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ABSTRACT

Hypotheses concerning the origin of thermohaline staircases in salt fingering regions are reviewed and assessed.
One such hypothesis, that staircases arise from thermohaline intrusions, is developed into a quantitative theory.
It is shown that growing intrusions evolve toward staircases when the background density ratio lies below a
threshold value, and nonlinear computations confirm that staircases are viable intrusion equilibria. Staircase
properties such as step heights, lateral density ratios, and layer slopes lie closest to observed values when salt
fingers are assumed not to contribute to shear stress and when turbulent mixing rates are smaller than usual
thermocline values.

1. Introduction

Thermohaline staircases are striking sequences of
mixed layers, ranging from tens to hundreds of meters
thick, separated by steep-gradient interfaces, which are
typically several meters thick. Staircases are found
where large-scale temperature T and salinity S both in-
crease upward in a manner that favors vigorous salt
fingering (Schmitt 1994).1

Well-developed staircases have been observed be-
neath the Mediterranean outflow (Tait and Howe 1968;
Howe and Tait 1970; Zenk 1970; Elliott et al. 1974),
in the Western Mediterranean (Johannessen and Lee
1974; Zodiatis and Gasparini 1996; Krahmann 1997)
and northeast Caribbean (Lambert and Sturges 1977),
and throughout the region of the C-SALT observing
program in the western tropical North Atlantic (Mazeika
1974; Boyd and Perkins 1987; Schmitt et al. 1987; Boyd
1989). Less distinct examples have been noted in the
Sargasso Sea (Cooper and Stommel 1968) and the east-
ern equatorial Pacific (Miller and Browning 1974).

Thermohaline staircases are distinguished by their ex-
treme stability in space and time. Individual steps have
been traced laterally for upwards of 100 km (Elliott et
al. 1974; Johannessen and Lee 1974; Schmitt 1988),

1 Sequences of steps which are typically an order of magnitude
thinner appear where T and S both increase downward, conditions
that favor diffusive convection (e.g., Neshyba et al. 1971; Padman
and Dillon 1987; Muench et al. 1990.) In this paper, attention is
confined primarily to the salt fingering case.
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and can persist several years or more (Johannessen and
Lee 1974; Molcard and Tait 1977).

The connection between staircases and salt fingering
was suggested by Turner (1967) and Stern and Turner
(1969), who noted that the vertical gradients in oceanic
staircases favor fingering, and also that laboratory ex-
periments can produce analogous structures in which
salt fingers occupy the high-gradient interfaces, and
drive convection in the adjoining mixed layers. The oc-
currence of salt fingers in the interfaces of oceanic stair-
cases has been established by microstructure measure-
ments (Magnell 1976; Lueck 1987; Marmorino et al.
1987; Fleury and Lueck 1991) and optical imaging (Wil-
liams 1975; Kunze et al. 1987). Observations also pro-
vide evidence of convective plumes in the mixed layers
(Marmorino et al. 1987).

Several hypotheses have been put forth for how ther-
mohaline staircases might develop from initially uni-
form gradients of T and S. This paper first reviews three
such hypotheses: that staircases arise from an instability
of salt fingers (section 2), that they are metastable equi-
libria induced by external disturbances (section 3), and
that they arise because salt fingers effect negative den-
sity diffusion (section 4). In section 5, the hypothesis
that staircases arise from thermohaline intrusions is de-
veloped into a quantitative theory. (Readers interested
primarily in a proposed solution to the staircase problem
should skip to this section.) From linear theory it is
shown that intrusions can evolve toward a staircase con-
figuration featuring alternating fingering and convective
layers, provided the density ratio lies below a threshold
value. An analytical criterion for this threshold that de-
pends on mixing rates, property gradients, as well as
the heights, slopes, and growth rates of the intrusions
is derived. Nonlinear calculations confirm that intru-
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sions can equilibrate as staircases and suggest that the
relatively high vertical gradients in staircase interfaces
are maintained by shearing of large-scale horizontal gra-
dients. Assuming plausible salt-fingering flux laws, the
theory best reproduces observed staircase properties
when the turbulent mixing coefficient is small (,0.1
cm2 s21), the turbulent Prandtl number is of order unity,
and salt fingers do not contribute to viscous stress. A
summary and conclusions are presented in section 6.

