
MARCH 2000 475M O L E M A K E R A N D D I J K S T R A

q 2000 American Meteorological Society

Stability of a Cold Core Eddy in the Presence of Convection:
Hydrostatic versus Nonhydrostatic Modeling

M. JEROEN MOLEMAKER* AND HENK A. DIJKSTRA

Department of Physics and Astronomy, Institute for Marine and Atmospheric Research, Utrecht University,
Utrecht, Netherlands

(Manuscript received 8 October 1997, in final form 8 February 1999)

ABSTRACT

Geostrophic eddies in a stratified liquid are susceptible to baroclinic instabilities. In this paper, the authors
consider these instabilities when such an eddy is simultaneously cooled homogeneously from above. As a linear
stability analysis shows, the developing convection modifies the background stratification, the stability bound-
aries, and the patterns of the dominant modes. The coupling between the effects of convection and the large-
scale flow development of the eddy is studied through high-resolution numerical simulations, using both non-
hydrostatic and hydrostatic models. In the latter models, several forms of convective adjustment are used to
model convection. Both types of models confirm the development of the dominant modes and indicate that their
nonlinear interaction leads to localized intense convection. By comparing nonhydrostatic and hydrostatic sim-
ulations of the flow development carefully, it is shown that convective adjustment may lead to erroneous small-
scale variability. A simple alternative formulation of convective adjustment is able to give a substantial im-
provement.

1. Introduction

The transformation of surface water into intermediate
and deep water through deep convection appears to be
a very important process in the ocean. It affects the
strength of the thermohaline overturning circulation in
the Atlantic and hence the meridional heat transport. By
now, much is known on the actual scales of convection,
the physical processes determining these scales, and the
effects of convection on the large-scale flow develop-
ment. Observations in the Greenland Sea (Schott et al.
1993), in the Labrador Sea (Gascard and Clarke 1983),
and in the Mediterranean (Schott and Leaman 1991)
indicate that deep convection occurs only at specific
sites and is a very localized process both with respect
to time and space. Surface cooling and possibly brine
rejection by sea ice formation induce vigorous convec-
tion in the form of plumes with a horizontal scale of
O(1 km), which are organized within larger-scale struc-
tures of O(50 km). The mixing of heat and salt induced
by the convection and the subsequent geostrophic ad-
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justment eventually leads to a large-scale modification
of deeper water masses. This interaction between small-
scale convection and the larger geostrophic scales is a
crucial problem in the parameterization of water mass
transformation.

Because of the localized nature of the convection pro-
cess, a prototype situation of study in the laboratory has
been the development of convection in a stratified ro-
tating layer of liquid due to a localized negative surface
buoyancy flux (Maxworthy and Narimousa 1994;
Coates et al. 1995). In most of the experiments, the
liquid is initially at rest and the surface buoyancy flux
is confined to a disk with a smaller extent than the total
flow domain. During the first stages of flow develop-
ment, a well-mixed layer grows downward through en-
trainment and a lateral buoyancy gradient develops. The
flow is not influenced by rotation until it reaches the
depth at which the Rossby number based on the local
velocity and length scale becomes small enough (Coates
et al. 1995; Coates and Ivey 1997). In a next stage,
geostrophic adjustment on the scale of the cooling disk
leads to a rim current along the edge of the convecting
area. This rim current subsequently becomes unstable
through baroclinic instability. The resulting vortices,
having a horizontal scale of the local internal Rossby
deformation radius, spread away from the original con-
vective region inducing lateral transports of heat and
salt. Eventually, a quasi-steady state may occur in which
the energy loss through the surface is balanced by the
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fluxes through the lateral boundaries of the convective
region.

Numerical simulations using nonhydrostatic models
(Jones and Marshall 1993; Klinger and Marshall 1995;
Send and Marshall 1995; Visbeck et al. 1996) have
greatly contributed to the understanding of these flows.
Different flow regimes exist, depending on the magni-
tude of the rotation rate f, the initial stratification mea-
sured by the buoyancy frequency N, the surface buoy-
ancy flux B0, and the depth of the layer H. A key pa-
rameter for the small-scale flow development is the nat-
ural Rossby number Ro* 5 /(Hf 3/2), which is the1/2B0

ratio of the characteristic vertical mixing timescale in
the rotationally affected regime and the geostrophic ad-
justment timescale. If Ro* is large, the developing con-
vection remains essentially three-dimensional, while if
Ro* is small, geostrophic adjustment is relatively fast
and the convection is quasi two-dimensional (Klinger
and Marshall 1995).

In all of these studies, the initial horizontal scale of
the convective region, that is, the radius of the cooling
region, is prescribed. In reality, the cooling by the at-
mosphere is not so strictly localized and one would
expect that, depending on the stratification, a much larg-
er region would overturn (Killworth 1983). To explain
why the process is so localized it has been suggested
that topography (Alverson and Owens 1996) or hori-
zontal gradients in the background density field (Madec
et al. 1996) limits the sites of convective activity. Dom-
ing of isopycnal surfaces due to the large-scale cyclonic
background flow has been observed in the Greenland
Sea (Gascard and Clarke 1983) and in the Mediterranean
(Schott and Leaman 1991). While this large-scale pre-
conditioning of the density field may add to the occur-
rence of convection, it still does not explain its spatially
localized nature.

The localization of convection through the presence
of cold core eddies was suggested by Johannessen et al.
(1991) based on observations in the northern Greenland
Sea. Typical horizontal scales of these eddies were 10
km and a typical eddy lifetime was about 20–30 days.
The majority of these eddies rotated cyclonically with
orbital speeds of around 20 cm s21. In a recent study,
Legg et al. (1998) studied a prototype problem of this
localization by studying numerically the flow devel-
opment of a cold core eddy that was cooled homoge-
neously from above. Very localized convection can in-
deed occur due to the presence of such an eddy. The
structure of the eddy determines the initial stratification
with a buoyancy frequency varying both as a function
of distance to the eddy center as well as with depth.
The mixed layer deepening through convection is there-
fore inhomogeneous and leads to a restratification in the
eddy region. After this restratification, smaller eddies
develop along the edge of the original eddy through
baroclinic instabilities, which eventually leads to break-
up into multiple eddies.

The baroclinic instability process is an essential fea-

ture in the large-scale flow development. The instability
of an eddy has been studied in a laboratory experiment
by Saunders (1973) and Griffiths and Linden (1981). In
both studies it was found that the stability of the eddy
crucially depends on the Burger number Bu 5 (Lr/R0)2,
the square of the ratio of the internal Rossby defor-
mation radius Lr 5 NH/ f , and a characteristic horizontal
length scale of the eddy, that is, the initial eddy radius
R0. A necessary condition for baroclinic instability of
a two-layer quasigeostrophic vortex is that Bu , ¼
(Pedlosky 1985).

Although their initial (standard) eddy is more com-
plicated, Legg et al. (1998) mention that this cold core
eddy is stable to small perturbations in the absence of
cooling. Cooling decreases Lr and therefore increases
the ratio R0/Lr since R0 is fixed, which eventually gives
conditions under which the eddy becomes unstable.
Legg et al. (1998) calculate the growth rate s of the
baroclinic perturbations from the numerical simulations
and find that it compares well with the classical growth
rates in the Eady problem (Eady 1949), which scale as

f ]y
s 5

N ]z

y being the meridional velocity of the initial eddy. How-
ever, they were not able to estimate the scale of the
patterns of the instability and its dependence on the
initial eddy size and strength.

