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ABSTRACT

The author considers the stability of a barotropic jet on the beta plane, using the model of a *‘ rough-bottomed
ocean” (i.e., assuming that the horizontal scale of bottom irregularities is much smaller than the width of the
jet). An equation is derived, which governs disturbances in a sheared flow over one-dimensional bottom to-
pography, such that the isobaths are parallel to the streamlines. Interestingly, this equation looks similar to the
equation for internal waves in a vertically stratified current, with the density stratification term being the same
as the topography term. It appears that the two effects work in a similar way, that is, to return the particle to
the level (isobath) where it ““belongs’ (determined by its density or potential vorticity). Using the derived
equation, the author obtains a criterion of stability based on comparison of the mean-square height of bottom
irregularities with the maximum shear of the current. It is argued that the influence of topography is a stabilizing
one, and it turns out that ““realistic’” currents can be stabilized by relatively low bottom irregularities (30—70
m). This conclusion is supported by numerical calculation of the growth rate of instability for jetswith a Gaussian

profile.

1. Introduction

Ninety percent of theoretica papers dealing with
flows on the beta plane assume the oceanic bottom to
be flat. The reason for that is obvious—bottom irreg-
ularities appear to hamper both analytical and numerical
treatment. The situation is particularly drastic with the-
ory of barotropic and baroclinicinstabilities, wherevery
few studies take into account bottom topography. The
lack of attention to this important question looks even
more surprising, as all necessary mathematical toolshad
been devel oped long time ago by Rhines and Bretherton
(1973) in their pioneering work on the dynamics of
Rossby waves over topography (in still water).

In order to illustrate how topography can affect in-
stability, consider a barotropic zona flow U(y) on the
beta plane (U is the velocity of the fluid, y is the north-
ward Cartesian coordinate). In order to simplify the
problem, we consider one-dimensional depth variation
D(y) such that the isobaths are paralel to the stream-
lines. The stahility of U(y) can be readily examined
through the standard methods, resulting in the conclu-
sion that the flow is stable, given the usual sufficient
condition of monotonicity of potential vorticity:

f
PV(y) = By — U, — H—°D,
0

Corresponding author address: Dr. E. S. Benilov, Dept. of Math-
ematics, University of Limerick, Limerick, Ireland.
E-mail: eugene.benilov@ul.ie

© 2000 American Meteorological Society

where H,, is the mean depth of the ocean, and f, and
B are the Coriolis parameter and its meridional gradient,
both depending on the latitude 6 (in all examples con-
sidered in this paper we assume 6 = 30°). It turns out,
however, that this criterion is unusable for many im-
portant oceanic applications.

Consider arelatively weak jet with a Gaussian profile

U(y) = U, exp —(%) , (1)

Uy =015ms? L,=100km, (2

where U, is the maximum velocity and L, is the
“width” of the current. For the case of flat bottom, the
potential vorticity (PV) profile associated with this flow
is monotonic (see Fig. 1a), which provesthat the current
is stable. Let us now include a small, short-scale depth
variation, say

H, + 50 m x sin(ﬂ), ?)

H(y) 5 km

H, = 5000 m, ()

where H(y) is the depth of the ocean [(3) appears to be
qualitatively applicable everywhere except for the con-
tinental shelf and midocean ridges, as elsewhere in the
ocean bottom irregularities are small and short—say,
10-300 m in height, and 1-10 km in horizontal scal€].
Affected by the topography, the PV profile becomes
strongly nonmonotonic (see Fig. 1b)—but does this sug-
gest that the flow is potentially unstable? Of course not,
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Fic. 1. Potential vorticity profile for flow (1)—(2) for a (a) flat bottom and (b) sinusoidal topography (3)—(4).

spatial inhomogeneities are unlikely to introduce insta-
bility into an otherwise stable system! Moreover, in
some cases topography can stabilize the flows, which
would be unstable without it. This renders the PV cri-
terion virtually meaningless; it never holds for realistic
oceanic topography.

The present paper studies the effect of topography on
the instability of barotropic flows on the beta plane. Our
main goal is to derive a topography-modified stability
criterion.

