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ABSTRACT

The ocean thermocline is resolved in a very large number of layers by means of a recursive relation that
extends the LPS model of the ventilated flow from a small to an arbitrary number of layers. In order to have
simplified dynamics, the basin is semi-infinite in the zonal direction, the thermocline is fully ventilated, and its
thickness vanishes at the northern boundary. In this model, the potential vorticity of each layer is shown to be
inversely proportional to the Bernoulli function. The high vertical resolution adopted for the thermocline allows
the study of the dependence of its motion on the ratio between the density contrast at the sea surface and the
density step separating the thermocline bottom from the underlying quiescent abyss. This ratio controls both
the nonlinearity and the baroclinicity of the solution. The behavior of the solution as this ratio varies from zero
(linear and barotropic case) to infinity (‘‘fully nonlinear’’ and baroclinic case) is described. The singularity that
is found in the fully nonlinear case is discussed.

1. Introduction

The fluid motion in the ocean thermocline is a key
element of the general ocean circulation and of the me-
ridional heat transport on the planetary scale. For in-
stance, in the midlatitude and subtropical Atlantic, the
meridional Sverdrup volume transport in the thermo-
cline, approximately 30 Sv (Schmitz et al. 1992), is
much larger than abyssal transport due to the dense
water formation in the subpolar ocean, approximately
13–14 Sv (Sv [ 106 m3 s21) (McCartney and Talley
1984), and the thermocline meridional heat transport,
approximately estimated 0.3 PW or larger, is a major
share of the total transport of approximately 0.5 PW
(Semtner and Chervin 1988). While the total mass trans-
port in the thermocline determined by the Sverdrup bal-
ance, that is, forced by the curl of the wind stress, is
independent on the vertical structure of the thermocline
circulation, the heat transport does depend on the ver-
tical profile of the meridional velocity. In fact, the deep
layers transport water that has been subducted in the
northern part of the ocean gyre and is, therefore, cooler
than the water in the surface layers. The water density
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in the thermocline is determined by the air–sea inter-
action processes that modify, at the midlatitudes and in
the Tropics, the temperature and salinity of the surface
fluid that is subsequently subducted in the ocean interior.
The density of the underlying abyss is determined by
the dense water formation processes in the subpolar
ocean. Therefore there is a difference in density between
the thermocline and the abyss due to the different sur-
face density in the regions where the water masses are
formed. This study analyses the role of the density dif-
ference, between thermocline and abyss on the vertical
structure and on the thickness of the ventilated ther-
mocline. Precisely, this study investigates the effect of
a finite density jump at the bottom of the thermocline.
The density of the fluid in the thermocline is kept fixed,
while the density of the quiescent abyss is allowed to
change, accounting for modification of intensity of the
dense water formation in the subpolar ocean.

The idea is to extend the existing multilayer LPS
model of the ventilated thermocline (Luyten et al. 1983)
to an arbitrary number of layers and to let their number
become very large. In this study numerical computations
are carried out using 2000 layers, and, therefore in prac-
tice, a continuous fluid is analyzed. In fact, the descrip-
tion of the gyre remains based on layers of constant
density, but when their number is large, both the thick-
ness and the part directly exposed to the ventilation
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FIG. 1. Schematic of the layer model: meridional section of the
gyre.

becomes very small for each layer,1 and the density
difference between nearest moving layers becomes neg-
ligible with respect to the density difference between
thermocline bottom and abyss. This approach could pro-
duce a continuous model of the thermocline by taking
the limit for the number of layers tending to infinity.
The present study investigates the properties of the mul-
tilayer solution to gain some insight on how the ther-
mocline interacts with the abyss.

In order to have the simplest dynamics, the presence
of unventilated regions has been eliminated from the
problem. Therefore, the theory developed in this paper
is not complete because it cannot be applied to the fluid
everywhere in the gyre, but it is valid only along the
streamlines that outcrop, that is, reach the surface. Pre-
cisely, the theory is valid in the part the gyre where the
whole column is ventilated. Its application to the whole
basin requires the absence of the two regions called
‘‘shadow zone’’ and ‘‘unventilated pool’’ in the LPS
theory, that is, the absence of streamlines departing from
the lateral boundaries of the ocean. When the Ekman
pumping velocity wE, due to the wind stress, is negative,
this condition is satisfied if the total depth of the ther-
mocline vanishes both at the northern and eastern
boundary and if the basin has no western boundary. It
is, unfortunately, not easy to add a nonzero H at the
eastern boundary. The method of solution of this paper
does not easily generalize to the shadow zone that results
in this case. However, the results of previous models,
for example, the LPS model, show that in the region of
the ventilated fluid the qualitative nature of the flow is
unchanged. Moreover, The absence of limitation to the
west eliminates the unventilated portion of the ther-
mocline beneath the outcropping layers. Thus the region
described by Young and Rhines (1982) is absent in the
present model. We regard this as an unfortunate weak-
ness of the present study but the simplification allows
us to make considerable progress on the multilayer so-
lution. Instead, we allow a finite density jump between
the lowest ventilated stratum and the abyss, reminiscent
of the solutions found by Salmon (1990) and Samelson
and Vallis (1997) in which the unventilated domain
shrinks to a narrow, near discontinuity in the absence
of significant vertical diffusion. The method we employ
differs from the approach of Huang (1988) in that we
take as a starting point an analytical solution, described
below, valid for an N-layer ventilated model, where N
is arbitrary, and, in practice, very large.