The baroclinic instability process of the eddy is of
major importance to the lateral exchange and therefore
of the long time modification of the water masses in-
volved. In this paper, we consider the baroclinic insta-
bility problem of cold-core eddies in more detail, by
solving the linear stability problem within the full 3D
nonhydrostatic model formulated in section 2. In section
3, the linear stability of geostrophic eddies is calculated.
The effect of convection is modeled through its modi-
fication of the surface stratification. We calculate the
patterns and growth rates of the most unstable pertur-
bations for different eddy sizes. Subsequently, a high
resolution numerical simulation using a 3D nonhydro-
static model is performed and the time and space scales
found are compared to those predicted by the linear
stability analysis (section 4).

Recently, several studies have been carried out on
shallow convection in an idealized coastal polynia (Ga-
warkiewicz and Chapman 1995; Chapman and Gawar-
kiewicz 1997). In section 5, the same flow is simulated
using a hydrostatic model with a resolution that resolves
the baroclinic eddy scale. The effects of convection on
the mixing of buoyancy is parameterized using con-
vective adjustment. Considering the criteria developed
in Marshall et al. (1997a), the large-scale flow devel-
opment of the cooled geostrophic eddies is certainly in
the hydrostatic regime. However, since our linear sta-
bility results imply that the growth rate of the baroclinic
instabilities is strongly modified by convection, one may
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ask whether the correct large-scale flow development is
obtained when convection is represented in a hydrostatic
model by convective adjustment. This representation is-
sue of convection is studied in section 5 and both the
linear stability results and the high resolution nonhy-
drostatic simulation serve as a reference case for the
results obtained with course resolution hydrostatic sim-
ulations.

2. Formulation

a. Model

Consider a liquid with (eddy) viscosity km and ther-
mal diffusivity kT in a rotating rectangular domain of
length Lx, width Ly, and height H. At the top of the
liquid, a constant negative buoyancy flux B0 is pre-
scribed through a constant heat flux H, which cools the
layer homogeneously from above. With the velocity
vector u, the pressure p, the temperature T and the den-
sity r, the governing equations (using the Boussinesq
approximation) describing the deviation from hydro-
static equilibrium are given by

]u 1
1 u · =u 1 f e 3 u 5 2 =p 1 = · (k =u)3 m]t r0

gr
2 e (1a)3 r0

= · u 5 0 (1b)

r 5 2r aT (1c)0

]T
1 u · =T 5 = · (k =T ), (1d)T]t

where f is the Coriolis parameter, a is the thermal com-
pressibility, and e3 the unit vector in the vertical direc-
tion. Both the viscosity and the thermal diffusivity are
assumed constant and equal to k. The governing equa-
tions are nondimensionalized using scales H, k/H,
r0k2/H 2, H 2/k, and r0HB0/(kg) for length, velocity,
pressure, time, and density, respectively, such that the
total dimensional density r* is calculated from the di-
mensionless r by r* 5 r0[1 1 HB0r/(kg)]. This leads
to the following nondimensional equations:

]u
21 u · =u 1 ÏTae 3 u 5 2=p 1 ¹ u 2 e Rar3 3]t

(2a)

= · u 5 0 (2b)

]r
21 u · =r 5 ¹ r, (2c)

]t

where the temperature has been eliminated using (1c).
The domain is assumed periodic in the horizontal. The
top boundary is assumed to be stress free while the
bottom satisfies no-slip conditions. The bottom bound-
ary satisfies a no-flux condition for the density while a

constant density flux is prescribed at the top. The di-
mensionless boundary conditions at top and bottom are

]r ]u ]y
z 5 1: 5 1; 5 0; 5 0; w 5 0

]z ]z ]z
(3a)

]r
z 5 0: 5 0; u 5 0; y 5 0; w 5 0.

]z
(3b)

Apart from the two aspect ratios Ax 5 Lx/H and Ay

5 Ly/H of the basin, two other dimensionless parameters
appear, the Taylor number Ta and the flux Rayleigh
number Ra, which are given by

4 4 2H B H f0Ra 5 , Ta 5 . (4)
3 2k k

b. Cold core eddies in geostrophic balance

Our aim is to determine the influence of convection
on the large-scale linear stability of cold core eddies.
To define such eddies, we first write the equations (2)
in polar coordinates (r, u, z) with radial velocity u, az-
imuthal velocity y , and vertical velocity w; that is,

2]u y ]p
21 u · =u 2 2 ÏTay 5 2 1 ¹ u

]t r ]r

u 2 ]y
2 2 (5a)

2 2r r ]u

]y uy 1 ]p
21 u · =y 1 1 ÏTau 5 2 1 ¹ y

]t r r ]u

2 ]u y
1 2 (5b)

2 2r ]u r

]w ]p
21 u · =w 5 2 1 ¹ w 2 Rar (5c)

]t ]z

1 ] 1 ]y ]w
(ru) 1 1 5 0 (5d)

r ]r r ]u ]z

]r
21 u · =r 5 ¹ r (5e)

]t

with

] y ] ]
u · = 5 u 1 1 w ;

]r r ]u ]z

2 21 ] ] 1 ] ]
2¹ 5 r 1 1

2 2 21 2r ]r ]r r ]u ]z

and with the boundary conditions (3) at top and bottom.
Steady parallel flow solutions u 5 0, y (r, z), w 5 0,

r(r, z) are not easily found analytically. Hence, a pro-
cedure is needed to find approximate parallel flow so-
lutions. First, a background density field is defined by
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TABLE 1. Standard values of the dimensional and dimensionless
parameters.

Dimensional parameter Value

H
Lx

Ly

B0

k
f
H
a

103 m
32 3 103 m
32 3 103 m
1027 m2 s23

1021 m2 s21

1024 s21

200 W m22

1024 K21

Dimensionless parameter Value

Ax

Ay

Ra
Ta
ae

g
ge

Ae

32
32
108

2 3 106

0.04
3.0
4.0
0.6

FIG. 1. (a) Contour plot of the density field r for a vertical slice
at y 5 0.5Ay. The contour interval is 0.1, corresponding to a buoyancy
difference of 1024 m s22. (b) Similar plot of the meridional velocity
field y e cosu scaled with its maximum value (0.24 m s21). Solid
(dotted) lines indicate positive (negative) velocities, the contour in-
terval is 0.1.

FIG. 2. Contour plot of the density field r c, which results after 4
hours of cooling of the density profile in Fig. 2a with the buoyancy
flux B0. Scale and contour intervals as in Fig. 1a.

r b(z) 5 2eg (z21), (6)

where g measures the vertical density gradient. This
defines a dimensional buoyancy frequency (z) 52N
[gB0/k]eg (z21) with a maximum at the surface. In Legg
et al. (1998), a velocity field [0, y (r, z), 0] is chosen
corresponding to a cyclonic (cold core) eddy and the
induced dynamic density field is calculated using (5a)
and (5c) in the limit of zero friction. In this limit the
density field satisfies the steady equation (5e).

Our approach is slightly different, because we want
to choose the density field a priori (and later on modify
it by including effects of cooling) and calculate the re-
sulting velocity field from this density field. In absence
of cooling, the dynamic density field of the eddy that
is superposed on the background stratification is cho-
sen as

r e(r, z) 5 ,22a r g (z21)e eA e ee (7)

where Ae is the amplitude of the eddy, ae controls its
horizontal scale, and ge defines the vertical decay scale
of the eddy. As in the basic state in Legg et al. (1998),
also the total density field r 5 r e 1 r b satisfies the
steady equation (5e) in the limit of zero fiction. To obtain
the flow y e(r, z), which is in geostrophic balance with
the density field r , we use the thermal wind relation,
neglecting the cyclostrophic term y 2/r in (5a), to give

zRa ]r
y (r, z) 5 2 dz. (8)e E ]rÏTa 0

For the values of parameters as in Table 1, a vertical
slice of the total density distribution r for y 5 Ay/2 is
plotted in Fig. 1a. This figure and following similar
figures are plotted using rectangular coordinates where
x is given by x 5 0.5Ax 1 r cosu. The stratification due
to the background density field is maximal near the
surface, with a maximum value corresponding to 52N

3.0 3 1026 s22. The presence of the geostrophic cyclonic
eddy is clearly seen by the doming of the isopycnals
near the center of the domain, which coincides with the
center of the eddy. The eddy reduces the background
density gradient. At the center of the eddy, the resulting
density gradient is nearly neutral. The geostrophic me-
ridional velocity of the eddy is shown in Fig. 1b with
amplitudes of O(1021 m s21).