Following Rhines and Bretherton (1973), we shall
consider the (most interesting physically) case of
““rough-bottomed ocean,” where

» the height of bottom irregularities is small compared
to the mean depth of the ocean and

« the horizontal scale of topography is short compared
to the width of the flow.

Observe that the latter assumption makes the problem
difficult to simulate numerically, as one has to resolve
the short-scale topography-induced component of the
flow. As aresult, we shall take a combined analytical—
numerical approach: in section 2 of this paper, we shall
employ the method of multiple scales to derive an as-
ymptotic equation that *‘averages out” the effect of
rough topography and ‘‘parameterizes” it in the form
of a smooth term, depending on the mean-square height
of bottom irregularities (all other characteristics of to-
pography turn out to be nonessential). This equation
generalizes the usual linear ODE that governs the sta-
bility of normal modes in a zonal jet over flat bottom,
and it will be used to derive a stability theorem for flows
over topography (section 3). In sections 4 and 5, we
shall compute numerically the growth rate of the insta-

bility for jets with a Gaussian profile in a wide range
of the parameters involved. It turns out that even weak
bottom irregularities (less than 2% of the mean depth)
may stabilize a flow with *‘realistic’’ oceanic parame-
ters.

2. Basic equations
Barotropic motion on the beta plane is governed by

R (ACEE TRV IE

where (X, y) and t are the Cartesian coordinates and time,
P(X, y, t) isthe streamfunction, f,and g arethe Coriolis
parameter and its meridional gradient, and d(x, y) isthe
deviation of the ocean depth H(x, y) from its mean value
H,:

d=H — H,.

Equation (5) implies that topography issmall, |d| < H,.
Consider small disturbances superposed on a zonal
current:

= —f U(y) dy + &', (6)

where U(y) isthe vel ocity of the current and ¢ describes
the disturbance. We shall examine the simplest case
where the isobaths are straight lines. Although this mod-
el is too idealized to describe the “‘real’” ocean, it has
been found very helpful for investigation of fundamen-
tal properties of wave dynamics over topography (see
Rhines and Bretherton 1973; Samelson 1992; Reznik
and Tsybaneva 1998). In order to avoid lee waves, we
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shall further assume that isobaths are parallel to the
velocity of the flow:

d = D(y). ()
Substituting (6) and (7) into (5), we linearize the re-
sulting equation and omit the primes:

Vay, — ¢X<UW + %Dy> + UV, + By, = 0.
0

Following the usual normal mode approach, we intro-
duce the wavenumber k and phase speed c¢ of the dis-
turbance and put

P(x, Y, 1) = Ply)erera,
which yields

(c—U)(, — k) + ¢r<Uyy + %Dy - B) =0. (8

It will be assumed that

D(y) = E A, sin(gy + é,), 9)

where the amplitudes A, frequencies q,,, and phases ¢ ,
are arbitrary constants. Finally, we shall assume that the
flow under consideration is a jet:

U-2~0 asy - *oo,
and the disturbance should decay far away from it:
l// -0 asy - Foo, (10)

In principle, Eq. (8) can be solved numerically for any
given U(y) and D(y); however, this straightforward ap-
proach is difficult to realize in view of the boundary
condition (10). In order to illustrate the difficulty, con-
sider (8) for the case of aflat bottom and take the limit

C(hy — K2Y) — B =10 asy - *e.
Now, ¢ can be found explicitly:

i — const, exp(— /§+ ka) asy - o,
B _
Yy — const, exp| C+ky asy - —m,

which can be used for *‘shooting” the solution from
infinity. If, however, we include topography, the ana-
logue of Eq. (11) will have variable coefficients [recall
that, unlike U(y), topography does not decay at infinity],
and the asymptotic behavior of iy cannot be determined.*

(11)

1 An obvious solution to this difficulty would be solving the equa-
tioninazonal channel; however, | have decided against this approach.
If the walls of the channel are placed too close to the jet, they would
change the flow’s stability properties; and if the walls are placed too
far from the jet, the channel calculation becomes just as difficult as
that in the unbounded domain.
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This difficulty, together with the fact that the scale of
topography is short (which necessitates a small spatial
step), make the straightforward numerical solution of
(8), (10) difficult.