The continuation of the paper consists of three sec-
tions. Section 2 presents the equations for generalizing
the layer model to an arbitrary number of layers. Section
3 presents the properties of the solution and shows the
results of its numerical computation for an idealized

1 Actually the thickness of the lowermost layer remains finite. This
is explained in section 3a.

distribution of the surface density (assumed to be zon-
ally constant and linearly increasing with latitude). Sec-
tion 4 summarizes the outcome of the study.

2. Model with arbitrary number of layers

The thermocline is suspended over a quiescent abyss
and is shielded from the direct action of the atmosphere
by the surface mixed layer. The horizontal region oc-
cupied by the gyre is semi-infinite in the zonal direction
(x coordinate) and is limited by the latitude circles cor-
responding to the values f 5 0 and f 5 f max of the
Coriolis parameter f. The vertical structure of the ther-
mocline is represented using N 1 1 layers of constant
density ri, ri 5 r0 1 iDr, i 5 0, · · · , N, where Dr is
a positive constant and r0 is the density at the southern
boundary of the gyre. The density range in the ther-
mocline, R 5 rN 2 r0, is a fixed parameter in this study.
The ith layer is delimited by the two surfaces zi(x, f )
and zi11(x, f ), it has the thickness hi(x, f ) 5 zi(x, f ) 2
zi11(x, f ), and it outcrops along a line of constant lati-
tude, which is denoted using the corresponding value
of the Coriolis parameter f̂ i (see Fig. 1). The lowermost
moving level in the model is N and the total thickness
of the thermocline is H 5 2zN11(x, f ). The density of
the quiescent fluid below the thermocline is rA 5 rN 1
G and, as in general G ± 0, even in the limit Dr → 0
there is a discontinuity in the vertical profile of the
density. The value of G is a parameter on which the
solution of the problem depends and it represents the
density difference between subpolar and midlatitude
ocean. In the thermocline the motion is assumed fric-
tionless, steady, adiabatic, hydrostatic, and geostrophic.
The curl of the wind stress produces a negative Ekman
pumping velocity with fluid passing from the mixed
layer to the thermocline and forces the thermocline into
motion.

Conceptually the model is the same that was de-
scribed by Luyten et al. (1983) but it is extended here
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to an arbitrary number of layers. Since the motion is
steady and adiabatic the transport in the ith layer,

(Ui(x, f ), Vi(x, f )) 5 hi(x, f )(ui(x, f ), y i(x, f )),

is nondivergent, except in the region where the layer is
directly exposed to the pumping. Therefore a stream-
function C i(x, f ) exists, such that

]C (x, f ) ]C (x, f )i iU (x, f ) 5 2b , V (x, f ) 5 . (1)i i] f ]x

Since the motion is adiabatic and frictionless the po-
tential vorticity is conserved for all layers except the
uppermost one and since geostrophy holds,

D D f
q (x, f ) 5 5 0, (2)iDt Dt h (x, f )i

which implies that qi(x, f ) is constant along streamlines.
Since the motion is steady and frictionless the Bernoulli
function bi(x, f ) is also constant along streamlines. In
the linear approximation the Bernoulli function is
bi(x, f ) 5 pi(x, f, z) 1 gzri. Since the pressure is hy-
drostatic, it is given by the recursive relation:

p (x, f, z) 5 C 2 r gz, (3)A A

p (x, f, z) 5 p (x, f, z) 1 Gg(z 2 z (x, f )), (4)N A N11

p (x, f, z) 5 p (x, f, z) 1 Drg(z 2 z (x, f )), (5)i i11 i11

where pA is the pressure in the abyss and C is a constant.
Consequently, the Bernoulli function is given by the
relation:

b (x, f ) 5 0, (6)A

b (x, f ) 5 2Ggz (x, f ), (7)N N11

b (x, f ) 5 b (x, f ) 2 Drgz (x, f ), (8)i i11 i11

which can be rewritten

NR a
b (x, f ) 5 2g z (x, f ) 1 z (x, f ) , (9)Oi N11 j1 2a N j5i11

and where the parameter a

R
a 5 (10)

G

is introduced. Note that, unless a → `, that is, G is zero,
the lowermost layer of the thermocline is in motion.
The crucial role of the parameter a will be explained in
section 3.

Since both qi(x, f ) and bi(x, f ) are constant along
streamlines, then

qi(x, f ) 5 Qi(bi(x, f )); (11)

that is, the potential vorticity is a function of bi(x, f ),
where the form of Qi depends on the layer i. The total
meridional transport V satisfies the Sverdrup relation

N

bV (x, f ) 5 b h (x, f )y (x, f ) 5 fw (x, f ), (12)OS j j E
j5M

valid for f M # f # f M11 where M is the uppermost
layer at the latitude f M. The horizontal gradients of
bi(x, f ) and pi(x, f, z) coincide. Therefore, since the mo-
tion is geostrophic, y i(x, f ) and ui(x, f ) are given by

1 ]b (x, f )iy (x, f ) 5 ,i r* f ]x

b ]b (x, f )iu (x, f ) 5 2 , (13)i r* f ] f

where r* is the average density (the Boussinesq ap-
proximation is assumed). On the eastern boundary of
the gyre the zonal velocity is required to vanish and
therefore the levels zi(x, f ) are constant (and, in this
model, zero).

