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ABSTRACT

The response of a basin with a topographic barrier to spatially localized and time periodic forcing is considered.
The barrier, which almost completely divides the full basin into two adjacent subbasins, is offered as a model
of either a planetary island in the wind-driven circulation or a portion of the midocean ridge in the abyssal
circulation.

The barrier completely blocks the flow between the two adjacent subbasins except for the possibility of flow
through two small gaps at the termini of the barrier. The barrier has nonzero thickness, and scale-dependent
lateral friction acts in the gap channels to impede the flow from one subbasin to the next. Bottom friction also
acts uniformly on the flow in the basin. The degree to which localized forcing is able to excite large-scale
motions in the adjacent subbasin is shown to be connected to the structure of the forcing and its frequency.

In the absence of forcing and friction a set of full basin normal modes exist. The degree to which the forcing
is able to resonate with such modes determines the degree to which energy can be transmitted from one subbasin
to the other. Friction in the gaps reduces both the amplitude of that transmission and smooths the peaks of the
response curve of the motion as a function of frequency in both subbasins. However, even for substantial friction,
a considerable amount of large-scale variability can be excited in the adjacent basin. The quantitative dependence
of the response on the degree of friction, the length of the channels representing the gaps, and the meridional
structure of the forcing are discussed.

In cases where the western boundary of the basin is nonreflecting, so that no full basin normal modes are
possible, substantial energy transmission is still demonstrated. Whether resonance occurs or not, the necessity
for energy transmission is closely related to the existence of the integral circulation constraint around the island
barrier and the possibility of resonance acts mainly to set the level of the response.

1. Introduction

In a recent paper (Pedlosky and Spall 1999, hereafter
PS), the Rossby beta-plane normal modes were studied
in a basin very nearly separated into two distinct sub-
basins by a long, thin meridional barrier. The two sub-
basins were allowed to communicate only through very
narrow gaps in the barrier. The study was motivated by
the results of numerical experiments carried out by Spall
and described in PS. Briefly, the calculations showed
instabilities of baroclinic type that grew on the mean
flow generated by steady forcing in a two-layer model.
The instabilities were of relatively small scale, of the
order of the deformation radius, but it was observed that
basin-scale variability was present in both subbasins ap-
parently excited by the small-scale instabilities localized
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on the eastern side of the barrier. In some manner, the
naturally generated variability on one side of the barrier
is able to communicate to the other subbasin and excite
large-scale oscillations there. We thought of the basic
model as an idealization of the circulation around plan-
etary-scale islands or equally apt, as the circulation of
abyssal waters around and through the large-scale mi-
docean ridge systems with their gaps. Our preliminary
work on the steady-state problem has been reported in
Pedlosky et al. (1998).

It seemed to us that the first step in understanding
the ability of time-dependent oscillations to be excited
across the narrow gaps separating the subbasins was to
examine the possible Rossby wave normal modes that
could exist in such geometries. We were well aware of
the heavy idealization of the total problem involved in
searching for inviscid normal modes, but we felt it was
illuminating as a first step in understanding how basin-
scale oscillations could be transmitted through such nar-
row passageways.

The key feature of the problem that helped understand
the process of transmission was the presence of the in-
tegral constraint of conservation of circulation around
the island. For periodic, inviscid motions, the constraint
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reduces to the statement that the tangential velocity
component to the island, integrated around the island
or ridge segment, must integrate to zero. So, for ex-
ample, a long meridional island or ridge segment could
not have motion in one direction along the ridge only
on one side of the ridge in, say, the gravest meridional
mode, without violating the circulation integral con-
straint. This forced such modes to have motion in both
subbasins. The integral constraint is equivalent to the
condition that the pressure perturbation on one side of
the ridge can penetrate through the gap to excite motion
in the other subbasin. Indeed, in PS we found two class-
es of free modes. In one class the meridional mode
structure was even around the mid latitude of the basin.
Such modes contain meridional velocities on the east
side of the ridge that do not integrate to zero on that
side alone and so excite full basin modes. Another class
of modes were those that were antisymmetric about the
mid latitude. Such modes are limited to one or the other
of the subbasins and satisfy the integral constraint sim-
ply by having a meridional velocity that integrates to
zero on the side of the island bounding the subbasin in
which the mode is found. It is important to emphasize
the crucial role of there being at least two gaps so that
the segment is islandlike and Kelvin’s theorem obtains.
Were there a single gap, as discussed in Pedlosky and
Spall (1999), the wave would be largely blocked.

Surprisingly, the normal mode frequencies for the full
basin modes in the case of the thin meridional island
were very close to the normal frequencies for the full
basin without the barrier. Of course the frequencies for
the subbasin modes were precisely those of the Rossby
basin modes for the appropriate subbasin.

In the present study, we extend the results of PS by
examining the case in which the island or ridge segment
has a finite width and in which bottom friction and
lateral friction are present. In particular, we examine the
case in which lateral friction, strongly scale dependent,
is important primarily in the gaps. We develop an an-
alytical solution for the response of the fluid to a lo-
calized forcing in one subbasin at an arbitrary forcing
frequency.