In what follows, we shall demonstrate that our enemy
[fast-changing, nondecaying coefficients of Eq. (8)] can
be made our aly. This will be achieved through the
asymptotic method of multiple scales, which replaces
fast-changing coefficients of an ODE by a smooth term
having approximately the same effect on the solution.

In the next subsection, we shall “prepare”’ Eq. (8)
for the multiple-scale analysis.

a. Scaling of Eqg. (8)

In order to scale Eq. (8), we introduce three spatial
scales: the width L, of the current, the horizontal scale
L, of bottom topography, and the wavelength L, of the
disturbance. Following Rhines and Bretherton (1973),
we shall assume that

Lo> Ly,

which holds relatively well for those regions of the
ocean located far away from coasts and midocean ridg-
es. It should be expected that the wavelength of the
most unstable disturbances is comparable to the width
of the flow,

L, ~ Ly,

which implies that the wavenumber should be scaled
using L:

K = KkL,.
The spatial variable will be scaled by L:
y =y,

in addition to which we shall introduce the slow spatial
variable

Y = yiL,.
The spatial derivative then becomes
dy _ Loy, 1oy
dy Lpay L,aY’

Here U(y) will be scaled by the characteristic velocity
U,, and D(y) will be scaled by the amplitude D, of the

topography:
U(Y) = Uy, D) = D)/D,.

Asin all problems of hydrodynamic stability, the phase
speed scales with U,:

¢ = c/U,.

In terms of the new variables, Eq. (8) becomes (tildes
omitted)
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(¢ = U)Wy + 2Vethy + e — k%)
+ (e Uy + 5D, — g5) = 0, (12)
where
L foloDo BL3
e = L_a, Ep — HOUO y SB = UO .
The relationship between y and Y becomes
Y = Vey. (13)

In order to estimate ¢, 5, and e, for the “real”
ocean, we shall put

U, = 0.25m s, (14)

(The value for U, was chosen relatively small because
we consider barotropic flows, for which even a weak
velocity corresponds to a significant mass flux.) The
parameters of topography are

D, = 100 m, Lo, = 5 km.

Assuming the latitude and mean depth of the ocean to
be

L, = 100 km.

0 = 30°, H, = 5000 m, (15)
we obtain
g, =~ 0.0025, ey, =~ 0.058, g, ~ 0.0020.

Thus, all three parameters are small, but ¢, is greater
than the other two—which will be our main assumption:

(16)

As a matter of convenience, we shall assume that &, ~
€4, and also that £, ~ 3. Accordingly, we put

g, = &%a, a7

where ¢ is the ““formal” small parameter and « is a
constant of the order of unity. Substituting (17) into
(12) and (13), we obtain

(C - U)(lpyy + 28¢yy + &2y — Szkzlp)
+ (e2Uyy + D, — e%a) = 0,

1> e > max{e,, gg}.

2

g = &2, gp = &,

(18)
Y = ey.

@ ~ )

Y@ + VQ — kYO — 2(

cO — U v -1

()

+ (U = WO + |

This equality should be treated as an equation for
¢(2):
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In the limit U - 0O, Eqg. (18) coincides with the corre-
sponding equation of Rhines and Bretherton (1973).

In the next subsection, Eqg. (18) will be examined
asymptotically using the method of multiple scales. The
technical side of the analysis will be similar to that of
Rhines and Bretherton (1973), and nonmathematically
minded readers are advised to jump to the beginning of
section 2c.

b. Asymptotic analysis of Eq. (18)

According to the usual scheme of the multiple scales
method, we shall seek a solution to (18) in the form of
a series

U= YO + gp® + ...,
The equation for © is

(€@ — U)y© = 0.

c=0CcO9 4+ gc® 4+ ...

Asy - =oo, the only bounded solution is

PO(y) = VO(Y), (19)

where ¥ © s an undetermined function. The next order
yields the following equation for ®:

(€O — U)2yQ + ¢@) + cOYO + D,y© = 0.

(20)
Substituting (19) into (20), we obtain
POy
10 =~ o Ok | DO & )

where W@ js the * constant of integration.” Taking into
account expression (9) for D(y), we have

VO N A

— cos(q,y + ¢,) + PO,
u;qn SRS

(!;(1) =

cO —

Finally, the second order yields

(cO = U)W + 209 + g — K2O) + cO2Y9 + y4P)
+ cOPYO + Uy — @)@ + D@ = 0.