The method for solving the problem consists of two
conceptual steps. The first step is to find the functions
Qi and to write Eq. (11) as a set of N 2 M equations
in the N 2 M 1 1 variables zi(x, f ), whose solution
gives the levels zi(x, f ) as a function of the lowermost
level zN11(x, f ). The second step is to substitute this
solution in the Sverdrup relation (12), using the geo-
strophic relation (13) for determining zN11(x, f ). At this
point the Bernoulli function is known in each layer and
the streamlines of the motion are determined.

a. The relation between potential vorticity and
Bernoulli function

An interesting theoretical result and an iterative meth-
od for the solution of the ventilated thermocline problem
are obtained by introducing a set of positive functions
ai, the fractional depth of the ith layer, defined as

zi(x, f ) 5 aizN11(x, f ). (14)

Each a i varies between 0 and 1 (aN11 [ 1 is clearly a
constant) and, a priori, could be a function of both the
Coriolis parameter f and the x coordinate.

The derivation requires a few simple preliminary
equations. Both potential vorticity and Bernoulli func-
tion are constant along streamlines after the fluid sub-
ducts, that is, for any x along a streamline in each layer
i departing from the outcrop latitude f̂ i at the longitude
x9,

q (x, f ) 5 q (x9, f̂ ) (15)i i i

b (x, f ) 5 b (x9, f̂ ). (16)i i i

Using the fractional thickness ai, the expressions for
the vorticity in the ith layer become

f
q (x, f ) 5 (17)i (a ( f ) 2 a ( f ))z (x, f )i i11 N11

f̂ iq (x9, f̂ ) 5 2 (18)i i a ( f̂ )z (x9, f̂ )i11 i N11 i

and the ith Bernoulli function, given by Eq. (9), is
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NR a
b (x, f ) 5 2g z (x, f ) 1 1 a ( f ) . (19)Oi N11 j1 2a N j5i11

Note that the previous Eqs. (17)–(19) are valid also for
i 5 N, with the convention that the sum gives no con-
tribution for i 5 N.

Consider the Nth layer. It is a matter of simple algebra
to use sequentially the conservation of the potential vor-
ticity along a streamline, Eqs. (15), (18), (19), and the
conservation of the Bernoulli function along a stream-
line, Eq. (16), to obtain

qN(x, f )bN(x, f ) 5 f̂ NgG, (20)

which shows that, in the Nth layer, the Bernoulli func-
tion and the potential vorticity are inversely propor-
tional. Moreover, using Eq. (17) and again Eq. (19) in
the resulting Eq. (20), one obtains

f
a [ a ( f ) 5 1 2 , (21)N N f̂N

which shows that the fractional thickness of the Nth
layer depends only on f.

If one assumes that the fractional thickness of layer
i 1 1 is known and that it is only a function of f, the
reasoning carried out for the Nth layer can be repeated
for the ith layer. One obtains

Na
f̂ 1 1 a ( f̂ )Oi j i1 2N j5i11R

q (x, f )b (x, f ) 5 g , (22)i i a a ( f̂ )i11 i
Na

1 1 a ( f )O jf N j5i11
a ( f ) 5 a ( f ) 2 a ( f̂ ) , (23)i i11 i11 i Nf̂ ai 1 1 a ( f̂ )O j iN j5i11

which shows that a i does not depend on the x coordinate.
Equation (23), valid in the region where layer ith is
subducted, is a tool for the computations of the functions
ai from the bottom layer N to the uppermost subducted
layer M. In other words, this basic conceptual step of
our study provides us with an iterative procedure for
the determination of the analytical expressions ai( f ) for
i 5 M, · · · , N and, consequently, of the corresponding
levels zi(x, f ) as functions of zN11(x, f ). We emphasize
that the factors ai( f ) are functions only of f. They de-
pend in a complicated way on the outcrop latitudes, but
they do not depend on x.

Moreover, Eqs. (20) and (22) show that there is a set
of positive constants, ci, which are complicated func-
tions of the outcrop latitudes,

R
c 5 g f̂ , (24)N Na

Na
f̂ 1 1 a ( f̂ )Oi j i1 2N j5i11R

c 5 g , (25)i a a ( f̂ )i11 i

such that

qi(x, f )bi(x, f ) 5 ci; (26)

that is, potential vorticity and Bernoulli function are
inversely proportional with a coefficient that is known
if the outcrop latitudes of the layers are known. Each
coefficient ci depends only on i, that is, the layer index
ordering, and it is a function of f̂ j, j . i. Thus, in general,
the dependence of qi on bi is an inverse one, with the
product qibi a function only of the density distribution
at the sea surface.

Unfortunately the functions a i( f ) are expressed in
terms of polynomials of degree N 2 i 1 1, and con-
sequently both their computations and the computation
of ci becomes analytically impractical if N is large. Note
that aN and aN21 agree with the results of Luyten et al.
(1983), in a region occupied by the directly ventilated
fluid, when N 5 3, and the density step between moving
layers is constant.

b. The total depth of the thermocline

In order to solve the problem, after having found the
constants ai( f ), one has to determine the total depth of
the thermocline zN11(x, f ). Substituting in the Sverdrup
relation (12), the geostrophic relation (13), and the ex-
pressions (9) and (14), after some algebra the relation

]
2G ( f ) z (x, f ) 5 w (x, f ), (27)M N11 E]x

NR gb
G ( f ) 5 (a ( f ) 2 a ( f ))OM i11 i2a 2r* f i5M

Na
3 1 1 a ( f ) (28)O k1 2N k5i11

is obtained, where aN11( f ) [ 1. The subscript M in-
dicates that this expression is valid in the region where
only the layers from M to N are present, that is, when
the coriolis parameter varies from f M to f M11. Having
found zN11(x, f ) the streamlines for each layer can be
determined using the expressions (9) and (14).

