 12
and bears little resemblance to the linear slope calcu-
lations of Fig. 9. For both the super- and subcritical
case, the reflected energy becomes clustered around the
incident modenumber ni 5 21. Furthermore, the total
reflected energy flux for the subcritical case becomes
comparable to the one for the supercritical case, in sharp
contrast to the linear slope calculation in Fig. 9. This
is to be expected. When a subcritical linear slope is
replaced by a series of steps, the topography becomes
supercritical along part of the slope. In the supercritical
case, the differences become less dramatic for lower
incident modenumbers because long waves feel the local
structure of the topography less than short waves do.

e. Convex versus concave

Baines (1974) analyzed the scattering of an internal
wave propagating downward onto supercritical topog-
raphy and showed that convex topography is more ef-

ficient than concave topography in scattering energy to
high wavenumbers. The reason is that for concave to-
pography a near critical reflection is followed and par-
tially cancelled by a subsequent near critical reflection.
This quantitative difference between a convex and a
concave slope remains valid for our finite depth ocean.
Formally, it shows up in the derivative of the mapping
function [see Eq. (12)]. For convex slopes it is singular
at critical points. For concave slopes it remains regular.
Here we analyze the difference in more detail using
parabolic profiles. In the convex case it starts with zero
slope at the shelf edge and has its largest slope (and a
sharp corner) at the ocean edge. The concave profile
starts with zero slope at the ocean edge and has its
largest slope (and a sharp corner) at the shelf edge.

In the supercritical case, that is, in the case that the
maximum slope exceeds the wave slope, the results for
the convex and concave slopes are significantly differ-
ent, as can be seen in Fig. 13 which shows the reflected
and transmitted energy fluxes as a function of mode-
number for an incident modenumber ni 5 21. Clearly
more energy is scattered to higher modenumbers in the
convex case than in the concave case. The total energy
flux scattered to modenumbers larger than n 5 100 is
0.0695 for the convex slope and only 0.001 for the
concave slope. Comparison with Fig. 9 shows that the
energy flux distribution for the convex slope is similar
to the one for the linear slope, although the peaks are
much broader. Such broadening is expected because the
local reflecting slope changes continuously for convex
(and concave) topography. The results for the concave
slope differ from those for the linear slope, and they
also depend strongly on s̃max. As s̃max → 1 the distribution
of the reflected energy flux tends to concentrate near
the incident modenumber (not shown).

Another significant difference between convex and
concave slopes is the partition into reflected and trans-
mitted energy flux. Figure 14 shows the total amounts
as a function of s̃max. For supercritical slopes, especially
as one approaches the critical slope s̃max 5 1, the concave
slope is more effective than a convex slope in reflecting
the incident energy flux backward. This is to be ex-
pected. The length of the slope that intercepts backward
reflecting rays is larger for a concave than for a convex
slope. For subcritical slopes the distribution in mode-
number space is almost identical for the convex and
concave slopes and broader than for the linear slope
(not shown).

f. Half-cosine slope

The slope profiles considered so far all had slopes
that were either constant or monotonic, leading to sharp
corners where the slope meets the deep ocean or shelf.
At these points the first derivative of the mapping func-
tion becomes discontinuous. The effect of these dis-
continuities is not very pronounced for supercritical
slopes, where the critical points determine the behavior,
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FIG. 17. Reflected and transmitted energy flux for near critical linear (s̃ 5 1.037) and near
critical half-cosine (s̃max 5 1.0274) slope. Depth ratio d 5 1/8. Incident modenumber ni 5 21.

but exert influence for subcritical slopes. In this section
we consider half-cosine slopes that provide a smooth
transition from the shelf to the ocean. They have both
a convex and a concave part. The maximum slope is
midway.

Figure 15 shows the distribution of the reflected and
transmitted energy flux as a function of modenumber
for an incident modenumber ni 5 21, both for a super-
and subcritical maximum slope. In the supercritical case,
the distributions are very similar to the linear slope case.
The location of the peaks is still given by the reflection
laws (43), using the maximum slope (at the point of
maximum slope, the curvature is zero and thus best
approximated by a linear slope). For the subcritical case,
the reflected energy flux is much less than for all the
previously considered slope profiles. This is due to the
removal of the sharp corners. Corners (and other abrupt
changes) can have pronounced effects on internal wave
scattering.