Of particular interest is the role of friction in the gaps
in determining the degree to which variability, excited
in one subbasin, will excite motion in the other. We
shall show below that the transmission depends on the
degree of friction in the gap, the width of the island
(and so the gap length), and the spatial structure of the
forcing. Much of this dependence can be understood in
terms of the basic structure of the normal modes, even
in those cases in which the friction is strong enough to
eliminate any strong resonance with the modes. That is,
the behavior of the forced response in the frictional case
is well illuminated by the underlying structure of the
inviscid normal modes described in PS.

In section 2 we develop the analytical solution for
the forced problem. To keep matters as simple as pos-
sible a barotropic model is described, although it is not

much more complicated to deal with the modes of a
baroclinic model, each mode of which demonstrates
similar behavior. The integral constraint is described and
used as an important boundary condition to determine
the flow through the gaps. In section 3 the basic solution
is used to find the inviscid normal modes and in par-
ticular the dependence of the frequencies of the normal
modes on the width of the island. In section 4 the re-
sponse of the basin as a function of frequency is de-
scribed. This is measured in terms of both the flow from
one subbasin to the next, given by the island constant
(described below) and the amplitude response at arbi-
trarily chosen points in each subbasin. Section 5 sum-
marizes the results and discusses their significance.

It is important to emphasize that although the problem
discussed here is presented in the context of the response
of a closed basin to periodic forcing and the consequent
possibility of resonance, the more fundamental issue it
addresses is the transmission of large-scale Rossby wave
energy through barriers that contain only small open-
ings. As such, it relates to the general problem of trans-
mission of planetary-scale energy in the deep ocean in
the presence of midocean ridges or the possibility of
similar transmission from one ocean basin to another
across island arc chains, such as the Atlantic–Caribbean
complex.

2. The forced problem

a. Model and solution

The basin and the island within it are shown in Fig.
1. The island is placed between longitudes x1 and x2 and
in the meridional (y) direction leaves two channels of
width d between the two subbasins of the overall basin.
The containing basin lies between xw and xe. Additional
gaps can be opened in the island but the added com-
plexity, while of interest, can be intuited from the simple
model described here. The meridional extent of the basin
in dimensional units is L, which is used to scale lengths
in the problem. Time is scaled by the characteristic
Rossby wave period (bL)21.

The mathematical model for the flow that is employed
is the linearized, quasigeostrophic vorticity equation
(Pedlosky 1987) including lateral and bottom friction.
In the scaled units described above, the equation is

¹2C t 1 Cx 5 2r¹2C 1 A¹4C 1 W(x, y, t). (2.1)

In (2.1) C is the streamfunction for the motion. The
first term on the right-hand side of (2.1) represents the
bottom friction and r can be thought of as the ratio of
Stommel’s boundary layer thickness to the basin scale
L. The second term on the right-hand side of (2.1) is
the lateral friction and in these nondimensional units it
is the cube of the ratio of Munk’s boundary layer thick-
ness to L. We will consider both A and r as small pa-
rameters.

The last term on the right-hand side of the equation
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FIG. 1. A schematic of the oceanic basin with the island barrier.
The barrier has the longitudinal extent x2 2 x1 while the two gaps
at the extreme edges of the island barrier have each width d. The
basin has a meridional extent L. Shown in the figure are the coor-
dinates of the features of the basin when scaled with the length L.
A localized forcing is placed at x 5 z with meridional structure
described in the text.

is the external forcing. It is fundamentally a source of
potential vorticity and within the context of quasigeo-
strophic dynamics it can be considered either as a wind
stress curl or the vorticity source due to Ekman pump-
ing. For abyssal flow it can be related to the upwelling
from the abyss into the thermocline.

We will consider forcing harmonic in time so that

W 5 .iv t0Re[e w(x, y)] (2.2a)

Solutions for C will be sought in the form,

C 5 ,iv t0Re[e c(x, y)] (2.2b)

where v0 is the forcing frequency. The problem for c
then becomes

iv¹2c 1 cx 5 A¹4c 1 w(x, y). (2.3)

In (2.3) the bottom friction has been included by de-
fining

v 5 v0 2 ir. (2.4)

Outside of the narrow gaps we shall ignore the effect
of lateral friction. This will not allow us to satisfy no-
slip (or no stress) conditions on the meridional bound-
aries of the island. If we were to include lateral friction,
it would add a term of order A1/2 to the solution for the
streamfunction and only slightly alter the response of
the fluid to the forcing. The major effect of the lateral
friction occurs, rather, in the narrow gaps between the
two subbasins where its role will be considered in detail.
In the gaps the measure of lateral friction depends on
the ratio of the Munk boundary layer width to the gap
width; that is, if A* is the dimensional lateral viscosity,

1/3A*
d /d 5 d, (2.5)M 1 2 @b

which may be order unity.
On the exterior boundary of the basin the stream-

function must be spatially constant, and without loss of
generality we set it equal to zero. On the island the
streamfunction must also be spatially constant and it
will harmonically oscillate in response to the external
forcing. Its value gives us the instantaneous measure of
the flux through the gaps. Thus, on the island,

c 5 CI. (2.6)

The forcing will be represented in the meridional di-
rection by the Fourier series:

w 5 w (x) sin(npy). (2.7)O n
n51

In the regions outside the gaps, where lateral friction
is neglected, a convenient representation of the solution
for the streamfunction is

ikxc 5 e f (x) sin(npy), (2.8)O n
n51

where k 5 1/(2v) and where f n satisfies

2d f w (x)n n2 2ikx1 a f 5 e , (2.9)n n2dx iv

where 5 k2 2 n2p2.2an

The solution that we consider is one in response to
a localized forcing in the right-hand subbasin. Obvi-
ously, the problem changes in only a trivial way if the
forcing is in the left subbasin. We consider the forcing
to be (spatially) a delta function in x located at x 5 z
so that

wn 5 Wnd(x 2 z), x2 , z , xe. (2.10)

The particular form of Wn will determine the merid-
ional structure of the forcing, which we will leave ar-
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bitrary for the moment. The solution of (2.9) is dis-
cussed in appendix A.