Our procedure of calculating the basic state enables
us to take the effect of cooling into account. Starting
from the initial density field r 5 r e 1 r b we determine
the density profile r c that results if the layer is cooled
for 4 hours using the prescribed buoyancy flux B0 5
1027 m2 s23. Here, it is assumed that cooling from the
surface leads to a mixed layer with a density that is
equal to the density directly underneath the mixed layer
at every location. The resulting density profile rc is
shown in Fig. 2 in which the mixed layer is shaded.
Since the original stratification in the center of the eddy
is much weaker than the far-field stratification, the re-
sulting mixed layer is much deeper in the eddy center.
Although any adaption of the density profile occurs only
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in the upper part of the domain, it may be important
since it erodes the very strong stable density gradients
near the surface and therefore destabilizes the eddy. For
the density profile r c, the geostrophic velocity field y c

was recalculated through the thermal wind relations.
This velocity field hardly differs from y e presented in
Fig. 1b and is therefore not shown. The choice of 4
hours as a period over which to cool is rather arbitrary.
It is chosen to be large enough for a surface mixed layer
to develop, but small enough to limit the modification
of the original eddy to the removal of stable density
gradients near the surface.

Subsequently, a ‘‘homotopy’’ parameter t is intro-
duced to ‘‘deform’’ the original basic state correspond-
ing to t 5 0 to the ‘‘cooled’’ basic state corresponding
to t 5 1 and a series of basic states is described by

y (r, z; t) 5 (1 2 t)y (r, z) 1 ty (r, z) (9a)e c

r(r, z; t) 5 (1 2 t)(r (z) 1 r (r, z)) 1 tr (r, z). (9b)b e c

These basic states will be used for a linear stability
analysis in the next section. The density field for t 5
0 corresponds to that shown in Fig. 1, whereas that for
t 5 1 is shown in Fig. 2. The velocity field y is formally
only a steady solution of the inviscid zonal momentum
equations in the limit Ta → ` (while keeping Ra/ TaÏ
finite), that is, in the limit of fast rotation. As it is de-
termined here, the velocity field y is in exact geostrophic
and hydrostatic balance but it does not satisfy the in-
viscid steady radial momentum equation since the cy-
clostrophic term is neglected. For the actual parameters
used (Table 1), the cyclostrophic term can be calculated
from this solution and its maximum for t 5 0 appears
to be at most 10% of the geostrophic term.

3. Linear stability analysis

In many studies, standard baroclinic instability theory
(Eady 1949) has been applied to obtain the dominant
scales associated with the growth of the baroclinic
modes. However, this theory is based on a stability anal-
ysis of a zonal jet with constant vertical shear and the
nonparallel flow associated with a geostrophic eddy may
have totally different stability properties.

a. The eigenvalue problem and its solution

To study the stability of the basic states given by (9),
infinitesimally small perturbations are considered such
that

(u, y , w, p, r)(r, u, z, t)

5 (0, y , 0, p, r)(r, z) 1 es t1imu(û, )(r, z),ŷ , ŵ, p̂, r̂

(10)

where ( ) are (complex) functions, m is theû, ŷ , ŵ, p̂, r̂
azimuthal wavenumber of the perturbations and s is the
complex growth factor. Substitution of (10) into the

equations (5) and linearizing in the perturbation ampli-
tude gives the eigenvalue problem

y y ŷ ]p̂
s û 5 2 imû 1 2 1 ÏTaŷ 2

r r ]r

û 2 ]ŷ
21 ¹ û 2 2 (11a)

2 2r r ]u

]y y ]y y û imp̂
sŷ 5 2û 2 imŷ 2 ŵ 2 2 ÏTaû 2

]r r ]z u r

2 ]û ŷ
21 ¹ y 1 2 (11b)

2 2r ]u r

y ]p̂
2sŵ 5 2 imŵ 2 1 ¹ ŵ 2 Rar̂ (11c)

r ]z

1 ] 1 ]ŵ
0 5 (rû) 1 imŷ 1 (11d)

r ]r r ]z

]r y ]r
2sr̂ 5 2û 1 imr̂ 2 ŵ 1 ¹ r̂, (11e)

]r r ]z

where

2 21 ] ] m ]
2¹ 5 r 2 1 .

2 21 2r ]r ]r r ]z

Together with the homogeneous boundary conditions
(3) for the perturbation quantities and boundedness of
all perturbation fields for r → `, the problem (11) is
an elliptic eigenvalue problem with eigenvalue s 5 sr

1 isi and parameters (Ta, Ra, m) in addition to those
parameters appearing in the basic state, such as the eddy
strength.

To solve this elliptic eigenvalue numerically, first the
domain [0, `& is transformed into the domain [0, 1]
using the mapping

zr9
r 5 , (12)

1 2 r9

where z 5 0.1. The transformed problem is discretized
using second-order finite differences and the (discretized)
algebraic eigenvalue problem (11) can be written as

Ax 5 sBx, (13)

where x is the discretized state-variable vector and ma-
trix A contains the discretized right-hand side of (11).
The diagonal matrix B is singular due to the continuity
equation (11d) and the boundary conditions.

The code to calculate the eigenvalues and eigenvec-
tors was verified by considering the classical problem
of the differentially heated rotating annulus (Hide and
Mason 1975). In this problem, a rotating fluid between
two concentric cylinders is subjected to a radial tem-
perature gradient Tr. The parallel basic-state flow is sus-
ceptible to baroclinic instability and the relation between
the azimuthal wavenumber of the most unstable baro-
clinic mode and the control parameters Ta and Tr is well
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FIG. 3. (a) Neutral curve in the (m, t) plane where m is the azi-
muthal mode number and t controls the shape of the basic state. (b)
Angular frequency of the neutral modes in (a).

known from experiments (Hide and Mason 1975) and
theory. This relation [Fig. 7 in Hide and Mason (1975)]
could be reproduced very well with our code. It turned
out that for the calculation of the baroclinic stability of
the eddies that are considered, a resolution of 64 3 32
grid points in the (r, z) plane proved to be adequate.

b. Results

The parameters for the standard case are shown in
Table 1 and represent a typical situation in the Greenland
Sea (Schott et al. 1993). Of course, the background eddy
diffusivity k is quite unsure and chosen as small as
possible and still be able to perform the high-resolution
numerical simulations in the next section. To be com-
patible with these simulations, the same value is con-
sidered in the linear stability analysis.

In Fig. 3, the neutral curve in the (m, t) plane is
shown in panel (a) whereas the angular frequencies si

are presented in panel (b). For t 5 0, which corresponds
to the basic state unmodified through cooling at the
surface, the eddy is linearly stable. At t 5 0.503, the
basic state becomes unstable to a disturbance having an
azimuthal wavenumber m 5 4. The angular frequencies
are negative, indicating cyclonic propagation of distur-
bances, that is, in the same direction as the basic state.
The angular frequencies increase linearly with azimuthal
mode number and correspond with a propagation ve-
locity that is nearly constant for every mode number.