3. The analysis of the motion

The theory developed in this study allows the de-
scription of the motion in the thermocline using a very
large number of layers and the analysis of the response
of the thermocline structure to the magnitude of the
density step at its bottom. This section is divided into
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two subsections. Section 3a analyzes the role of the
density step at the bottom of the thermocline in term of
the parameter a 5 R/G, and section 3b describes the
method used for a numerical solution and shows the
numerical solution for an idealized surface density dis-
tribution, constant in the zonal direction and linearly
increasing with the latitude.

a. The dependence of the solution on the parameter a

The vertical structure of the thermocline depends on
a, which controls both the baroclinicity and the nonlin-
earity of the problem. In fact, when the variation of the
density in the thermocline, R, is negligible with respect
to the step G at its bottom, the motion is conditioned
only by the value of G and becomes barotropic. In the
limit a → 0, the nonlinear equation (23), which de-
scribes the fractional thickness of each layer ai( f ), be-
comes linear and its solution has the simple form ( f ):(0)ai

f
(0)a ( f ) 5 1 2 . (29)i f̂ i

In this linear limit, the Bernoulli functions tend in every
layer to the barotropic limit (x, f )(0)bi

R
(0)b (x, f ) 5 g H(x, f ), (30)i a

and every function Gi( f ) has the same expression G (0):

R gb
(0)G ( f ) 5 . (31)

2a 2r* f

The depth of the thermocline is given as the linear limit
H (0):

1/2xE w (x9, f )E(0)H (x, f ) 5 dx9 , (32)E (0)1 2G ( f )x

where x # xE, eastern boundary of the gyre, and it
reduces to that of the 1½ layer model. In this limit, the
model is singular because as the thermocline depth tends
to zero, the speed of every layer tends to infinity in
order to maintain the prescribed Sverdrup transport.

The opposite limit is for a → `, corresponding to G
→ 0, that is, to the absence of discontinuity in the value
of density at the bottom of the thermocline. This limit,
where the motion is baroclinic and nonlinear, is called
the ‘‘fully nonlinear’’ limit in this paper, and it repre-
sents the situation in which there is no density jump at
the base of the ventilated thermocline. In this fully non-
linear limit, the most dense layer, whose Bernoulli func-
tion is given by

R
b (x, f ) 5 g H(x, f ), (33)N a

is not in motion, and the model is singular because the
function GN( f ), given by Eq. (28), tends to 0 and con-
sequently the depth of the thermocline, given by Eq.

(27), tends to infinity at its northern boundary. The sin-
gularity concerns the depth of the thermocline and not
the fluid speed and the total transport. Precisely, the
depth of the thermocline diverges as a1/2, but the me-
ridional fluid velocity y N(x, f ), given by Eqs. (13) and
(33), tends to 0 as a21/2, and the meridional transport
VN(x, f ) is therefore finite.

The physical explanation is that the Nth layer collects
the infinite amount of fluid that flows at the sea surface
along the semi-infinite northern boundary of the gyre,
where the meridional velocity vanishes, and enters the
gyre after having been ventilated for an infinite time.
The flux of mass into the thermocline has to be balanced
by a finite meridional transport, which, when there is
no density difference between the bottom of the ther-
mocline and the abyss and the fluid speed approaches
smoothly the value of the abyss at rest, requires an in-
finite layer thickness. This represents a breakdown of
the proposed model of the thermocline because the as-
sumption of a vanishing thermocline depth at the north-
ern boundary of the gyre cannot be maintained. The
model is intrinsically inconsistent only in the fully non-
linear limit and a regular solution is possible when there
is a finite step in both density and velocity at the bottom
of the thermocline.

Actually, the continuous fluid, with a continuous ver-
tical density distribution, is described by the fully non-
linear limit of this model, obtained for N → ` and G
5 Dr 5 (rA 2 r0)/(N 1 1) → 0, and therefore a →
`. There is consequently a serious problem when this
model is applied to the description of a continuous fluid
and the density at the bottom of the thermocline ap-
proaches smoothly the density of the quiescent abyss,
that is, if G 5 Dr 5 (rA 2 r0)/(N 1 1) tends to zero
as N tends to infinity. Actually, the calculations of Sa-
melson and Vallis (1997) suggest a value of G that is
finite but different from 0. Therefore, the fully nonlinear
limit of this model appears very interesting for the un-
derstanding of the motion of a continuous fluid, though
it is not necessarily adequate for the description of the
ocean thermocline.

Note that the lowermost Nth layer has a peculiar be-
havior because its fractional thickness does not depend
on a:

f
a ( f ) 5 1 2 if f , f̂ , (34)N Nf̂N

and moreover,

f
h (x, f ) 5 H(x, f ) if f , f̂ ,N Nf̂N

h (x, f ) 5 H(x, f ) if f $ f̂ , (35)N N

which shows that, also in the limit N → ` in which the
thickness of every other layer tends to 0 and the mul-
tilayer fluid tends to a continuous one, the thickness of
the Nth layer remains finite, with a fractional value
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z (x, f ) 2 z (x, f )N N11 5 f / f̂ . (36)NH(x, f )

This means that the fluid in layer N 2 1 is always a
finite distance above the base of the thermocline, even
though its outcrop line is infinitesimally close to the
northern boundary of the gyre. This situation is a con-
sequence of the idealized case that is analyzed in the
paper, where the fluid in the Nth layer has been venti-
lated at an infinite distance from the eastern boundary
of the gyre. The fluid in the Nth layer is forced to move
along lines of constant thermocline depth H and also to
conserve its potential vorticity. This fluid left the north-
ern boundary of the gyre at an infinite distance from
the eastern boundary, where the slope of the bottom of
the thermocline was infinite in the meridional direction
with a potential vorticity f̂ N/H, and its thickness has to
remain finite in order to conserve this finite vorticity at
any latitude where f ± 0. Note that the Nth layer is the
only layer whose potential vorticity, defined by Eq. (2),
remains finite in the limit N → ` when the vorticity of
the other layers diverges, and that this behavior does
not depend on the value of the Ekman pumping.