In the gaps the y scale of the solution shrinks so that
y derivatives become more important than x derivatives.
The dominant terms in (2.1) become in the gaps

ivcyy 2 Acyyyy 5 0. (2.11)

Note that the beta term is neglected in (2.11). The
ratio of the beta term to the retained terms can be shown
to be of order A*/bL3 K 1. Indeed for nondimensional
frequencies of order unity, the y scale obtained from
(2.11) is

1/22A
d 5 . (2.12)1 2v

This is just the boundary layer scale for the Stokes layer
for a nonrotating fluid (Batchelor 1967) in which the
balance is between the acceleration of the velocity tan-
gent to the boundary and the frictional force along the
boundary. The beta effect plays no role. However, since
v is (in dimensional units) of order bL, the relative
importance of the beta effect and the frictional force in
the gap is measured by A*/bL3 K 1.

The solution of (2.11) in the region between y 5 0
(the southern boundary of the basin) and the southern
boundary of the island is given by

c 5 A 5 By /d 1 C1 exp({1 1 i}y /d)

1 C2 exp(2{1 1 i}y /d), (2.13)

subject to the conditions:

c 5 0, y 5 0,

c 5 C , y 5 d,I

c 5 0, y 5 0, d. (2.14)y

The solution is completed in appendix B. It is clear
from the statement of the problem that each of the con-
stant coefficients in (2.13) will be proportional to CI.
A similar solution in which y → 1 2 y holds in the gap
north of the island.

Thus along each of the longitudes of the island, x1

and x2, the streamfunction can be written as

c 5 CIg(y), (2.15)

where in the latitude band of the island the function g(y)
is equal to unity, while in the gaps g(y) is given by the
solution (2.13). At these longitudes we require that the
solutions of (2.9) and (2.11) be continuous. The details
are given in appendices A and B.

The total solution is then given in terms of the ex-
ternal forcing amplitude, for example, Wn and the un-
known streamfunction constant on the island, CI.

b. The integral constraint

The momentum equation consistent with (2.1) is

]u =p
21 k 3 u 5 2 2 ru 1 A¹ u 1 t /r, (2.16)

]t r

where we have represented the forcing as a wind stress
but we could equally well have considered the forcing
as due to a source–sink flow appropriate to the abyss.
We will assume that the stress has no component along
the island boundary.

If the component of (2.16) tangent to the island is
integrated around the island and if periodic motion is
considered, as in the above analysis, we obtain as a
fundamental integral constraint,

2iv =c · n dl 2 A =¹ c · n dl 5 0, (2.17)R R
C CI I

where n is the unit normal vector to the island and we
recall that v includes the effect of bottom friction. The
contour in (2.17) encircles the island on the contour CI.

Since we have neglected lateral friction except in the
gaps, the last term in (2.17) can be neglected along the
contour except in the gaps where it must be considered.
However, in the gaps, Eq. (2.11) implies that the terms
in the solution (2.12) that reflect the structure of the
frictional forces in the gap self-cancel in (2.17). Hence
in applying (2.17) only the terms proportional to A and
B in (B.1) enter and for them the last term in (2.17) is
identically zero. Thus the integral constraint reduces to
the statement that the first integral in (2.17) must itself
satisfy the integral constraint in which the terms in C1

and C2 in (B.1) are not considered. This simplification
leads to an equation relating the island constant CI and
the forcing. After a little algebra, one obtains,

cosnpd sina [L 2 l ]n x xC m g aOI n n n[ np sina (x 2 x ) sina (x 2 x )n51 n 2 e n 1 w

(1 1 q)l /dx2 2 ]1 1 q 2 r(1 2 i)(1 2 q)

W sina (z 2 x )n n eik(x 2z)25 2i m cosnpde ,O n vnp sina (x 2 x )n51 n 2 e

(2.18)

where the constants in (2.18) are given in appendices
A and B. Here Lx 5 xe 2 xw and lx 5 x2 2 x1 are the
widths of the basin and island, respectively. Note that,
since mn 5 1 2 (21)n, the right-hand side of (2.18) is
zero if Wn is zero for n odd. Thus, if the forcing is
antisymmetric about the midlatitude of the basin, the
right-hand side of (2.19) will vanish, which implies that
CI will be zero in that case since the square bracket on
the left-hand side cannot vanish for real v0 if friction
is different from zero. Thus, antisymmetric forcing will
not excite flow through the gaps. Such forcing will yield
a response limited to the right-hand basin in which the
forcing acts and the left-hand basin will remain at rest.
For forcings that have an even component around the
midlatitude; that is, if Wn ± 0 for n odd, CI will be
different from zero and motion will be excited in the
other subbasin. This is precisely the symmetry character
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FIG. 2. The normal mode frequency of oscillation of the gravest
Rossby normal mode as a function of island width.

of the global and subbasin normal modes previously
found in PS.