A horizontal slice of the vertical velocity of the crit-
ical m 5 4 mode is shown in Fig. 4a. The corresponding
density perturbation of the most unstable mode in Fig.
4b has a similar structure as the vertical velocity pattern
but it is slightly displaced. Note that these plots only
show a snapshot of a propagating mode at a particular
phase of the oscillation. In regions of positive vertical
velocity, heat is transported downward leading to cooler
surface water and hence a positive density perturbation.
This density perturbation occurs slightly downstream
from locations where positive density anomalies were
at an earlier time and hence the perturbation propagates
downstream. The slices at y/Ay 5 0.5 of both fields
indicate the strong localization of the perturbation in
the region of maximum vertical shear of the basic state
near R0 5 1/ 2ae (at x 5 0.5Ax 6 R0 in the figure),Ï
with larger amplitude at the center side of this location.

The location of maximal shear of the basic state de-
fines the (dimensionless) wavelength l and meridional
phase speed V of the perturbations, which are given by
l 5 2pR0/m and V 5 R0si/m. The phase speed of
perturbations is slightly higher than the maximum az-
imuthal velocity of the eddy, in the downstream direc-
tion, and its magnitude is about 20 cm s21. This is larger
than the vertically averaged velocity of the basic state,
which is the propagation velocity in the standard Eady
problem. To compare more closely to the Eady problem,
the dependence of the growth factors on the scale of
the eddy, determined by ae, is shown in Fig. 5a for

t 5 1. The case considered above (with ae 5 0.04) is
shown as the solid curve and shows a maximum growth
rate at m 5 4. Clearly, the mode number m of maximum
growth increases with increasing eddy size. For ae 5
0.01, the maximum growth rate occurs for m* 5 14
while for ae 5 0.05 it occurs for m* ø 3. Smaller eddies
have in this case larger growth rates of perturbations,
which is not surprising since the gradients from which
the perturbations feed are stronger. The range of azi-
muthal scales of the perturbations shows a cutoff for
large m. However, as is evident from Fig. 5 for large m
the eddy may become susceptible to other types of in-
stabilities, such as shear instabilities. For example, the
second peak in growth rate at m 5 9 for ae 5 0.02 is
associated with a vertical shear instability. This can be
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FIG. 4. (a) Vertical velocity distribution of the most unstable perturbation at z 5 0.95. (b) Density distribution of the most unstable
perturbation at z 5 0.95. (c) Vertical velocity distribution of the most unstable perturbation at y/Ay 5 0.5. (d) Density distribution of the
most unstable perturbation at y/Ay 5 0.5.

seen from the structure of the mode (not shown) that is
markedly different from those shown in Fig. 4. This
mode does not have the tail-like structures as in Fig. 4
and its vertical structure reaches much deeper, contain-
ing extra nodes. A complete investigation of all possible
instabilities on the basic-state eddy would require an
extensive investigation that is outside the scope of this
paper. Different cooling times to calculate the basic state
for t 5 0 are not expected to change the result signif-
icantly as long as they are short enough to limit the
effects of cooling to the density gradients in the surface
layer. The only obvious difference is that for shorter
cooling times the eddy will be more stable, but the same
modes are expected to dominate.

Eady theory indicates a maximum growth rate for
perturbations that have a length-scale about four times
the deformation radius Lr. In Fig. 6, the value of m* is
plotted as a function of R0, showing a near-linear re-
lationship. For each value of ae, the azimuthal wave-

number adjusts to fit a number of wavelengths of scale
Lr on the circumference 2pR0 at the radius of maximum
shear. The proportionality constant between m* and R0

can be computed from the slope in Fig. 6. It follows
that, measured at the radius of maximum shear, the most
unstable perturbations have a wavelength of about 5.5
km for the eddy scales considered.

It is well known that the spatial scale of the fastest
growing disturbance scales with the Rossby defor-
mation radius Lr . However, in this situation, it is not
an easy task to define an appropriate Lr since it varies
strongly over the field. A local density gradient is
likely not representative for the whole domain in
which the perturbations grow, although it provides
small values of Lr when convection erodes the surface
stratification. A nonlocal estimate of Lr can, for ex-
ample, be obtained through the density difference g9
between surface and bottom. This leads to an estimate
of Lr of
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FIG. 5. Growth factor sr of the fastest growing modes as a function
of azimuthal mode number m for t 5 1.0 (all other parameters as in
Table 1). Different curves are for different eddy scale parameters ae

and the solid curve is for ae 5 0.04.
FIG. 6. Most unstable azimuthal wavenumber m* as a function of

the radius of maximal shear R0 of the eddy.

Ïg9H Ïg(r 2 r )/r )Hsur bot 0
L 5 5 , (14)r f f

which increases from 3.2 km at the center of the eddy
to 7.1 km of the background stratification. Another al-
ternative is to estimate Lr from the (surface) density
difference between the center of the eddy and the back-
ground field. This would lead to an estimate of the Ross-
by deformation radius of 6.4 km. Both estimates give
a value of Lr that is too large to comply with standard
Eady theory. Another possibility is to use a volume
averaged value for the buoyancy frequency Nave, leading
to an integral scale for Lr. We may use Fig. 4 to de-
termine the volume where the perturbation has sub-
stantial amplitude and average the buoyancy frequency
N over that volume to obtain Nave. The boundaries of
such a volume are by no means clearly defined, whereas
the resulting values of Nave depend strongly on these.
However, if we choose the boundaries of this volume
as x/Ax 5 [0.5, 0.65], z 5 [0.8, 1] a value of Nave 5
2.9 3 1024 s21 results, corresponding to a much smaller
value of Lr 5 2.1 km. This estimate of Lr is much closer
to the value expected from standard Eady theory. How-
ever, as it is not clear whether the behavior of the growth
rates of the perturbations is similar to that in Eady the-
ory, the particular relevant Lr remains unclear.

4. Numerical simulations: Nonhydrostatic model

As a next step toward understanding the impact of
convection on the large-scale flow development, a high-
resolution simulation was performed using the nonhy-

drostatic model as described in the appendix. The do-
main is a 32 3 32 3 1 km3 rectangular box and the
initial conditions are exactly the basic state (9) for t 5 0.

As a first check on the linear stability results, a sim-
ulation was performed at a resolution 256 3 256 3 32,
corresponding to Dx 5 Dy 5 125 m, Dz 5 30 m, of
the flow development of the eddy without surface cool-
ing. The flow decays to zero in this case, and the eddy
is stable, just as predicted by the linear stability results
for t 5 0. It appears that the density gradients near the
surface are strongly stabilizing the initial state. Next, a
high resolution with Dx 5 Dy 5 80 m, Dz 5 30 m is
used (400 3 400 3 32 grid points) using the parameters
as in Table 1. The value of the parameter Ro* 5 (Ra/
(Ta3/2)1/2 5 0.32, which combined with Ra 5 108 shows
that the simulation is in the 3D turbulent convection
regime (Klinger and Marshall 1995). The governing
equations were integrated over 0.1 dimensionless units
in time corresponding to approximately 12 days.

a. Flow development

This simulation differs from that in Legg et al. (1998)
in the initial conditions and parameters, but the flow
development obviously shows similar features. Due to
the cooling at the surface, a thermal boundary layer
forms, which very soon becomes unstable to direct
buoyancy driven instabilities. The depth of penetrative
convective activity is directly related to the initial strat-
ification. Away from the eddy the convective layer re-
mains limited to the upper 100 m, whereas in the center
of the eddy, convection reaches to much greater depth.
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FIG. 7a,b. Horizontal slice at z 5 0.95 of different fields after three
days of cooling. (a) Vertical velocity (dark colors downward, bright
colors upward). (b) Temperature (bright colors warm and light, dark
colors cold and dense).

FIG. 7c,d. Horizontal slice at z 5 0.95 of different fields after six
days of cooling. (c) Vertical velocity (dark colors downward, bright
colors upward). (d) Temperature (bright colors warm and light, dark
colors cold and dense).