The value of a affects the fraction of total transport
supported by each layer. In the linear limit, the motion
is barotropic and the transport supported by each layer
is proportional to the layer thickness. In this regime the
lowermost Nth layer, which occupies a large fraction of
the thermocline thickness, gives the dominant contri-
bution to the total transport. As a increases, the velocity
of the fluid in the Nth layer diminishes and its contri-
bution to the total transport is reduced. Combining to-
gether the expression of the total Sverdrup transport [Eq.
(12)] of the Bernoulli function in the Nth layer [Eq. (7)]
and of the thickness of the thermocline [Eqs. (27) and
(28)], one obtains the ratio of the transport in the Nth
layer, VN(x, f ) 5 y N(x, f )(zN(x, f ) 2 zN11(x, f )) to the
Sverdrup transport VS(x, f )

NV (x, f ) fN 5 (a ( f ) 2 a ( f ))O i11 i[V (x, f ) f i5MS N

21Na
3 1 1 a ( f ) . (37)O k1 2]N k5i11

In the linear limit, the ratio is given by the ratio of the
Nth layer thickness to the total thickness, that is, f/ f N.
In the fully nonlinear limit the ratio tends to 0, but at
the northern boundary of the gyre. The vertical distri-
bution of the transport has important consequences on
the mass defect tranport in each layer

fi(x, f ) 5 riy i(x, f )(zi(x, f ) 2 zi11(x, f ))

and on its total value FM(x, f ) 5 f i, where theNSi5M

subscript M indicates that this expression is valid in the
region where only the layers from M to N are present,
that is, when the Coriolis parameter varies from f M to
f M11. Since the lowermost layers transport the most

dense fluid, a reduction of their volume transport implies
a reduction of the total mass transport in the thermo-
cline.

b. The numerical solution

The derivation of an analytical expression for the frac-
tional layer thickness a i( f ) using Eq. (23) and starting
from layer N is possible in principle, but, as the layer
index decreases, the resulting expressions are increas-
ingly complicated and practically useless. Consequent-
ly, the analytical solution is useful for the understanding
of the thermocline dynamics only when the number of
layers is very small. On the other hand, the numerical
solution can be easily derived from Eqs. (23) and (27),
and also when the number of layers N is very large, by
describing the horizontal domain with Nj steps in the
meridional direction and Nk steps in the zonal direction.

The discrete version of Eq. (23) is easily obtained:
Na

1 1 aO k,jf * Nj k5i11
a 5 a 2 a , (38)i, j i11, j i11,l Nif̂ * ai 1 1 aO k,liN k5i11

where 5 j/Nj, j 5 1, · · · , Nj is the dimensionlessf*j
Coriolis parameter, ai,j 5 ai( ), and li denotes the indexf*j
corresponding to the outcrop line of layer i, that is, f li

5 f̂ i. Because of the definition (14) one has aN11,j 5 1,
for j 5 0, · · · , Nj, and north of the outcrop line of layer
i, that is, for j $ li, ai,j 5 0. In the region j , li the
variables ai,j are determined using (38).

Assuming that the Ekman pumping velocity depends
only on latitude, the equation for the total dimensionless
depth of the thermocline is

gbR
H* 5 H , k 5 1, · · · , N ,k,j k, j kW L2r* f̂E N

j 5 1, · · · , N , (39)j

where the first index k denotes the dimensionless dis-
tance from the eastern boundary of the gyre 5 k/Nk,x*k
the second index j denotes the meridional coordinate,
WE represents the magnitude of the Ekman pumping
velocity; L, the zonal extension of the domain of inte-
gration, is

1/2w* (x* 2 1)Ej k
H* 5 . (40)k,j 1 2G*j

Here wEj is the dimensionless Ekman pumping velocity,
and

N N1 a
G* 5 f * 1 (a 2 a ) 1 1 a .O Oj j j11,i i, j k, j2 1 2[ ]af * Ni5j k5i11j

(41)

The dimensionless level of the ith layer at the dis-z*ijk
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FIG. 2. The solution ai,j as function of r* (x axis) and f * (y axis) for increasing value of the parameter a. Top-left: linear case, top-right:
a 5 10, bottom-left: a 5 103, and bottom-right: a 5 105.

tance 5 k/Nk from the eastern boundary of the gyrex*k
and at the latitude 5 j/Nj is determined asf*j

5 2ai,j ,z* H*ijk k,j (42)

and the Bernoulli function for the same layer at the same
point is

Nz* aN11, j,k
b* 5 1 1 a . (43)Oi, j,k m,j1 2a N m5i11

Figures 2–7 show the results of the numerical com-
putation, specifying

j
w* 5 2sin p , (44)Ej 1 2Nj

and imposing a constant linear gradient of the surface
density along the whole meridional extension of the
gyre, such that r 5 rN at the northern boundary and r
5 r0 at the southern boundary. The outcrop line is given
by the relation f̂ i 5 with 5 (ri 2 r0)/(rN 2 r0).r* r*i i