3. The normal modes

Friction, especially in the gaps, will eliminate the
possibility of perpetually oscillating normal modes.
However, the structure and frequencies of the inviscid
normal modes are useful pieces of information in help-
ing to understand the response of the forced, viscous
problem. The problem is discussed in detail in PS; here
a brief description is given of the nature of the modes
in the case when the island’s width is not negligible. In
particular, it is of interest to examine the dependence of
the natural frequency of oscillation on the width of the
island. To keep the discussion brief I will focus only on
the gravest full basin mode. The higher modes are qual-
itatively similar. Of course, the frequencies of the sub-
basin modes are given by the standard formula:

1
v 5 , (3.1)

2 2 2 1/22p(n 1 m /l )sb

where lsb is the zonal extent of the subbasin. For the
full basin modes the dispersion relation, instead, follows
from (2.19) if we set both the friction and the forcing
to zero, in which case the dispersion relation is

sin2npd sina (L 2 l )n x x2m aO n n 3 3n p d sina (x 2 x ) sina (x 2 x )n51 n 2 e n 1 w

5 2l /d. (3.2)x

If the island becomes very thin so that terms lx can
be neglected even when compared with d, (3.2) becomes
equal to the dispersion relation in PS. As shown in PS,
there is a set of full basin normal modes. The frequency
of these modes becomes smaller, the smaller the x scale
of the normal mode. The gravest normal mode, in the
case where lx → 0, has a frequency very close to the
frequency of the normal mode, which would exist in
the absence of the meridional barrier. The ‘‘higher’’
modes, with larger effective x wavenumber are even
closer, numerically, to the barrier-free problem. It is
therefore not surprising that in the present case the fre-
quency of the basin-scale normal modes is reduced as
the barrier island occupies a greater fraction of the total
basin. Figure 2 shows the result of a calculation of the
frequency of the gravest free mode of oscillation of the
system as the barrier scale, lx, increases. For this cal-
culation the basin is square, that is, xe 5 1 while xw 5
0. From (3.2) it is clear that the frequency depends on
lx in a more complicated manner than just the ratio lx/
Lx but also on the positions of the boundaries of the
island with respect to the outer boundaries of the basin.
The quantitative character of the results in Fig. 2 will
be altered slightly if the center of the island is moved
from the position chosen for that calculation in which
the midpoint is placed at x 5 0.5. It has not been possible
to find a simply understood representation of the be-

havior of the frequency on lx, but the general reduction
in the frequency is plausibly related to the decrease in
the size of the fluid-containing region of the basin in a
manner qualitatively, but definitely not quantitatively
similar to that of (3.1). Snapshots of the mode at dif-
ferent points in its cycle are shown in Fig. 3 for the
case where lx 5 0.223 and v 5 0.079 687. The structure
of the gravest mode is closely related to the n 5 1
Fourier mode, which is possible in the case of the bar-
rier-free basin, although with the barrier all Fourier
modes with n odd are required to represent the normal
mode. On the other hand, the subbasin modes, are re-
stricted to one or the other subbasins, and their gravest
modes correspond to the n 5 2 modes in (3.1). The n
5 1, 3, 5, · · · modes in (3.1) are not allowed since they
will not satisfy the integral condition (2.17). It is im-
portant to note the importance of the spatial structure
of the modes in determining whether or not both sub-
basins are involved in the oscillation. We shall see that
exactly this consideration enters the forced, dissipative
problem.

For that problem we expect that the response in the
basin across the island from the forcing will depend on
both the spatial structure of the forcing and, with a
dependence to be determined, also on the frequency of
the forcing and the level of frictional dissipation.

4. Basin response

a. Forced response in the presence of friction

We use the solution (2.18) for the island constant CI

and the solutions given in appendices A and B to discuss
the response of the basin to a localized forcing placed
in the right-hand subbasin. To fix ideas, the forcing is
a delta function placed at x 5 z 5 0.8 and the distri-
bution in y is either a sharply peaked Gaussian-like dis-
tribution (whose Fourier amplitude is Wn 5
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FIG. 3. The gravest basin-scale normal mode for the case x1 5 0.40, x2 5 0.623. In this calculation d 5
0.1. The normal mode frequency (scaled by bL) is 0.079 687.

, where y0 is the central latitude of the22kn2 sinnpy e0

forcing, while k determines the narrowness of the forc-
ing in y) or an antisymmetric forcing of two such Gaus-
sians of opposite sign centered around the midlatitude
of the basin for which Wn 5 2 cos(np/2)

, where Dy0 is the distance of each of the22knsinnpDy e0

two peaks in the forcing from the midlatitude of the
basin.

For the first forcing, if y0 is at the midpoint of the
basin, we would expect only solutions symmetric about
the midlatitude to be excited. In view of our earlier
discussions this would imply that the response will be
of the full basin type. The subbasin modes require some
component of the forcing to be asymmetric and would
be absent if y0 were ½. On the other hand, if the forcing
were strictly antisymmetric, we would not expect the
full basin modes to be excited and would anticipate that
the variability would be restricted to the basin in which
the forcing directly acts.