After 3 days the convection is active within a radius of
about 6 km as can be seen from a slice of the vertical
velocity just below the surface (z 5 0.95) in Fig. 7a. A
dominant feature in the vertical velocity field are the
spiral structures along which downward velocities have
been organized. The width of these spirals is about 100
m and the distance between the arms is a few kilometers.
Since the layer is cooled from above, temperature fields
(scaled by HB0/kga) will be shown of the simulations.
In the temperature field after 3 days of cooling (Fig. 7b)
the small-scale details as in the vertical velocity field
can be observed but are superposed on the initial tem-
perature distribution.

In Figs. 7c,d the vertical velocity and temperature

fields are shown after 6 days of cooling. The temperature
(Fig. 7d) shows two convective patches with a hori-
zontal dimension of about 4 km moving outward of the
original convective region. The velocity field shows
again many small-scale convective elements (Fig. 7c),
but these are organized into larger-scale features that
coincide with the cooler patches in the temperature. At
a later stage in the evolution both ‘‘patches’’ are found
to move outwards from the convective region. The sig-
nal of one of these patches passing the point x/Ax 5
y/Ay 5 0.75, z 5 0.9 can be seen in the time series of
the azimuthal velocity y (solid) and vertical velocity w
(dotted) in Fig. 8 near t 5 120 h. This figure gives also
an impression of the velocity scales during the evolu-
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FIG. 8. Time evolution of the azimuthal velocity y (solid) and ver-
tical velocity w (dotted) at the point x 5 0.75Ax, y 5 0.75Ay.

tion. The azimuthal velocity y oscillates initially around
a mean value of 5 3 1023 m s21, which corresponds to
the velocity field of the prescribed eddy, up to about 3
days. The timescale of these oscillations corresponds to
convective plumes with a size of several 100 m that are
advected by the background velocity field. For t . 60
h the velocity becomes more irregular corresponding to
the breakup of the original eddy into different convec-
tive patches. This breakup can also be seen in the ver-
tical velocity showing large amplitude oscillations (the
maxima correspond to 1022 m s21) around that time,
which subsequently become irregular.

In the initial stages of the flow development, the
scales of motion correspond to those derived earlier in
the numerical simulations where localized cooling over
a disk within the flow domain was applied (Jones and
Marshall 1993). By calculating Ta based on the depth
of the unstable thermal boundary layer, using a depth
of d 5 0.1H, we find a value of Ta ø 200. This value
is sufficiently small to neglect the effect of rotation dur-
ing the initial stage of convection. This can also be seen
from the corresponding timescale of the convective mo-
tions in that layer (Deardorff 1980); t ; (d2/B0)1/3 or t
ø 4.6 3 103 s, which means that t , f 21 and rotation
is not (yet) important. The resulting scales for (nonro-
tating) convection are lconv 5 d ø 100 m, uconv 5
(lconvB0)1/3 ø 1022 m s21. At t 5 f 21, rotational effects
become important and the scales lrot ; (B0/ f 3)1/2, urot ;
(B0/ f )1/2 are expected (Maxworthy and Narimousa 1994;
Fernando et al. 1991; Jones and Marshall 1993). In the
present simulation, lrot ø 150 m and urot ø 2 3 1022 m
s21 and, because the difference between rotationally and
nonrotationally dominated scales is small, a transition
between both regimes cannot be clearly distinguished
in Fig. 8.

In agreement with the results of the linear stability

calculation in the previous section the m 5 4 mode is
clearly dominating the results of the numerical simu-
lation, where it can be identified by the four spirals in
the vertical velocity (e.g., Fig. 7a). As argued in the
previous section, the exact value of the cooling time to
calculate the basic states is not important as long as it
is small. Apparently, the effect of the convection on the
baroclinic instability has been modeled well by the pa-
rameterization of the convection through the parameter
t ; that is, only the erosion of the surface stratification
is important. The reason may be that the large-scale
dynamical effects of the small-scale velocities that result
from convection are small.

In the localized cooling case the density anomaly
caused by convection, say measured by a reduced grav-
ity , induces a horizontal density gradient and sub-g9c
sequently a rim current that is susceptible to baroclinic
instabilities. However, in our case, a horizontal dynam-
ical density gradient is already present through the geo-
strophic eddy. The due to the eddy can be directlyg9e
obtained from the initial conditions 5 gDr, whereg9e
Dr can be estimated by the initial difference between
the density in the center of the eddy and that of the
background density field. An estimate of is not sog9c
easy to define in our case. Since the cooling is not lo-
calized over the eddy, previously used estimates that
consider a balance between localized cooling and hor-
izontal transport by the convective patches (Visbeck et
al. 1996) are not valid here. Any additional density dif-
ference to will only be due to horizontal mixing sinceg9e
the cooling is homogeneous over the whole surface. The
effect of horizontal mixing will be small, at least up to
the time where the large-scale perturbations are not yet
fully developed. However, an upper bound is certainly
given by the estimate based on the near steady state
thermal balance from Visbeck et al. (1996), 5g9c
N(B0R0)1/3. If we base on the surface values, theng9e
the ratio / for t 5 0 is given byg9 g9c e

1/3g9 N(B R ) kc 0 05 , (15)
g9 A HBe e 0

and its value will determine whether convection will
influence the mean circulation of the eddy or not. In the
present simulation, / ø 3 3 1024 and consequentlyg9 g9c e

the rim current induced by convection is negligible com-
pared to the velocity field of the original eddy. This
shows that the dominating unstable modes are deter-
mined by the initial geostrophic eddy and not by the
strength of the surface buoyancy flux.

b. Spectral analysis of the flow patterns

As can be observed in the high-resolution nonhy-
drostatic simulation there is much energy both in the
large scales (baroclinic instability) and the small scales
(convection). To look at the energy-containing scales in
more detail, two-dimensional discrete Fourier spectra
were calculated for the spatial pattern of quantities in
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FIG. 9. Analysis of the spatial patterns in the high-resolution sim-
ulation at t* 5 6 days and a horizontal slice at z 5 0.95. (a) Grayscale
plot of the two-dimensional cospectrum of the vertical velocity and
the temperature Q̂ as a function of kx (2N/2 , kx , N/2) and ky

(2M/2 , ky , M/2). Light (dark) colors indicate large (small) values.
(b) Q̂ as a function of the absolute wave number |k| as obtained from
the two-dimensional cospectrum.

TABLE 2. Spectral distribution of the vertical heat flux for the dif-
ferent simulations considered. The entry (wT)b is the ‘‘baroclinic’’
component, defined as the contribution to the total heat flux wT for
k , 40. The quantity (wT)c is the ‘‘convective’’ component, defined
as the contribution to wT for k . 40 and (wT)b 1 (wT)c 5 wT. IM
and CA are different types of convective adjustment as explained in
the text.

n 3 m Type of adjustment wT wTb wTc

400 3 400
256 3 256
128 3 128
128 3 128
256 3 256
128 3 128

nonhydrostatic
IM, h 5 0
IM, h 5 0

CA
IM, h 5 1
IM, h 5 1

0.796
0.174
0.133
0.153
0.071
0.110

0.073
0.121
0.110
0.132
0.067
0.105

0.723
0.053
0.024
0.021
0.004
0.005

a horizontal plane just below the surface. More specific,
for any quantity F the (complex) discrete Fourier trans-
form F̂ is defined as

F̂k ,kx y

N M mk1 nk yx5 F exp 2i2p 1 , (16)O O n,m 1 2[ ]N Mn51 m51ÏNM

where
kx 5 2N/2, · · · , 21, 0, 1, · · · , N/2,
ky 5 2M/2, · · · , 21, 0, 1, · · · , M/2

and the Fn,m are the values of F at the grid points. An
important quantity to consider in the problem is the

vertical convective heat flux Q 5 wT. All the presented
spectra are therefore chosen to be cospectra of vertical
velocity w and temperature T. The cospectrum Q̂ is de-
fined as

Q̂ 5 Re(ŵ)Re(T̂) 1 Im(ŵ)Im(T̂), (17)

with Re and Im indicating real and imaginary part and
ŵ and T̂ defined as in (16). It follows that Q̂ is real and
the sum over the (discrete) wavenumbers of the co-
spectrum Q̂ equals the integrated vertical heat flux Q
(Stull 1988).