Substituting the expressions for © and )V, we obtain

(©) N

v

N

A
> q—" cos(@,y + é,) = 0.

n=1 Yn

v = Fy, Y), (21)

where
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F=—

WO — kWO — 2(

coO —U =

AC) N

o e + ¢ +
©0 Uy 2 A C0S@Y + 6)

/e
cO — U

Clearly, (21) has a bounded (in y) solution for @ if,
and only if, the slow-varying terms included in F(y, Y)
add up to zero, which yields

(cO — U)(PQ — kVO) + (Uy — a)PO

vo N1
+—> A2 =0.
co—u 22"

Equation (22) is the final product of our derivation.

(22)

c. Discussion

First, we shall rewrite (22) in terms of the original
dimensional variables and omit the superscript ©:

v, - kz+i_ﬂw—(0_yu)2\p=o, (23)
where
_ 5 S VR
y—Hga' and o—zéAn—(d)

is, in fact, the standard deviation of the depth of the
ocean from its mean. Interestingly, (23) looks similar
to the equation for internal waves in a vertically strat-
ified current, with the topography term being exactly as
the density stratification term. It appears that the two
effects work in a similar way, i.e., return the particle to
the level where it ““belongs’ (determined by its density
or potential vorticity). Given that stratification is, gen-
erally, a stabilizing influence on the flow, it should be
expected that the influence of topography is also a sta-
bilizing one. This conclusion can be interpreted using
the following argument.

* Particles in the flow must preserve their values of
potential vorticity;

» these PV valuesare ' linked’’—through topography—
to the isobaths where the particles were initially.

Thus, the requirement that the initial PV of a particle
be conserved constrains the ability of unstable distur-
bances to moveit away from itsinitial position and thus
weakens instability. Generally, potential vorticity of
flows over topography is similar to density of stratified
flows. It should be noted, however, that the analogy
between topographic flows on the beta plane and density
stratified flows is limited by the fact that there is no
beta effect in the latter case.
Finally, the boundary condition (10) becomes
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© X Uy — @
- Cmm gl An0, cos(@,y + ¢,) — O _U o
N
A,
Zl q_ COS(qny + d’n)
¥ .0 asy - *xwx (24)

Equations (23), (24) form an eigenvalue problem for c.
If k Imc > O, the jet is unstable.

3. A stability theorem for currents over
topography

As mentioned before, the usual stability criterion for
flows on the beta plane (monotonicity of PV) is never
satisfied for the type of topography that we are looking
at. Indeed, it can be readily demonstrated that, since
D(y) varies (oscillates) much faster than the other two
terms in

fo

HOD’

PV cannot be monotonic. The nonmonotonicity of the
PV profile, however, does not guarantee instability, and
in what follows we shall argue that there exists a wide
class of flows that are stable.

Since our eigenvalue problem is similar to that de-
scribing internal waves, the stability criterion should be
similar to that derived by Miles (1961). Following his
approach, we introduce a new variable ® such that

PV =py-U, —

¥ = (c — U)¥»2d, (25)
Substitution of (25) into (23) yields
[(c = U)D],
U)ra -y 1
— |k2(c — + — —-U, + =0.
k?(c — U) c—U 2Uyy Bl® =0

Next, we multiply this equation by ®* (the asterisk
denotes complex conjugate) and integrate it over —oo
<y < . Integrating by parts, using the boundary con-
dition (24), and taking theimaginary part of thisidentity
we obtain

(Imc) fx {|<I>y|2 +

One can see that, if

y — (U,))/4

ke +
lc — U

@@w=a
(26)

y =3 madq(U,),

the second factor on the lhs of (26) is strictly positive;
hence Imc = 0 (stability). This condition of stability
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can be rewritten in terms of the effective Richardson
number:

the flow is stable if

o1
R ==, 27
=7 (27)
where
. o f, YV
Ri=|———]|. 28
! (HO max|Uy|> (28)

Equation (27) can be further rewritten as:

the flow is stable if
2
d = Ro,
Ho
where Ro = max|U, |/ f,.
It is interesting to estimate the height of bottom ir-
regularities that would be sufficient to stabilize acurrent
with realistic parameters. Calculating, for the Gaussian

jet ()
mww=£%

and assuming parameters (14), (15), we obtain that the
flow becomes stable for relatively weak topography:

o=74m.