To discuss the response as a function of frequency
for the several different forcings we examine both CI

as a function of v0 and the amplitude at selected points
in each of the two subbasins. For example, Fig. 4a shows
the response for the amplitude at a point (x 5 0.6, y 5
0.1667) in the right-hand subbasin as well as the island
constant for purely symmetric forcing, that is, for y0 5
0.5. In this case the friction is very small. The bottom

friction coefficient r 5 0.002 and d 5 0.002 while d 5
0.1. Thus the lateral boundary layers occupy only a
small portion of the gap (about 4%). Strong peaks in
the response curves are seen at the normal mode fre-
quencies for the full basin modes. In Fig. 4a the solid
curve shows the amplitude response at the observation
position while the dashed curve shows the response for
the island constant. Note that for these modes the two
curves peak at the same frequencies so that the local
point response and the more global measure, given by
CI, correspond. Figure 4b shows the response at a sim-
ilarly, arbitrarily selected position in the left-hand basin,
and we see that the response there peaks at the same
frequencies. The strong response corresponds, at this
low level of dissipation, with the full basin normal
mode. Indeed, the contour plot of the response at the
forcing frequency v0 5 0.104 is shown in Fig. 4c. The
resemblance to the normal mode shown in Fig. 3 is clear.

On the other hand, if the forcing is antisymmetric,
the response curves are quite different. Figure 5 shows
a response curve in such a case. The response in the
right-hand basin, the subbasin where the forcing takes
place, now resonates at only the subbasin normal mode
frequencies; in this case the gravest subbasin mode has
a frequency of about 0.0605. Note that CI is zero in
this case. There is no communication between the sub-
basins, no fluid flux through the gaps in the island, and
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FIG. 4. The response of the fluid to symmetric forcing in the right-hand basin. The amplitude is measured at the point x 5 0.61, y 5
0.1167. The forcing is at x 5 0.8. The frictional parameters are r 5 0.002, d 5 0.002; x1 5 0.39, x2 5 0.42. (a) The solid curve shows the
amplitude of the response at the measuring point described while the dashed curve shows the modulus of the island constant CI. Note the
coincidence of the peaks of the two curves. (b) As in (a) however measured in the left-hand subbasin at x 5 0.195, y 5 0.5. (c) Contour
plots of the forced response at four phases of the oscillation cycle at frequency v 5 0.104.

the response is limited to the right-hand basin almost
entirely as shown in Fig. 5b, where the response is
shown at the resonance frequency. This is a good ex-
ample of how the basic structure of the normal modes
helps determine the degree to which different forcings

in one subbasin will excite a substantial response in the
other subbasin. There must be substantial projection of
the forcing on the full-basin normal mode structure for
the disturbance to enter the other subbasin.

If the forcing is a mixture of symmetric and antisym-
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FIG. 5. For the same parameters as in Fig. 4 except that the forcing is antisymmetric around the midlatitude
of the basin. (a) Amplitude in right-hand subbasin and the island constant. (b) Contour plot of the streamfunction
at four phases of the oscillation.

metric parts, the response will contain both features.
Figure 6a shows the response curves for the same pa-
rameter settings as in Figs. 4 and 5. The forcing is now
the single-peaked Gaussian placed at y0 5 0.75 so that
it is asymmetric with both a symmetric and antisym-
metric part. In Fig. 6a the response curve for the right-
hand basin shows major peaks at the gravest full basin

mode at v 5 0.104, at which point the island constant
also peaks, and a second major peak at the subbasin
mode frequency where v 5 0.0605. At this peak of the
curve the response of the island constant has a mini-
mum, reflecting the limitation of the response of this
mode to the right-hand basin as was shown in Fig. 5b.
At the particular location tested for response in the right-
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FIG. 6. As in Fig. 4 except that the forcing contains both symmetric
and antisymmetric parts. (a) Response of amplitude in the right-hand
subbasin and island constant. (b) Response in the left-hand subbasin.

FIG. 7. As in Fig. 6 except the lateral friction has been increased
so that now d 5 0.02.

hand basin there is a hint, in the amplitude response, of
another peak at the frequency of the second full basin
mode at frequency v 5 0.07. Note that CI has a clear
peak at that frequency although the amplitude response
is masked by the finite width of the larger peak at the
subbasin mode. In Fig. 6b the response in the left-hand
basin is illustrated. Here there are only peaks at the full
basin modes. The subbasin mode does not provoke an
oscillation in the left-hand basin and so there is no peak
at v 5 0.0605. In the left-hand basin the dominate peaks
are the first and second full basin modes, and the am-
plitude response as a function of forcing frequency
peaks in parallel with the peaks of the island constant.

Let us examine now how the response changes as we
increase the friction in the gaps. Figure 7a shows the
response curve if the lateral friction is increased by a
factor of 100. This increases the boundary layer scale

in the gap by a factor of 10 so that now the frictional
boundary layers cover approximately 40% of the width
of each of the two gaps (d 5 0.02). Note that now the
peak at the full basin mode is reduced over what was
seen in Fig. 6a. The amplitude response is reduced by
a factor of about ½, while the island constant is reduced
by a similar factor. The standout peak is now the sub-
basin mode; however, it is interesting to see how robust
the response at the full-basin mode frequency remains,
even with such a large increase in the lateral mixing in
the gap. Of course, the response in the left-hand basin
is entirely dominated by the full basin mode, as is shown
in Fig. 7b. All three peaks shown correspond to full
basin normal modes. This is evident from the fact that
each amplitude peak corresponds to a peak in the island
constant CI and, of course, although the local ampli-
tudes vary at the peaks from one subbasin to the other,
the magnitude of the peaks for the island constant, being
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FIG. 8. As in Fig. 6 except the lateral friction is here such that d 5 0.05. (a) Response in right-hand subbasin of amplitude at observation
point and island constant. (b) Response in left-hand basin. (c) Contours of streamfunction for v 5 0.07. (d) Contours of streamfunction for
v 5 0.104. (e) Contours of streamfunction for v 5 0.0605.

basin rather than local quantities, are the same in both
figures. Indeed, the correspondence between the peaks
of amplitude and of CI is a rapid way of distinguishing
the full basin modes.