Before proceeding, a few facts about salt fingers and
some terminology are briefly reviewed. (For a compre-
hensive review, see Schmitt 1994.) Salt fingering occurs
when a stably stratified component (temperature T) dif-
fuses more rapidly than an unstably stratified component
(salinity S). Fingering is characterized by three dimen-
sionless parameters: molecular Prandtl number s 5
n/kT, where n is viscosity and kT is thermal diffusivity;
inverse Lewis number t 5 kS/kT, where kS is the dif-
fusivity of salt; and density ratio Rr 5 aTz/bSz, where
Tz is the stabilizing vertical temperature gradient, Sz is
the destabilizing vertical salinity gradient, a is the co-
efficient of thermal expansion, and b is the coefficient
of saline contraction. Values s 5 7 and t 5 0.01 char-
acteristic of seawater are assumed except where noted.
Salt fingers are linearly unstable for 1 , Rr , t21, and
produce observable effects in the ocean primarily when
Rr & 4. In the sections that follow, reference is occa-
sionally made to laboratory experiments in which the
slower and faster diffusing components are sugar and
salt. In such instances, S is identified with sugar and T
with salt.

2. Collective instability of salt fingers

In investigating the stability of steady, vertically uni-
form salt fingers at large Prandtl number, Stern (1969)
found that collections of fingers should excite internal
gravity waves when a dimensionless parameter (equiv-
alent to a finger Reynolds number) exceeds a critical
value of order unity. The instability criterion, as later
refined by Holyer (1981), is

bF 2 aF 1S T . , (2.1)
n(aT 2 bS ) 3z z

where FT and FS represent vertical fluxes of temperature
and salinity. This parameter and its variants have be-
come known as the Stern number.2

Stern (1969) speculated that this collective instability
of salt fingers might be instrumental in generating
stepped structures from initially uniform gradients. In
Stern’s scenario, growing salt fingers generate internal

2 The result (2.1) applies to two-dimensional (planar) salt fingers.
An extension of the stability analysis to three-dimensional fingers
having rectangular planforms yields a critical Stern number of 2/3
(Holyer 1985). Kunze (1987, 1995) considered a similar instability
criterion in terms of a finger Richardson or Froude number.

waves, which disrupt the fingers in regions of large
vertical shear. Convection sets in, driven by buoyancy
fluxes from adjoining interfaces in which salt fingers
survive. Direct evidence for this scenario comes from
qualitative observations of developing fingers. For ex-
ample, Stern and Turner (1969), describing laboratory
experiments in which a mixed layer of sugar solution
was placed over a linearly stratified salt solution, re-
ported that ‘‘Intermittent sideways oscillations of the
fingers are followed by stronger horizontal motions until
large-scale vertical convection is established. . . .’’

Additional evidence is provided by the fact that many
laboratory salt fingering interfaces exhibit Stern num-
bers of order the critical value (Linden 1973; Schmitt
1979; Taylor and Bucens 1989), although McDougall
and Taylor (1984) reported Stern numbers as high as 5
at low Rr. Experiments where salt and sugar replace
heat and salt as the faster and slower diffusing com-
ponents have Prandtl number (defined here as the ratio
of viscosity to diffusivity of the faster-diffusing solute)
s ø 700 and hence should reflect predictions of the
collective instability theory at least as well as heat–salt
fingers (s ø 7). Stern numbers in salt–sugar fingering
interfaces have been found to range from 0.002 (Lam-
bert and Demenkow 1971) to 0.006 (Griffiths and Rud-
dick 1980).3 The apparent discrepancy with (2.1) could
indicate that the stability of growing and finite-length
fingers has some further dependence on s and t or that
the Stern (1969) scenario does not govern fingering in-
terfaces under these conditions.