At t* 5 6 days, a gray shade plot of is shownQ̂k ,kx y

in Fig. 9a for a slice at z 5 0.95, which corresponds to
the pattern in Figs. 7c,d. The bright area enclosing the
center shows the energy containing large scales. Much
energy is still contained in the initial eddy, correspond-
ing to kx 5 ky 5 0, other large scales arise through its
baroclinic development. Enclosing this center area is a
band of relatively small amplitude followed by a broad
small-scale band corresponding to the convective scales
of O(102 m). The corresponding spatial scale of a spe-
cific wavenumber can be found from l 5 L/|k|, |k| 5
( 1 )1/2, where L 5 32 km is the horizontal length2 2k kx y

of the domain.
The dominant spatial scales can be seen more easily

in a plot of Q̂ as a function of |k| (Fig. 9b). Two bands
of high energy containing scales are again seen, which
can be roughly divided into a large-scale band 0 , |k|
, 40 and a small-scale band 40 , |k| , 200. The two
spectral bands in Fig. 9b motivate one to compute a
band averaged spectral amplitude of the convective heat
flux. These values are given as (wT)b, for the large scales
(k , 40) and (wT)c for the small scales (k . 40) in the
first row of Table 2 for the nonhydrostatic high-reso-
lution simulation. Most of the energy (about 90%) is
contained in the small scales. We will use these band
averages in the subsequent section to study the issue of
representation of convection in hydrostatic models.

5. Convection in hydrostatic models

Having established the basic characteristics of the
flow development as observed in the high resolution
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FIG. 10. (a) Two-dimensional cospectrum Q̂ obtained from a hor-
izontal slice at z 5 0.95 for the hydrostatic model after six days of
cooling. In these results, h 5 0 and a 256 3 256 3 32 grid is used.
(b) As (a) but with a 128 3 128 3 32 grid.

nonhydrostatic simulation, we now investigate how
these are represented in hydrostatic models. A hydro-
static version of the code can be easily developed from
the nonhydrostatic code and, since the approach differs
from that in Marshall et al. (1997a), more details are
presented in the appendix.

a. Convective adjustment

In the nonhydrostatic model, convection is explicitly
resolved and no adaptations are needed when the strat-
ification becomes locally (statically) unstable. In hy-
drostatic models, the effects of convection have to be
parameterized and several ad hoc procedures, generally
referred to as convective adjustment, are used. In all
these procedures, the temperature (and salinity) fields
are locally adjusted in such a way that a stable strati-
fication is achieved. In the first procedure, which we
will indicate by classical adjustment (CA), the temper-
ature is explicitly mixed in adjacent vertical levels of
the water column if the density stratification is unstable.
This procedure has to be repeated a number of times at
each time step in the evolution of the flow, as an iteration
toward complete removal of static instabilities (Cox
1984). A variation of this technique is suggested by
Marotzke (1991) and others (Yin and Sarachik 1994;
Rahmstorf 1995) in which groups of levels in the water
column are treated as one convective region. The latter
procedure was implemented since it is guaranteed that
the liquid is stably stratified after the procedure termi-
nates. This occurs within one time step of the model,
and hence it is assumed that the timescale of convective
mixing is much smaller than the time step of the nu-
merical model. Furthermore, it is assumed that the con-
vection only mixes quantities vertically; no horizontal
mixing is involved.

The other procedure of convective adjustment is in-
dicated by implicit mixing (IM) and assumes that the
effect of convection on a subgrid scale can be modeled
by a large vertical diffusion coefficient for the tracers
(Cox 1984). Hence, the vertical mixing is parameterized
as

] ]T
K (18)y1 2]z ]z

with the mixing coeffients given by

Ky 5 k 1 ,cK y (19)

where k is the background value (as in Table 1) and
models the subgrid-scale convection as an additionalcK y

diffusive process. The value of is large in areas withcK y

unstable stratification and zero otherwise. A value of
can be estimated from a straightforward mixingcK y

length argument using the appropriate velocity U and
length scales L for convection. In the rotationally con-
trolled regime, one would have U 5 B0/ f and a lengthÏ

scale L 5 B0/ f 3 . This scaling leads to a mixing co-Ï
efficient of

B0cK 5 UL 5 , (20)y 2f

which gives values of 5 O(10 m2 s21), a value aboutcK y

100 times larger than the background diffusivity of k
5 0.1 m2 s21. For all subsequent calculations where IM
is used a value of 5 10 m2 s21 is chosen. InsteadcK y

of this estimate for the mixing length scale one could
also use the depth of the mixed layer as suggested in
Klinger et al. (1996) but this does not lead to an order
of magnitude difference.
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FIG. 10. (Continued) (c) Vertical velocity field corresponding with (a). (d) Vertical velocity field corresponding with (b).
(e) Temperature field corresponding with (a). (f ) Temperature field corresponding with (b).

b. Results

The total heat flux Q is defined as

]T
Q 5 wT 2 K . (21)y ]z

In the nonhydrostatic model, the range of scales is large
and, in particular, the small scales contribute to the ad-
vective term wT, whereas the diffusive term Ky ]T/]z in
(21) is relatively small (Ky equals k). The basic idea of
the adjustment schemes in hydrostatic models is that the
contribution of the large scales to the heat flux Q should
be represented well, whereas the small-scale contribu-

tion to wT is parameterized by the convective adjustment
as in (18). In other words, there should be no small-
scale amplitude in the explicitly resolved part of wT in
hydrostatic models that employ a form of convective
adjustment. The contribution of the smaller convection
scales must be represented by the relatively large term

]T/]z.cK y

In Fig. 10a, the cospectrum of Q̂ is shown for the IM
scheme (18) using a horizontal resolution of 256 3 256.
In Table 2, the corresponding band amplitudes are given
in the second row. Although the contribution of the
small scales reduces to 30% of the total, it certainly
does not vanish as would be desired. In fact, Fig. 10a
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FIG. 11. (a) Two-dimensional cospectrum Q̂ obtained from a hor-
izontal slice at z 5 0.95 for the hydrostatic model after 6 days of
cooling. In these results, h 5 1 and a 256 3 256 3 32 grid is used.
(b) As (a) but with a 128 3 128 3 32 grid.

shows erroneous activity in the small scales. The activity
increases toward the smallest resolved scales, indicating
a source at the grid scale that most likely has a numerical
origin. In Fig. 10c, these small-scale features can be
observed in the vertical velocity pattern. As a conse-
quence of the presence of these erroneous scales, the
breakup of the eddy is quite different from the reference
case, as can be seen for the temperature field in Fig.
10e. For a horizontal resolution of 128 3 128, the spec-
trum (Fig. 10b), vertical velocity (Fig. 10d), and band
amplitudes (the third row of Table 2) show similar be-
havior. Here again, erroneous small-scale activity is pre-
sent, although the total amount is less, due to the fact
that the highest wavenumber present at that resolution
is only k 5 64. This is similar to the results for CA
(fourth row of Table 2) of which the spatial fields and
spectrum are not shown.