For much larger values of d the resonance at the full
basin modes is no longer apparent. Figure 8a shows the
response curve when d 5 0.05 so that frictional effects

will strongly affect the flow over the entire width of the
gap. In this case a clear peak at the full basin mode is
absent. There is a strong peak at the subbasin frequency
(which we recognize because CI takes a dip there).
There is another small peak at the full basin mode at v
5 0.070, corresponding to the second normal mode in
longitude. This peak shows up more clearly in the island
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FIG. 8. (Continued )
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constant than in the amplitude. The response at a point
in the left-hand basin is shown in Fig. 8b. Here, of
course, the large peak associated with the subbasin nor-
mal mode is absent and the response is dominated by
the full-basin normal mode frequency at v 5 0.070,
whose island constant is greater than that of the gravest
full basin mode. Figure 8c shows snapshots of the
streamline contours for these values of the frictional
parameters for a forcing frequency v0 5 0.07 corre-
sponding to the full basin mode with the largest island
constant with this forcing. We see strong variability in
both subbasins, as we would expect from Figs. 8a and
8b. Figure 8d shows contours of streamfunction at the
same phase of oscillation as in 8c at the forcing fre-
quency v0 5 0.104, the frequency of the gravest normal
mode of full basin type. As we saw, at this value of the
dissipation, there is no peak in the response at the normal
mode frequency. In the vicinity of the gravest normal
mode frequency the response is essentially flat with fre-
quency. Yet, when we examine the solution in Fig. 8d,
there is a substantial signal in the left-hand basin. The
forced variability squeezes through the gap, even in the
absence of a resonance, and excites the entire basin. In
this sense, the normal mode of full basin type can be
seen to underlie the response of the forced, dissipative
system even when the dissipation in the gaps is large
enough to vitiate normal mode resonance. The response
at those frequencies still resembles the normal modes.
To emphasize the continuing importance of the normal
modes, Fig. 8e shows the streamlines for the forced
response at v0 5 0.0605, near the resonance with the
subbasin mode of the right-hand basin. The response is
limited almost entirely to the right-hand basin so that
once again the nature of the response in this case is
explicable in terms of the underlying set of inviscid
normal modes.

If the friction in the gap is increased still further, we
reach a point where the gaps are essentially blocked by
frictional forces. The island constant becomes very
small, indicating very little communication between the
two basins. For example, when d 5 0.5 and d 5 0.1,
friction completely dominates in the gaps and the re-
sponse is shown in Fig. 9 at a forcing frequency v0 5
0.08, which corresponds to the peak in the island con-
stant, CI. Now there is scarcely any transmission of
disturbance energy into the left-hand basin.

If the effect of friction is increased everywhere in the
basin by increasing the level of the bottom friction, the
amplitude of the response will of course be reduced in
the linear model. At the same time the sharpness of the
resonance peaks of the response curves will also be
reduced. Figure 10 shows the response curve for the
island constant and the amplitude at the same point in
the right-hand basin (x 5 0.61, y 5 0.1667) as well as
the island constant for r 5 0.01 and d 5 0.01. We see
that, as anticipated, both the amplitude and the sharpness
of the peaks in both curves are reduced. At this value
of bottom friction the Stommel boundary layer for the

steady problem would occupy a little over 2% of the
basin width. Even at this value, which might be con-
sidered a more realistic setting than the earlier cases
with smaller r, the qualitative nature of the response
curve is maintained and the streamfunction pattern, al-
though not show here, is qualitatively similar to those
displayed for smaller values of bottom friction.

As the island width increases, that is, as lx 5 x2 2
x1 is increased, the friction in the gap has a longer dis-
tance over which to operate. As we would expect, one
effect of this is to reduce the efficiency of communi-
cation between the two basins by reducing the value of
CI. Figure 11 shows the reduction of CI as a function
of lx. The gap length varies over an order of magnitude,
but the island constant CI is only slightly reduced over
this interval even though both the bottom friction and
the lateral friction are substantial in this case (r 5 0.01,
d 5 0.01). In order to choke off the gaps and eliminate
the interbasin communication a very strong momentum
dissipation is required as seen above.

b. Response in the absence of a western reflecting
boundary

We have emphasized the role of inviscid normal
modes in understanding the nature of the forced re-
sponse of closed basins to localized forcings and the
ability of large-scale variability to squeeze through nar-
row gaps in an otherwise impenetrable barrier to pro-
voke strong variability in adjacent subbasins. In this
section the response of a fluid is studied when the pos-
sibility of full basin resonance is completely removed.
This can be done by eliminating the reflection of energy
from the western boundary of the basin. We can think
of this as either a semiinfinite basin in the zonal direction
in which the barrier in our basin is so far removed from
the western boundary that reflected energy cannot return
to the barrier before it is dissipated or, more simply,
that the western boundary layer region is a zone of
complete absorption of energy. This can easily be done
analytically by replacing the boundary condition of zero
streamfunction at x 5 xw with a radiation condition
there. Thus, west of the island barrier we insist that
Rossby wave energy is propagating only westward. The
details are described in appendix C.