In the actual computation the density step was not
constant, but a fine Dr has been used near the northern
boundary of the gyre in order to resolve adequately the
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details of the nonlinear flow. In fact, the solution was
computed with the requirement that the density jump at
the base of the thermocline was much larger than the
density resolution within the thermocline; that is, G k
Dr, which requires a K N. This ensures that the ‘‘1’’
in Eq. (23) is never negligible and the solution has a
smooth transition from the linear to the nonlinear re-
gime. The whole range of density was split into two
intervals. From 5 0 to 5 1 2 1/Nc, the equationr* r*i i

was integrated using a coarse step Dr 5 1/Nc, while
from 1 2 1/Nc to 1 the equation was integrated using
a fine step Dr 5 1/Nf . Note that this implies some trivial
changes in the formulas.2 The solution shown was ob-
tained using Nc 5 2 · 103 layers, and Nf 5 2 3 107 if
a 5 105, Nf 5 4 3 106 in the other cases. In the me-
ridional direction Nj 5 Nc and Nj 5 Nf latitudes were
used in the coarse resolution and fine resolution range,
respectively. Nk 5 100 longitudes were used in the zonal
direction.

Figure 2 shows the variations of the matrix ai,j—as
function of dimensionless density (x axis) and Cor-r*i
iolis parameter f* (y axis)—as a increases from the
linear regime to a very nonlinear one (the four panels
show the values of ai,j corresponding to a 5 0, a 5 10,
a 5 103, and a 5 105). The solution is defined in the
region . f*, that is, south of the outcrop line of ther*i
fluid. The solution is always linear in f* at 5 1r*i
where aN( f*) 5 1 2 f*. If a 5 0 the solution is linear
everywhere (top-left panel). As a increases the values
of ai,j diminish and the decrease is larger for the dense
layers in the northern part of the gyre. This means that
a larger vertical fraction of the thermocline is occupied
by the dense fluid that outcrops near the northern bound-
ary and that the stratification becomes progressively
weaker. This variation of the vertical stratification is due
to the increase of the baroclinicity of the regime and
the consequent increasing tendency of the fluid to turn
right with depth, as required by the b spiral3 (Stommel
and Schott 1977). Consequently, as a increases for a
given density, the outcrop point of each fluid element
moves west along the outcrop line and, since the ther-
mocline depth increases and stratification decreases to-
ward the west, its potential vorticity diminishes. The
diminished potential vorticity of the fluid results in the
weaker stratification and the smaller upper fraction of
the thermocline occupied by the lighter fluid. Note that
this behavior does not depend on the pattern of the
Ekman pumping.

Figure 3 shows the dimensionless depth of the ther-

2 When two different density steps are used, the factor 1/N is elim-
inated from the sums in Eq. (38) and each layer is given a weight
proportional to the density step, that is, Dr 5 1/Nf in the fine reso-
lution range and Dr 5 1/Nc in the coarse resolution range. This change
is obvious if one considers the sums as the discrete representation of
integrals in density.

3 This is confirmed by the analysis of the streamlines discussed
later in this section.

mocline rescaled with 1/ a, that is, / a, The panelsH*Ï Ïk,j

show the same four regimes of the previous Fig. 2. The
depth of the thermocline increases with a because the
diminished velocity of the lower levels (that match the
zero velocity of the abyss in the nonlinear limit) has to
be compensated by an increased thickness of the ther-
mocline in order to balance the imposed Ekman pump-
ing. The increased baroclinicity of the regime deter-
mines a change in the shape of the bottom of the ther-
mocline. In fact, the Ekman transport and the total trans-
port are identical in the four different regimes shown
(the total transport follows the line of constant depth in
the linear case). As a increases, such transport is ac-
complished by an increasingly baroclinic flow with fluid
strongly turning right with depth. The contour levels of
the thermocline depth, shown in Fig. 3, are also the
streamlines of the lowermost moving fluid and they
show its increased tendency to turn right with respect
to the total transport, whose direction is given by the
contour levels of the linear regime.

The meridional section of the thermocline in Fig. 4
shows the stratification that results from the solution ai,j

and the thermocline depth according to Eq. (42), re-
scaling the levels with the factor 1/ a, as in Fig. 3.Ï
Note that the Nth layer ( 5 1) occupies the finiter*i
fraction of the thermocline between level zN11(x, f )
(dashed line, actual bottom of the thermocline) and level
zN(x, f ) (thick line). In the bottom-right panel (a 5 105)
the upper part of the thermocline shrinks to a very small
region, which is not clearly visible in the figure. Figure
4 confirms that, as a increases, a larger fraction of the
thermocline is occupied by the dense fluid that outcrops
in a narrow strip at the northern boundary of the gyre
and that the density profile in the thermocline joins
smoothly the constant value of the abyss, matching it
with a zero derivative of the vertical density profile.
Note that the vertical scale of Fig. 4 is deformed by the
adopted scaling and the the actual dimensionless thick-
ness of the thermocline increases almost as a.Ï

Figure 5 shows the streamline of the flow for three
selected levels and the transition from the linear and
barotropic to the nonlinear and baroclinic regime. The
density levels are chosen in order to describe the region
of stronger baroclinicity, that is, the lower part of the
thermocline. The lowermost level shown is immediately
above the bottom of the thermocline ( 5 0.99). Ther*i
two other levels shown are 5 0.9 and 5 0.5. Inr* r*i i

the linear case the motion is fully barotropic. As a in-
creases, the streamlines turn right with depth and the
point where they reach the outcrop line moves toward
the west. This effect is larger for the deeper fluid, rep-
resented by the layers 5 0.9 and 5 0.99, whiler* r*i i

the effect on the layer 5 0.5 and the upper part ofr*i
the thermocline is small.