The origin of this small-scale activity is most likely
the occurrence of nonresolved boundary layers in areas
where convection occurs. The essential difficulty can
be illustrated by a simple reasoning that only assumes
diffusive processes. Consider the timescale of vertical
exchange that is associated with the convective adjust-
ment to be tmix. Within this time, horizontal temperature
differences are created on the smallest resolved (grid)
scales. These horizontal gradients will lead to diffusive
boundary layers of which the thickness can be readily
estimated from classical diffusion theory (Carslaw and
Jeager 1959); that is, d 5 (ptmixKh)1/2, where Kh is the
horizontal diffusivity. The boundary layer thickness d
should be resolved by the horizontal grid spacing; oth-
erwise they lead to spurious activity on the smallest
scales. An estimate for the condition on the minimal
horizontal resolution is

Dx , (ptmixKh)1/2. (22)

If this boundary layer is not resolved, large numerical
errors may result, which can completely destroy the
accuracy of the solution and have other undesirable,
nonphysical effects. Another possible cause for the
small-scale activity is hydrostatic overturning, as dis-
cussed in Marshall et al. (1997b). Hydrostatic models
are not stable in the presence of statically unstable gra-
dients but exhibit a type of convection. However, since
in convective conditions the hydrostatic assumption is
not valid, it is not clear what value can be attributed to
this ‘‘hydrostatic convection.’’

If a large vertical diffusivity is used in the convective
adjustment procedure (IM), the timescale of vertical ex-
change and consequently the timescale in which the
horizontal boundary layers are formed can be found
using the ‘‘convective mixing’’ coefficient . The ver-cK y

tical exchange timescale is now given by Dt 5 D2/ ,cK y

where D is a vertical scale over which mixing takes
place. Consequently, Eq. (22) can be written as a con-
dition for the horizontal diffusivity

2 cDx K ycK . . (23)h 2pD

On the other hand, if an algorithm is used that com-
pletely removes unstable vertical gradients within one
time step (i.e., CA), the timescale on which the hori-
zontal boundary layers are created is equal to the time
step of the numerical scheme Dt. Equation (22) can now
be written as a condition for the time step

2Dx
Dt . . (24)

pKh

From (24) it follows immediately that numerical prob-
lems are expected if the time step Dt is decreased, which
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FIG. 11. (Continued) (c) Vertical velocity field corresponding with (a). (d) Vertical velocity field corresponding with (b).
(e) Temperature field corresponding with (a). (f ) Temperature field corresponding with (b).

is [similar to the grid-scale instability in Cessi (1996)]
a very undesirable quality in any numerical integration.

c. Modified adjustment scheme

To test whether this simple picture is indeed respon-
sible for the small-scale activity, as seen in the two-
dimensional spectra for the hydrostatic model, several
simulations were performed in which additional hori-
zontal diffusion was added locally in areas where con-
vective adjustment occurred. The IM procedure was

used; in this case, the Laplacian diffusion terms are
written as

] ]r
= · (K = r) 1 K (25)h h h y1 2]z ]z

with =h 5 (]/]x, ]/]y). The mixing coefficients are
given by

Kh 5 k 1 ; Ky 5 k 1 ,c cK Kh y (26)

where the superscript c again refers to values due to
convective adjustment.
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FIG. 12. (a) Two-dimensional cospectrum Q̂ obtained from a hor-
izontal slice at z 5 0.95 for the hydrostatic model after 6 days of
cooling. In these results, h 5 4 and a 128 3 128 3 32 grid is used.
(b) Vertical velocity field corresponding with (a). (c) Temperature
field corresponding with (a).

In the simulations we take 5 with 5 10c c cK hK Kh y y

m2 s21 and h 5 1. This is believed to be physically
realistic in a high-resolution hydrostatic model and also
guarantees the absence of spurious numerical behavior,
as described above, if the value of h is such that Eq.
(23) is satisfied. For the coarsest resolution (Dx 5 240
m) indeed (23) is satisfied with h 5 1. From a physical
point of view, the choice h 5 1 also makes sense since,
for three-dimensional convection, horizontal and ver-
tical scales of convective elements that have to be pa-
rameterized are the same. Consequently horizontal and
vertical mixing that result from this convective activity
should also be the same.

In Figs. 11a,b, the cospectra Q̂ are shown for equal
vertical and horizontal diffusivities (h 5 1) for both 256
3 256 3 32 and 128 3 128 3 32 resolution. In both
cases the small-scale activity has decreased significant-
ly, in correspondence with the patterns that are shown
in Figs. 11c–f. From Table 2, which shows the band
amplitudes in this case, it may be observed that the
convective heat flux induced by the ‘‘baroclinic scales’’
(k , 40) has roughly the same amplitude as the cor-
responding heat flux in the reference run with the non-
hydrostatic model. With h 5 4 and a resolution of 128
3 128 3 32 the small-scale energy is decreased enor-
mously (Fig. 12a), but the breakup of the eddy is now
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diffusively controlled. Although an m 5 4 mode is still
present, the horizontal diffusivity is now too large, the
amplitude of the baroclinic disturbance remains small,
and the eddy is not breaking up into convective patches,
which move out of the original convective region (Figs.
12b,c). Hence, a too large value of modifies the large-cK h

scale flow development too much.

6. Summary and discussion

In this paper, focus was on the localization process
of convection by means of the cooling of a geostrophic
eddy. Instead of a localized buoyancy source into a liq-
uid without horizontal density gradients, a homogeneous
buoyancy source was considered into a liquid with a
dynamically preconditioned density field caused by the
presence of a geostrophic eddy. Rather than making a
detailed analysis of the flow from numerical simulations
as in Legg et al. (1998), the linear stability analysis of
geostrophic eddies was carried out.

The first result is that convection strongly influences
the large-scale instability of the geostrophic eddy, main-
ly through its erosion of the stable surface stratification.
Initially, the eddy is stable because of large vertical
density gradients near the surface. However, these gra-
dients are not sufficient to prevent convection. The im-
mediate effect of surface cooling and the developing
convection is the erosion of the vertical density gradi-
ents. This effect was parameterized by the cooling pa-
rameter t , which ranged from no cooling (t 5 0) to a
situation modified by convection as a result of surface
cooling (t 5 1). The linear stability analysis shows that
the increase of t favors the large-scale instability of the
eddy.

Over the range of eddy sizes investigated, it appears
that the wavelength is independent of the eddy scale.
Small eddies lead to smaller values of the azimuthal
wavenumber, but such that the product of eddy size and
azimuthal wavenumber remains constant. There is no a
priori reason why this wavelength should be four times
the appropriate internal Rossby deformation radius Lr,
like in the Eady problem. However, when this is as-
sumed, a value Lr 5 1.4 km is obtained. Although for
the situation at t 5 0, the values of Lr at the surface
range from 7–17 km, the effect of t is to decrease Lr

significantly and effectively it is zero locally near the
surface for t 5 1. It is interesting that the ratio of eddy
radius H/ 2ae , and Lr is in this case larger than 2 forÏ
all the eddies. This indicates, assuming the necessary
condition for instability (Pedlosky 1985) applies here,
that one needs indeed such a small Lr for the eddy to
become unstable.

For the standard eddy, the m 5 4 mode was found
to be most unstable. The corresponding flow pattern was
found in the high-resolution simulation as the dominant
large-scale response. The horizontal density gradients
induced by convection are, for the case considered,
much smaller than those present due to the geostrophic

eddy. The large-scale flow development is therefore not
influenced much by this additional horizontal gradient
and therefore the m 5 4 flow pattern is dominating the
response over a long time interval. Further evolution of
the flow is complicated since the developing baroclinic
instabilities modify the density field and affect the con-
vective activity. Pairs of convective patches are formed
that split off from the original convective area and mi-
grate in opposite directions.