We note from the form of Eq. (C.4) that a full basin,
inviscid normal mode is no longer possible. There are
no solutions of (C.4) for real frequency in the absence
of forcing and dissipation for which CI is different from
zero.

Figure 12 shows the response for CI as a function of
frequency. In the absence of full-basin normal modes,
the response curve is relatively flat. Only the phase of
the island constant changes significantly as a function of
frequency as shown by the relative size of the real and
imaginary parts of CI shown in the figure. In the absence
of the peaks the magnitude of the flux through the gaps
as given by the island constant is reduced; still its mag-
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FIG. 9. As in Fig. 7 but now d 5 0.5.

nitude is O(1). Figure 13 shows snapshots of the forced
oscillation, and we see that a substantial amount of the
total variability is still able to penetrate the small gaps
and excite the fluid to the west of the barrier. Clarke
(1991) considered a related problem, that of the trans-
mission of Kelvin and Rossby waves in the equatorial
waveguide in the presence of blocking island barriers.
Although he did not formulate his problem using the
constraint (2.17), he reached similar conclusions about

the ability of westward propagating waves to penetrate
island barriers and, although his analysis relied strongly
on certain properties of equatorial waves, there is fun-
damental agreement of this analysis with his conclusions.

5. Discussion and conclusions

We have examined here a simple model for the trans-
mission of Rossby wave energy from one subbasin to
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FIG. 10. The response curve in the right-hand basin for an increase
in bottom friction. Here r 5 0.01, d 5 0.01.

FIG. 11. The island constant CI as a function of island width for
the frictional parameters of Fig. 10.

FIG. 12. The response curve for the island constant for the frictional
parameters of Fig. 10 when the western boundary of the basin is
nonreflecting.

an adjacent subbasin when the two subbasins are sep-
arated by a barrier that nearly extends the meridional
length of the total basin. The two subbasins are allowed
to communicate only through very narrow gaps in which
lateral mixing of momentum works to impede the prop-
agation of energy. In addition, a background bottom
friction mechanism acts everywhere in the basin to dis-
sipate the energy introduced by the localized forcing.
The model is presented as an idealized representation
of the response of either the wind-driven circulation in
the presence of large island barriers or the response of
the deep abyssal circulation in the presence of midocean
ridges. Although the simple model presented here has
a prescribed forcing, the original motivation for the
study came from the results of a numerical experiment
of M. Spall (see PS for a discussion) in which the forcing
is due to a localized, relatively small scale instability.

The results of the present study expand on the results
of PS by considering the response of a forced, viscous
fluid in the presence of a barrier island of nonzero width.
The results described in section 4 show that even in the
presence of substantial lateral friction acting in the gaps,
the full basin will respond to localized forcing in one
of the subbasins by responding globally. The nature of
the response is both frequency and spatial-structure sen-
sitive. When the forcing frequency corresponds to one
of the subbasin normal modes, the response is largely
limited to the basin in which the forcing occurs. When
the frequency approaches a normal mode frequency of
the total basin, the flux through the island/ridge gaps
becomes large and the full basin responds strongly to
the forcing. Increasing the level of the friction reduces
the amplitude of the response and smears out the sharp-
ness of the amplification as a function of frequency, but
the overall qualitative behavior remains the same even
for substantial friction in the gaps. The degree of pen-
etration of disturbance energy from one subbasin to its

neighbor is comprehensible in terms of the underlying
inviscid normal mode structures.

When full basin resonance is eliminated by disallow-
ing reflection from the basin’s western boundary, the
transmission of energy across the gap still qualitatively
follows the pattern established by the normal mode res-
onance.

Underlying the question of the involvement of the
adjacent basin to localized forcing is the application of
the circulation integral constraint (2.17) around the is-
land segment. This is a robust constraint, valid regard-
less of the level of nonlinearity. The requirement that
modes containing tangential flow of largely a single sign
along the island/ridge segment involve both subbasins
is a direct consequence of the constraint. It is therefore
to be expected that although the details of the response
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FIG. 13. The contours of the forced oscillation for the case shown in Fig. 12.

may alter as more realistic features of the model are
added, the question of transmission of energy must ul-
timately deal with the physical consequences of the ba-
sic circulation constraint.

In this paper I have considered a ridge or island barrier
with only two gaps at the extremes. As shown in PS,
if new gaps are opened in the ridge, new full basin
modes are allowed. It is anticipated then that, in the
present model, the addition of further gaps in the island
will allow more energy of higher meridional wave-
number to leak through the basin and involve the total
basin in a coherent oscillation.

It will be interesting to examine the effects of non-
linearity, stratification, and more complex basinwide to-
pography on the question of energy transmission. As
discussed above, since the underlying constraint remains
unchanged, an evolutionary alteration of the results can
be expected.