Figure 16 shows the dependence of the total reflected
energy flux on the topographic parameters and its par-
tition into the flux scattered to modenumbers higher and
lower than the incident modenumber. It looks similar to
the linear slope case shown in Figure 8, except that the
transition from super- to subcritical slope is much more

gentle. This is to be expected since only points of the
half-cosine slope approach the critical value and not the
whole length of the slope as in the linear slope case.
This difference also causes the distribution with mode-
number to look very different for near-critical slopes.
Figure 17 shows such a comparison for a near-critical
linear slope and a near-critical half-cosine slope. The
most dramatic difference is the part of the energy flux
scattered to resolved modenumbers. It is only 0.1502
for the linear slope case and 0.9568 for the half-cosine
slope.

g. Ridge configurations

The ridge configurations are obtained by mirroring
the slope–shelf profiles. The depth ratio is now given
by

H 2 d1d 5 , (46)
H1

where d is the height of the ridge. The partition into
transmitted and reflected waves remains the same, that
is, nearly all of the incoming flux is transmitted across
the ridge for subcritical topography whereas a fraction
O(d) is transmitted and a fraction O(1 2 d) is reflected
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for supercritical topography. The distribution in mode-
number space also does not change for the reflected
waves. These results are expected because they do not
depend on the structure of the topography beyond its
top. The distributions for the transmitted waves can also
be inferred from the corresponding slope–shelf distri-
butions. In the supercritical case, the distribution shows
a broadened peak at the incident modenumber ni rather
than at nid as in the slope–shelf case. This is a geometric
effect, solely due to the different depths on the minus
side. The characteristics do not intercept the topography
beyond the top of the ridge. Similarly, the distribution
in the subcritical case can be obtained by expanding the
modenumber axis by a factor d21.

In Part II we will consider the oceanographically more
relevant case of waves incident from both sides onto
the ridge.

6. Summary and conclusions

We derived a formal solution for the scattering of
internal waves at finite topography in two dimensions
and developed a numerical code for its numerical eval-
uation. The performance of the code was tested against
the analytical solution for a knife edge barrier. We nu-
merically calculated the scattering of a single plane
wave incident on various slope–shelf and ridge config-
urations in order to understand the basic parameter de-
pendences of the scattering process. Our diagnostic tool
was the partition of the incident energy flux into trans-
mitted and reflected flux and its redistribution in mode-
number space.

The incident wave is characterized by its mode-
number and frequency, the topography by its height,
slope, and higher derivatives; the most important pa-
rameter is the ratio of bottom to wave slope. Scattering
at supercritical topography is very different from scat-
tering at subcritical topography. For subcritical topog-
raphy nearly all of the incident wave energy flux is
transmitted. For supercritical topography it is partly re-
flected and partly transmitted. The partition depends on
the incident modenumber and the depth ratio of the
topography. The distribution of the scattered energy flux
in modenumber space also depends on slope, depth ra-
tio, and incident modenumber. Most of the reflected
energy is scattered to modenumbers higher than the in-
cident modenumber.

Higher order derivatives of the topography are also
important. A convex slope is much more efficient in
scattering the incoming energy flux to higher mode-
numbers than a concave slope, and a linear slope is more
efficient than a curved slope. Abrupt changes in the
topography, such as sharp corners, also affect the scat-
tering, especially for subcritical topography.

Reflection theory works well for incident waves
whose wavelengths are smaller than the radius of cur-
vature of the topography. In these cases, reflection the-
ory correctly predicts the locations of the peaks in mode-

number space and the scattering to higher modenumbers
for near-critical slopes. However, as the incident mode-
number decreases, predictions from reflection theory be-
come less and less accurate and must be replaced by
solving the full scattering problem.

Because of the complex parameter dependence of the
scattering problem, care must be taken when replacing
rugged topography by smooth topography, curved to-
pography by (piecewise) linear slopes, and linear slopes
by a series of steps.

In Part II, we will consider a superposition of incident
waves with a realistic spectrum, calculate not only the
redistribution of the energy flux but also the energy and
shear of the scattered wave field, and explore the im-
plications for internal wave induced boundary mixing.
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APPENDIX A

Internal Wave Kinematics

Linear internal waves obey

] u 2 fy 5 2] p (A1a)t x

] y 1 fu 5 2] p (A1b)t y

2] w 5 2] p 2 N z (A1c)t z

] z 5 w (A1d)t

] u 1 ] y 1 ] w 5 0, (A1e)x y z

where u, y , and w are the three velocity components, p
the pressure, and z the vertical displacement. Equations
(A1) imply the internal wave equation

(] tt 1 N 2)(]xx 1 ]yy)p 1 (] tt 1 f 2)]zzp 5 0. (A2)