Observe that this is a sufficient, not a necessary, con-
dition of stability.

In the next section, it will be demonstrated that east-
ward jets can be made stable by a much lower o than
what our stability criterion predicts, whereas for west-
ward jets the threshold values of o are fairly close to
its predictions.

4. Examples

We consider a Gaussian jet with the values of U,,
L,, and H, given by (14) and (15). Severa values of
the mean-sgquare height of bottom irregularities were
considered in the range

Om=o=74m.

Equation (23) was solved using the Runge—K utta meth-
od with variable step (a smaller step was used near the
critical levels). Two solutions were ““shot’” fromy = oo
andy = —oo toward y = 0, and their Wronskian (com-
puted at y = 0) was fed to the root-finding routine
determining c. The growth rate

w = kImc

of the instability of the westward Gaussian jet is shown
in Fig. 2. Two slightly overlapping unstable modes were
found, with the eigenfunctions of the long-wave mode
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FiG. 2. Growth rate vs wavenumber for a westward Gaussian jet
with (1) o = 0 (flat bottom), (2) 0 =28 m, (3) o =42 m, (4) o =
56 m, and (5) o = 70 m: w and k are scaled using the width L, =
100 km and maximum velocity U, = 0.25 m st of the jet.

being much “wider” spatially than those of the short-
wave mode (this occurs regardless of topography). As
the average height o of topography grows, the growth
rate rapidly decreases, and no unstable disturbances
were found for o = 72 m. In terms of the effective
Richardson number (28), this corresponds to Ri =
0.238.

An interesting difference has been observed in the
spatial structure of disturbances with and without to-
pography: in the former case, the peaks near the critical
levels are much higher than those in the latter case—
see Fig. 3. There are two reasons for that: first, the most
“singular” term in Eq. (23),

Y
(c— Uy

vanishes when y = 0 (i.e., for the flat-bottom case).
Second, Imc for topography-influenced disturbances is
smaller than that for disturbances over flat bottom,
which strengthens the effect of critical levels.

We have also considered the eastward Gaussian jet
with the same parameters. It turned out that itsinstability
over a flat bottom was noticeably weaker than that in
the westward case and, correspondingly, could be sta-
bilized by a weaker topography (o = 27 m). The Rich-
ardson number for this case isfairly small, Ri = 0.034.

5. Can topography destabilize an otherwise stable
flow?

It should be noted that it is mathematically possible
for a particular jet profile to satisfy the flat-bottom sta-
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Fic. 3. Spatia structure of the eigenfunctions: (1) o = 0 m (flat
bottom) and (2) o = 42 m. In both cases, kL, = 1.5 and y is scaled
by the width L, = 100 km of the jet. The positions of the peaks of
|W|? coincide with the critical levels.

bility criterion and not satisfy the topography-modified
criterion. Indeed, if we rewrite the condition of mono-
tonicity of ajet's PV profile in the form

max{U,} = B (29)
and then rewrite ““our’’ condition (27) in the form
2f
max{|U,]} = =, (30)
Ho

it becomes clear that they are “‘independent’; that is,
(29) can hold and, at the same time, (30) be violated.
Should this be viewed as an indication that topography
can destabilize an otherwise stable jet? In this section,
it will be argued that it cannot.

The stability of the Gaussian jet has been examined
in a broad range of the parameters involved, and the
results are shown in Fig. 4. One can observe the fol-
lowing features.

* Clearly, the flow *“complies” with both stability con-
ditions—see the turns of the marginal stability curves
when they “‘leave” criterion (30) (solid line) and be-
gin to “follow” (29) (dashed line).

» Figure 4 suggests that (30) isalot ‘‘tighter’” for west-
ward flows than for eastward flows (see the gap be-
tween the solid line and the instability region in the
top half of Fig. 4).