Finally, I know of no direct field observations that
speak to the issues raised here. It would be of interest
to examine long-term records of variability in contig-
uous deep basins to search for coherence. At the same
time, plans are afoot to examine the basic fluid me-
chanics of the process in the context of laboratory ex-
periments.
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APPENDIX A

Solution of (2.9)

The solution of (2.9) is found separately in the three
regions xw # x # x1, x2 # x # z, and z # x # xe. On
xw and xe the streamfunction must be zero. On the lon-
gitudes x1 and x2 the streamfunction must be given by
(2.15), where g(y) or its Fourier transform is given be-
low by Eq. (B.3). At x 5 z the streamfunction must be
continuous and, using (2.9) and (2.10), it follows that

df (z ) df (z ) in 1 n 2 2ikz2 5 2 W e , (A.1)ndx dx v

where z1 and z2 are the positions infinitesimally to the
right and left of the point x 5 z.

Under these conditions the solution to (2.9) is easily
found to be in z # x # xe:

sina (x 2 x )n e1f 5 A , (A.2)n n sina (x 2 x )n 2 e

while in x2 # x # z:
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sina (x 2 x ) cosa (x 2 x )n e n e2f 5 A 1 B , (A.3)n n nsina (x 2 x ) sina (x 2 x )n 2 e n 2 e

and in xw # x # x1:

sina (x 2 x )n wf 5 D . (A.4)n n sina (x 2 x )n 1 w

The coefficients are found by employing the bound-
ary conditions described above and are

Wn 2ikzB 5 e sina (x 2 x ) sina (z 2 x ), (A.5)n n 2 e n eivan

2 2ikx2A 5 C g en I n

2ikzW en2 cosa (x 2 x ) sina (z 2 x ), (A.6)n 2 e n eivan

while

5 1 Bn cotan(z 2 x2),1 2A An n (A.7)

and where
1

g 5 2 g(y) sin(npy) dy, (A.8)n E
0

where the function g(y) is given in appendix B.

APPENDIX B

Solution in the Gaps

The coefficients in the solution (2.13) are determined
by the boundary conditions (2.14). It follows that

r(1 2 q)
A 5 2C , (B.1a)I (1 1 i)[1 1 q 2 r(1 2 i)(1 2 q)]

(1 1 q)
B 5 C , (B.1b)I [1 1 q 2 r(1 2 i)(1 2 q)]

qr
C 5 2C , (B.1c)1 I (1 1 i)[1 1 q 2 r(1 2 i)(1 2 q)]

r
C 5 C , (B.1d)2 I (1 1 i)[1 1 q 2 r(1 2 i)(1 2 q)]

where

d
r 5 , (B.2a)

d
2(11i)/rq 5 e . (B.2b)

The key parameter here is r, which measures the
characteristic y scale due to lateral friction, (2A/v)1/2,
against the gap width. This parameter is zero for an
inviscid fluid and becomes order one as the lateral fric-
tion fills the gap. When this parameter is large, the geo-
strophic balance in the gap is affected by friction in the
momentum equation. As we shall see, the effect of lat-
eral friction becomes significant before this point is
reached.

In the gap to the north, that is, in 1 2 d # y # 1,
the same solution applies with y replaced by 1 2 y.

Along both x 5 x1 and x 5 x2 the streamfunction is
given by c 5 CI for d # y # 1 2 d. In the gaps the
solution is given by (2.13), also proportional to CI. This
determines the function g(y). The Fourier sine transform
of g(y) is then easily determined as

sinnpd (1 1 q) 2i
g 5 2mn n 2 2 2 2 2n p d [1 1 q 2 r(1 2 i)(1 2 q)] (2i 1 n p d )

r(1 2 q)(1 2 i)
1 2mn np[1 1 q 2 r(1 2 i)(1 2 q)]

2 2 21 n p d
3 2 (1 1 cosnpd) 1 cosnpd ,

2 2 2[ ]2 (2i 1 n p d )

(B.3)

where

mn 5 1 2 (21)n.

In the limit r → 0, gn reduces to the simple formula
found in PS in which it was assumed that the behavior
of c was linear in the gap. Here, that behavior is derived
exploiting the finite length of the channel and its nar-
rowness as well as the uniform boundary conditions
along the channel.

APPENDIX C

Solution for Open Western Boundary

When the western boundary at x 5 xw is rendered
open, the solution of (A.1) in the western subbasin be-
comes

iv t0c 5 e c (x) sinnpy, (C.1)O n
n51

where now

im (x2x )n 1c 5 A e , (C.2a)n n

1 1
2 2 2 1/2m 5 2 [1 2 4n p v ] . (C.2b)n 2v 2v

It is easy to check that the effect of bottom friction,
which renders v complex, produces an exponential de-
cay of the solution westward from the barrier. Or, equiv-
alently, for very small bottom friction the choice of sign
in (C.2b) is equivalent to choosing the long Rossby
wave whose zonal energy flux is westward. Again, using
the results of appendix B, the coefficient An can be
determined by matching the streamfunction to its value
at the longitude of the barrier; hence,

An 5 CIgn, (C.3)

where gn is given by (B.3). Application of the integral
constraint (2.17) again yields an expression for the is-
land constant, CI; thus, instead of (2.19) we now obtain
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anC g cosnpd {i 1 cota (x 2 x )}OI n n 2 e[ npn51

2(1 1 q)l /dx2 ]1 1 q 2 r(1 2 i)(1 2 q)

m W sina (z 2 x )n n n e ik(x 2z)25 2i cosnpd e ,O
vnp sina (x 2 x )n51 n 2 e

(C.4)

which completes the solution.
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