Figure 6 shows the dimensionless meridional volume
transport for the same four regimes. The lowermost
dashed line represents the total dimensionless Sverdrup
transport, 5 f* , which obviously does not dependV* w*S E
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FIG. 3. Dimensionless level of the bottom of the thermocline H* rescaled with a21/2 as a function of dimensionless distance from the
eastern boundary x* (x axis) and of the Coriolis parameter f* (y axis). Top-left: linear case, top-right: a 5 10, bottom-left: a 5 103, and
bottom-right: a 5 105.

on a. The dimensionless transport of the ith layer is
defined as

f *w*EV* 5 [y (z (x, f ) 2 z (x, f ))] . (45)i i i i11 fwE

The density range has been divided into 10 intervals.
The thin continuous lines represent the cumulated trans-
port up to density 5 0.1n, n 5 1, · · · , 9. The low-r*i
ermost continuous thick line represents the cumulated
contribution up to layer N 2 1. Figure 6 shows that the

contribution of the Nth layer, given by the space between
dashed and thick lines, diminishes for increasing a, and
its share is taken over by the lighter layers above it.
This is a consequence of the progressively lower speed
of the fluid near the base of the thermocline for increas-
ing a. Figure 7 shows the dimensionless mass defect
transport. The dimensionless mass defect transport of
the ith layer is defined as

5 ( 2 ) .f* r* r* V*i 0 i i (46)
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FIG. 4. Meridional section of the stratification. The dimensionless z* levels rescaled with a21/2 are plotted as function of f *. The
lowermost dashed line is the dimensionless bottom of the thermocline, 2H*(1, f *). The thick line is z*(1 2 1/N, 1, f *). The remaining
lines are z*(0.9, 1, f *) to z*(0.1, 1, f *) with a step Dr* 5 0.1 Top-left: linear case, top-right: a 5 10, bottom-left: a 5 103, and bottom-
right: a 5 105.

Lines have the same meaning as in Fig. 6; that is, the
cumulated mass transport F* is shown. Since, as a in-
creases, the speed of the lowest layers diminishes, the
amount of most dense fluid flowing toward the equator
decreases and the overall mass tranport is reduced. The
reduction, not very large, is approximately 10% in the
middle of the gyre at f* 5 0.5. Since the high density
of the fluid is generally due to its low temperature, the
diminished mass transport is associated with a dimin-
ished meridional heat transport.

4. Conclusions

The main results of this study are Eqs. (23)–(28).
They provide the tools for the description of the flow
in the ventilated part of the thermocline. The basic equa-
tion is actually Eq. (26), showing that potential vorticity
and Bernoulli function are inversely proportional, and
that their product, the constants ci, depends only on the
surface density distribution. The constants ci character-
ize the whole problem, and their knowledge would make



348 VOLUME 30J O U R N A L O F P H Y S I C A L O C E A N O G R A P H Y

FIG. 5. Streamlines of the flow. The dotted lines show b*(0.99, x*, f *), the dashed lines show b*(0.9, x*, f *), and the continuous lines
show b*(0.5, x*, f*). The thick lines evidence the outcrop latitudes of layer ri*

5 0.99, ri*
5 0.9, and ri*

5 0.5. Top-left: linear case (note
that the motion is barotropic), top-right: a 5 10, bottom-left: a 5 103, and bottom-right: a 5 105 case.

it linear. In continuation of the research it will be in-
teresting to search for a family of expressions of ci

depending on a convenient parameter and corresponding
to a reasonable distribution of the surface density, such
that an analytical tractable solution of Eq. (23) exists.
The analysis of the behavior of the solution as the pa-
rameter varies could give interesting information on the
dynamics of the thermocline.

We have limited our attention for simplicity to the
case of zonal outcrop lines, as we have already men-
tioned, for simplicity. We realize that for other outcrop

line configurations the relationship that we derived be-
tween the potential vorticity and the Bernoulli function
will differ. Indeed, as Williams (1991) shows (see also
Pedlosky 1996), it is possible that variable mixed layer
thickness, or differently configured outcrop geometries,
can lead to even uniform potential vorticity for the ven-
tilated fluid. Anyway, since the zonal outcrop case is in
some sense the classical statement of the problem and
since the outcrops in the ocean approximate zonality, it
is a case of particular interest.