The differences between this flow development and that
of the localized cooling case were extensively discussed
in Legg et al. (1998). With localized cooling, geostrophic
adjustment of the well-mixed column of water leads to a
rim current. The baroclinic instability of this current leads
to breakup of column and flow outside the region of cool-
ing. Although the latter flow modifies the density field, it
does not lead to significant convection because it is not
cooled at the surface. With a prescribed eddy, the situation
is quite different. As the eddy becomes baroclinically un-
stable, the density outside the eddy gets modified. This
may lead again to convection, even in regions far from
the initial location of convection. Hence, there is a more
intricate coupling between the large-scale flow develop-
ment and the small-scale convection. The net effect is that
due to lateral mixing, the density difference between the
eddy and the background field decreases as opposed to
the numerical simulation of Jones and Marshall (1993)
where the density difference increases due to the localized
cooling at the surface.

To look at the effect of representation of convection
in hydrostatic models on the large scale flow develop-
ment, two-dimensional cospectra of convective heat flux
for the high resolution nonhydrostatic simulation were
compared to several simulations, at different resolution,
in hydrostatic models. Erroneous small-scale energy
was shown to be present in the hydrostatic models using
either type of convective adjustment. The origin of this
small-scale energy is numerical and present due to in-
adequate representation of the horizontal gradients,
which arise on the grid scale due to convective adjust-
ment. A constraint, involving the horizontal mixing of
the particular scalar, the horizontal resolution, and the
characteristic vertical mixing timescale, was derived to
avoid this spurious behavior. These errors are not ex-
pected to disappear when more sophisticated vertical
adjustment is used, such as the slow convective ad-
justment scheme proposed by Klinger et al. (1996). For
the eddy flow evolution, it was demonstrated that er-
roneous high energy small-scales disappear once this
constraint is satisfied by adding horizontal diffusion in
areas where convection occurs.

It was demonstrated that classical convective adjust-
ment at too coarse resolution is inadequate to simulate
the correct large-scale flow development. This may have
implications for the simulation of some phenomena in
OGCMs. For example, it has been suggested that rapid
climate transitions may occur (through transitions be-
tween stable equilibria) due to different positions at
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which convection occurs (Rahmstorf 1995; Lenderink
and Haarsma 1994). It appears that these transitions
occur at the grid scale with different equilibria associ-
ated with convection on or off at the particular point.
Some recent fundamental studies have also indicated
problems with convective adjustment in hydrostatic
models. In Vellinga (1998), a study is presented that
shows the existence of multiple equilibria within a zon-
ally averaged model of the thermohaline overturning
circulation that are most likely a side effect of convec-
tive adjustment. Cessi (1996) describes a grid scale os-
cillatory instability due to the CA procedure within a
very simple model that is always present if the adjust-
ment is instantaneous. The problems we have addressed
here are of similar nature: that CA removes unstable
vertical density gradients instantaneously may create
horizontal density gradients on a scale that is equal to
the grid size. The grid size, time step, and horizontal
diffusion of the models used both in Rahmstorf (1995)
and Lenderink and Haarsma (1994) certainly do not
satisfy the criterion (24), and trouble can be expected.
The issue of spurious numerical results due to convec-
tive adjustment adds to an increasing amount of evi-
dence that one has to be very careful to put physical
significance to results that depend crucially on such an
algorithm.
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APPENDIX

Numerical Methods

The governing nonhydrostatic equations are discre-
tized in space using second-order central differences on
an equidistant staggered grid. Together with the bound-
ary conditions, the discretized momentum equations
form a closed set of (coupled) ordinary differential
equations, which can be written as

]ui , j , k 5 2=p 1 F (u, r), (A1)i , j , k i , j , k]t

for i 5 1, · · · , N; j 5 1, · · · , M; k 5 1, · · · , L. Here
the Fi,j,k represent the (discretized) advective, diffusive
and buoyancy terms. The set of equations (A1) is in-
tegrated in time using an Adams–Bashforth method that
is second-order accurate in time; that is,

3
n11 n n nu 5 u 1 Dt (F 2 =p )i , j , k i , j , k i , j , k i , j , k12

1
n21 n212 (F 2 =p ) , (A2)i , j , k i , j , k 22

where n indicates the time index. Taking the divergence
of (A2) gives

3
n11 n n 2 nD 5 D 1 Dt (R 2 ¹ p )i , j , k i , j , k i , j , k i , j , k12

1
n21 2 n212 (R 2 ¹ p ) , (A3)i , j , k i , j , k 22

where D 5 = · u and R 5 = · F. The pressure acts in
this case as a constraint which ensures that the flow will
remain divergence-free. To solve for the pressure at ev-
ery time step, (A3) is rearranged and we demand

5 0. This leads ton11Di,j,k

2
2 n n¹ p 5 Di, j, k i , j , k3

1
n n21 2 n211 Dt R 2 (R 2 ¹ p ) . (A4)i , j , k i , j , k i , j , k1 23

At time n, all the terms of the right-hand side of (A4)
are known, so we can solve for . Boundary condi-npi,j,k

tions for the pressure at the upper and lower boundary
are found using (2a) and realizing that w 5 0 at z 5 0
and z 5 1. Hence,

2]p ] w
z 5 0, 1: 5 1 Ra r

2]z ]z

] ]u ] ]y
5 2 2 1 Ra r. (A5)

]x ]z ]y ]z

From (A5), it is found that if and only if body forces
vanish and stress-free conditions are prescribed at the
boundaries, the boundary conditions for the pressure at
both boundaries reduce to n · =p 5 0, which are the
boundary conditions that are normally used in similar
numerical models.

The nonhydrostatic model can be changed into a hy-
drostatic model using a small amount of changes. The
result is a fast and efficient algorithm to compute tran-
sient behavior of three-dimensional hydrostatic flows in
simple geometries. The hydrostatic assumption implies
that the dynamical vertical accelerations are neglected.
This changes the nondimensional momentum equations
(2a) into

]u ]p
21 u · =u 2 ÏTay 5 2 1 ¹ u (A6a)

]t ]x

]y ]p
21 u · =y 1 ÏTau 5 2 1 ¹ y (A6b)

]t ]y

]p
0 5 2 2 Ra r. (A6c)

]z

The continuity equation (2b), the conservation equation
for the density (2c), and the appropriate boundary con-
ditions complete the model. We can write (A6a,b) as



MARCH 2000 493M O L E M A K E R A N D D I J K S T R A

]u ]p
5 2 1 F (A7a)u]t ]x

]y ]p
5 2 1 F , (A7b)y]t ]y

where again Fu, Fy represent the diffusive, advective
and body force terms.

In the hydrostatic formulation, the pressure cannot be
used as a constraint to ensure the absence of divergence
because we are using (2b) to calculate the vertical ve-
locity w. However if we integrate (2b) from z 5 0 to z
5 1, we find (with w 5 0 on z 5 0 and z 5 1)

]u ]y
1 5 0, (A8)

]x ]y

where an overbar indicates the vertically averaged quan-
tities. Integrating equations (A7) vertically gives

]u ]p
5 2 1 F (A9a)u]t ]x

]y ]p
5 2 1 F . (A9b)y]t ]y

Taking the divergence of equations (A9) leads to

]D
25 2¹ p 1 R, (A10)h]t

with D 5 ]u /]x 1 ]y /]y and R 5 ]Fu /]x 1 ]Fy /]y.
Using the Adams–Bashforth time stepping scheme, a

two-dimensional Poisson equation for p is obtained after
rearranging (A10); that is,

2 n n 1 n21 n212 n 2¹ p 5 D 1 Dt R 2 (R 2 ¹ p ) .h i, j i , j i , j i , j i , j1 23 3

(A11)

Using (A6c), the total pressure field is
z

9p 5 Ra r dz 1 p , (A12)E 0

1

where p0(x, y) is the surface pressure. Using p as ob-
tained from (A11), p0 is easily calculated from

1 1 z

p 5 p dz 5 Ra r dz9 dz 1 p , (A13)E E E 0

0 0 1

and hence the pressure field is completely determined.
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