This suggests that there might be atighter stability con-
dition, involving both stabilizing effects, topography
and beta effect (the latter could have also explained the
asymmetry of Fig. 4 with respect to the change of the
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Uy L2

fyo/ HPL,

Fic. 4. Stability properties of Gaussian jets vs the height of to-
pography and strength of the jet. The region of instability is shaded.
U, is the maximum velacity, L, is the width of the jet [see (1)], o2
is the mean-square height of topography, H, is the mean depth of the
ocean, and B is the beta parameter.

sign of U,). Unfortunately, despite several attempts, |
was unable to find any such condition.

It should also be emphasized that our conclusion
about the stabilizing influence of topography is appli-
cable only to jets. It seems apparent that one can think
of a flow in a channel, which would be stable over a
flat bottom and unstable over topography. Theimportant
difference between jets in an unbounded ocean and
flows in a channel is that, in the latter case, we can
include into consideration flows like

U = Uy,

where U’ isaconstant. This flow always satisfies (29)—
but, for sufficiently large U’ (small Ri), should be un-
stable over topography. The mechanism of this (hypo-
thetical) instability is not clear; bottom irregularities
may somehow release the energy of the flow to distur-
bances. We shall not dwell on thisinstability in further
detail, as it is unlikely to occur for jets and, therefore,
is of limited relevance to the ocean.

6. Conclusions

We have considered the stability of barotropic flows
on the beta plane in a rough-bottomed ocean. An equa-
tion was derived [see (23)] governing the disturbances
in a sheared current over one-dimensional topography
(such that the isobaths are straight lines parallel to the
streamlines of the mean current). Using this equation,
a criterion of stability has been obtained [see (27)],
based on a comparison of the mean-square height o of
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bottom irregularities with the maximum shear of the
current. We argued that the influence of topography is
a stabilizing one, which was supported by numerical
calculation of the growth rate of barotropic instability
of the Gaussian jet: it turned out that “‘ realistic”” currents
can be stabilized by relatively low bottom irregularities
(o = 30-70 m).

Using the example of a Gaussian jet, it was also dem-
onstrated that, although there is no mathematical reason
for flows over topography to *‘ observe’ the flat-bottom
stability criterion, they still do—both criteria need to be
violated to make a jet potentialy unstable. In other
words, bottom irregularities appear to never destabilize
an otherwise stable jet, which agrees with our conclu-
sion about the stabilizing influence of topography.

This argument can aso be interpreted using potential
vorticity. As PV of a particle depends—through topog-
raphy—on the spatial coordinates, it is more difficult
for unstable disturbances to move it away from the iso-
bath where it was located initially. This can be readily
understood if one assumes, for the sake of argument,
that the topography term in PV is much greater than the
vorticity term, in which case the PV conservationwould
force the particles to remain within avery short distance
from their initial isobaths, and the instability should
simply disappear.

Our conclusions were derived using an asymptotic
method based on assumption (16), the dimensional form
of which is

foLoDo L§ BL3
HoUp maX{La’ U, }
where f, and B are the Coriolis parameter and its me-
ridional gradient, H, is the mean depth of the ocean,
U, and L, are the amplitude and width of the current,
and D, and L, are the amplitude and horizontal scale
of topography (effectively, D, = o). Assumption (31)
holds well for those regions of the ocean located far
away from coasts and midocean ridges.
It should be emphasized that our stability criterion
has been obtained using the lowest order of the pertur-

1> (31)
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bation method and, strictly speaking, may not eliminate
higher-order (weaker) instabilities. One can argue, how-
ever, that such instabilities can exist only in those cases
where the lowest-order approximation predicts that the
flow is marginally stable.

Finally, we note that the main limitation of the present
work is the assumption that the isobaths are straight
lines. Although this simple model has been found help-
ful for investigation of the fundamental properties of
flows over topography, it is still far too idealized to
describe the ““real” ocean. Thus, our next target should
be the generalization of the results obtained here for
two-dimensional topography.?

Another interesting and important development
would be to find out if topography can stabilize baro-
clinic instability (which is much stronger than baro-
tropic instability considered here). Preliminary results
show that the effect of topography on currentslocalized
in the near-surface layer (e.g., the subtropical front in
the North Pacific) is relatively weak, whereas the in-
stability of the Antarctic Circumpolar Current (which
penetrates deep into the ocean) is noticeably weakened

by topography.
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