For monochromatic waves of frequency v this reduces
to

(]xx 1 ]yy)p 2 c2]zzp 5 0, (A3)

with c2 5 (v2 2 f 2)/(N 2 2 v2). The other variables
are given by

1
u 5 [(2iv] 1 f] )p] (A4a)x y2 2v 2 f

1
y 5 [2(iv] 1 f] )p] (A4b)y x2 2v 2 f

1
w 5 iv] p (A4c)z2 2N 2 v

1
z 5 2 ] p. (A4d)z2 2N 2 v

For two-dimensional waves, with streamfunction c, the
wave equation reduces to

]xxc 2 c2]zzc 5 0, (A5)
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and the internal wave variables are given by

u 5 ] c (A6a)z

f
y 5 2 ] c (A6b)zv

w 5 2] c (A6c)x

i
z 5 2 ] c (A6d)xv

2 2v 2 f
] p 5 2 ] c. (A6e)x ziv

If c 5 c[ f (j) 1 g(h)], thenÏ

1
u 5 [ f 9(j) 2 g9(h)] (A7a)

Ïc

f 1
y 5 2 [ f 9(j) 2 g9(h)] (A7b)

v Ïc

w 5 2Ïc[ f 9(j) 1 g9(h)] (A7c)

i
z 5 2 Ïc[ f 9(j) 1 g9(h)] (A7d)

v

2 2v 2 f
p 5 2 [ f (j) 2 g(h)]. (A7e)

ivÏc

APPENDIX B

Knife Edge Solutions for ni 5 2 and 3
For ni 5 2,

1a1 5 c [P (cosd̃p) 1 P (cosd̃p) 2 P (cosd̃p) 2 1] 1 c [P (cosd̃p) 2 P (cosd̃p)] 1 c [1 2 P (cosd̃p)]1 1 2 3 2 1 2 3 1i2a

1a2 5 c [P (cosd̃p) 2 P (cosd̃p)] 1 c [P (cosd̃p) 2 P (cosd̃p) 2 P (cosd̃p) 1 1] 1 c [P (cosd̃p) 2 P (cosd̃p)]1 3 4 2 2 1 3 3 1 2ia

1nan 5 c [P (cosd̃p) 1 P (cosd̃p) 2 P (cosd̃p) 2 P (cosd̃p)]1 n11 n23 n12 n22i2a

1 c [P (cosd̃p) 1 P (cosd̃p) 2 P (cosd̃p) 2 P (cosd̃p)] 1 c [P (cosd̃p) 2 P (cosd̃p)]2 n n12 n11 n21 3 n21 n

for n . 2. (B1)

For ni 5 3:

1a1 5 c [P (cosd̃p) 1 P (cosd̃p) 2 P (cosd̃p) 2 P (cosd̃p)]1 3 2 4 1i3a

1 c [P (cosd̃p) 1 P (cosd̃p) 2 P (cosd̃p) 2 1] + c [P (cosd̃p) 2 P (cosd̃p)] 1 c [1 2 P (cosd̃p)]2 1 2 3 3 1 2 4 1

12a2 5 c [P (cosd̃p) 1 P (cosd̃p) 2 P (cosd̃p) 2 1] 1 c [P (cosd̃p) 2 P (cosd̃p)]1 1 4 5 2 3 4i3a

1 c [1 1 P (cosd̃p) 2 P (cosd̃p) 2 P (cosd̃p)] 1 c [P (cosd̃p) 2 P (cosd̃p)]3 2 1 3 4 1 2

1a3 5 c [P (cosd̃p) 2 P (cosd̃p)] 1 c [1 1 P (cosd̃p) 2 P (cosd̃p) 2 P (cosd̃p)]1 5 6 2 4 1 5ia

1 c [P (cosd̃p) 1 P (cosd̃p) 2 P (cosd̃p) 2 P (cosd̃p)] 1 c [P (cosd̃p) 2 P (cosd̃p)]3 1 3 2 4 4 2 3

1nan 5 c [P (cosd̃p) 1 P (cosd̃p) 2 P (cosd̃p) 2 P (cosd̃p)]1 n12 n24 n13 n23i3a

1 c [P (cosd̃p) 1 P (cosd̃p) 2 P (cosd̃p) 2 P (cosd̃p)]2 n11 n23 n12 n22

1 c [P (cosd̃p) 1 P (cosd̃p) 2 P (cosd̃p) 2 P (cosd̃p)] 1 c [P (cosd̃p) 2 P (cosd̃p)]3 n22 n n11 n21 4 n21 n

for n . 3, (B2)

where



MARCH 2000 549M Ü L L E R A N D L I U

1 1 1
2c 5 c 5 (1 2 cosd̃p) c 5 [3 2 2cosd̃p 2 cos d̃p]1 2 32 2 4

1
2 3c 5 (3 2 cosd̃p 2 cos d̃p 2 cos d̃p).4 4

(B3)

The transmitted wave amplitudes can be determined from by2 1a an n

2 1 i 2 1a 5 2a for n ± n a 5 1 2 a . (B4)in n n ni
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