The numerical solution describes the mapping of the
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FIG. 6. Dimensionless volume transports, V*, as functions of f*. The lowermost dashed line is the dimensionless total Sverdrup transport.
The thin lines show the cumulated transports up to layer r

*
5 n*Dr*, n 5 1, · · · , 9, Dr* 5 0.1, The thick line, the transport up to layer

r
*

5 1 2 1/N. Top-left: linear case, top-right: a 5 10, bottom-left: a 5 103, and bottom-right: a 5 105.

density distribution from the surface to the vertical
thickness of the gyre. The relative importance of the
surface density contrast rN 2 r0, where rN, r0 are the
maximum and minimum density in the thermocline, re-
spectively, versus the density step G between bottom of
the thermocline and the abyss is found to be the param-
eter that controls the behavior of the solution. The de-
pendence of the solution on this parameter

r 2 rN 0a 5
G

has been investigated. When a 5 0, the solution is bar-
otropic and the basic Eq. (23) is linear. The motion
becomes progressively more baroclinic and Eq. (23)
more nonlinear as a increases. It is shown that the depth
of the thermocline increases with a. Moreover, as the
nonlinearity increases, the vertical stratification decreas-
es, fluid of progressively lower potential vorticity fills
the lower part of the thermocline, and the total thickness
of the thermocline becomes larger. Though the total vol-
ume transport does not depend on the value of a, the
transport supported by each layer varies with a. When
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FIG. 7. Dimensionless mass transports, F*, as functions of f *. The lowermost dashed line is the total transport. The thin lines show the
cumulated transports up to layer r

*
5 n*Dr*, n 5 1, · · · , 9, Dr* 5 0.1, The thick line, the transport up to layer r

*
5 1 2 1/N. Top-left:

linear case, top-right: a 5 10, bottom-left: a 5 103, and bottom-right: a 5 105.

a is not large, say, between 0 and 10, most of the trans-
port is mainly supported by the most dense layer N,
whose share, for increasing a, is taken over by the less
dense fluid and vanishes for a tending to infinity. This
dependence of the distribution of the volume transport
among different layers influences the mass transport be-
cause it affects the amount of most dense fluid flowing
southward. Consequently, when a increases, the mass
transport diminishes. The computed reduction, when a
varies from 0 to 105, is approximately 10%. Since the
surface variation of density is associated with a variation

of temperature, the diminished mass transport is asso-
ciated with a diminished heat transport. According to
this model the diminished temperature difference be-
tween midlatitudes and the subpolar ocean corresponds
to a diminished heat transport in the thermocline from
the midlatitudes to the equator, which, acting as a pos-
itive feedback, might further diminish the temperature
difference between subpolar and midlatitude ocean. This
stresses the importance of the interaction between ther-
mocline and abyss for the determination of the motion
within the thermocline.
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If G is nonzero, as suggested by other calculations
(Samelson and Vallis 1997), the solution is finite, and
moreover, it can be shown that the limit of large N goes
smoothly to the continuous limit (we are in the process
of preparing a paper describing our results). Our model
fails in the limit a → ` because it predicts an infinite
thermocline depth. This singularity derives from the
need for balancing the volume mass due to the Ekman
pumping at the northern boundary of the gyre in the
special situation when the most dense layer matches the
density of the abyss (G → 0), and therefore its speed
becomes vanishingly small. Since the required meridi-
onal transport is finite, an infinite layer thickness results.

The extension of our results to the continuous ocean,
without the discontinuity in density at the bottom of the
thermocline, presents some interesting problems. Such
a continuous limit can be obtained by assuming G 5
Dr → 0 as N → `, and therefore a → `. This shows
that this model is singular in the continuous limit. This
singularity is probably due to both the model dynamics
and the idealized basin geometry. The model dynamics
is lacking because there is no mechanism capable of
setting into motion the underlying, more dense layers
that are not directly exposed to the ventilation. The in-
troduction of a western boundary of the gyre should
limit the fluid pushed by the Ekman pumping inside the
ocean at the northern boundary and possibly eliminate
the singularity in the thermocline depth. It would be of
considerable interest to see whether the present solution,
based on the general iterative solution for layer depth
given by Eq. (23), could be extended to include the
presence of unventilated homogenized regions beneath
the ventilated zone. Note that the assumed vanishing
thickness of the ventilated fluid at the northern boundary
of the gyre cannot be considered a limitation of the
model, but it reflects the presence in the real ocean of
ventilated fluid that outcrops at the northern boundary
of the gyre. The unrealistic model feature is not the
presence of such a layer, but the absence of a dynamics
capable of setting into motion the underlying unventi-
lated portion of the thermocline.

In conclusion, the model is clearly incomplete in that
it ignores the motion of the unventilated fluid that would
outcrop in the subpolar gyre. Although such a restriction
is dynamically consistent, the work of Young and Rhi-
nes (1982) has shown the likelihood of the instability
of such solutions with respect to solutions in which the
total Sverdrup transport is shared with the deeper un-
ventilated strata on which q is homogenized in pools
nestled against the northwestern corner of the basin. The
solution we have presented may therefore have rele-

vance only in the eastern portion of the basin where the
Young–Rhines layer is extremely thin. We find it sug-
gestive that our solution indicates that the stratification
in the deepest ventilated part of the thermocline should
be substantially weaker than in the upper one. That as-
pect of the solution recurs in the more realistic model
of Samelson and Vallis (1997), especially when the ver-
tical diffusivity is small and the base of the ventilated
thermocline is separated from the nearly uniform abyss
by a region of extremely sharp density gradient, which
in our model we associate with a density jump at the
base of the ventilated thermocline. Such regions of
‘‘mode’’ water may be a natural product of the process
of wind-driven surface ventilation. Although the model
is highly idealized and ignores the motion of unventi-
lated water beneath the thermocline, it has allowed us
to obtain some important insights into the thermocline
structure. Thus the inverse relation between potential
vorticity q and Bernoulli function b described by Eq.
(26) has been proved, the dependence of the motion in
the thermocline on the difference in density between
thermocline bottom and abyss has been investigated,
and the singularity of a model whose dynamics com-
pletely neglects diffusive processes in a zonally semi-
infinite basin with a continuous vertical density profile
has been found.
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