An issue connected with the Stern (1969) hypothesis
concerns the nature of salt finger instability. Subsequent
stability calculations for steady fingers have shown that
small-scale zigzag or varicose modes generally grow
faster than collectively excited gravity waves (Holyer
1984; Howard and Veronis 1992). Shen (1995) extended
the analysis to growing fingers and showed that varicose
modes grow faster than oscillatory modes and faster
than the fingers themselves. In numerical experiments
initialized with large-amplitude growing salt fingers, the
varicose instability appears to govern finger breakdown
(Whitfield et al. 1989; Shen 1995), although such sim-
ulations might not encompass enough fingers for col-
lective instability to be adequately represented.

A further unresolved question concerns the conditions
under which the Stern (1969) scenario operates. Stern
and Turner (1969) reported that layers formed when a
sharp T and S interface was present initially and when
a mixed layer of sugar solution was placed over a lin-
early stratified salt solution as described above. How-

3 Based on Rr 5 1.7, bFS 5 1.0 3 1026 cm s21, aFT 5 0.88bFS,
n 5 0.01 cm2 s21 and b 5 0.68 for Griffiths and Ruddick (1980)
experiment 2, assuming Sz 5 DS/h, with interfacial contrast DS 5
1.4% and thickness h 5 3.5 cm. For Rr 5 1.03, bFS 5 1.6 3 1024

cm s21, aFT 5 0.93bFS, DS 5 7.8%, and h , 0.1 cm yields an upper
limit for Stern number of 0.007.
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FIG. 1. Evolution of ‘‘salinity’’ (slower-diffusing solute) in a numerical experiment having the same parameter values
and initial conditions as that of Özgökmen et al. (1998), but with periodic rather than solid upper and lower boundaries.
Lighter shades represent higher concentrations, and darker shades lower concentrations. (a) At t 5 0.11 initial sinusoidal
perturbations have grown to become fingers, which in turn are becoming unstable to smaller, faster-growing fingers.
(b) The smaller fingers soon dominate, and by t 5 0.50 a statistically uniform equilibrium has been established. (c)
This state persists, and at later times shows no signs of developing convective layers.

ever, when T and S gradients were both initially present,
the outcome depended upon the care with which the
initial stratification was established. Disturbances im-
posed deliberately during the filling process grew and
triggered convection, whereas experiments that were set
up carefully exhibited vertically uniform fingering. The
latter outcome is typical of numerical experiments hav-
ing initially uniform T and S gradients (Whitfield et al.
1989; Shen 1995; Merryfield and Grinder 2000, man-
uscript submitted to J. Phys. Oceanogr., hereafter MG).

An exception is the simulation of Özgökmen et al.
(1998) in which the upper and lower boundaries are
solid and insulating, rather than periodic as in other
investigations. They chose system parameters so that
the combined layer and interface thicknesses as pre-
dicted by Stern (1969) would fit within the computa-
tional domain. Additional requirements that fingers be
adequately resolved and that interface thickness be an
appreciable fraction of the layer thickness led them to
adopt s 5 100 and t 5 1/30. In this simulation a well-
defined fingering interface develops, with convective
layers above and below. However (as the authors ac-
knowledge), this appears most likely to be due to con-
vergence of buoyancy flux at the solid boundaries.

To examine the possibility that collective instability
plays a role in forming the Özgökmen et al. (1998)
layer–interface structure, a similar calculation was un-
dertaken in which the solid upper and lower boundaries
were replaced by periodic boundary conditions. Details
of the pseudospectral numerical algorithm are described
in MG. Figure 1 depicts salinity over the range of times
recorded in the Özgökmen et al. Figs. 4, 5, and 6. As
in Özgökmen et al., a large sinusoidal perturbation was

imposed on the the initial salinity field. This perturba-
tion has a longer horizontal wavelength than the fastest-
growing salt fingers. At time t 5 0.11 (Fig. 1a), the
initial perturbation has developed into fingers, which
have become ‘‘feathered’’ due to smaller-scale pertur-
bations growing more rapidly. This phenomenon resem-
bles the instability of wide fingers in a Hele Shaw cell
subject to a sudden increase in gravity (cf. Fig. 2 of
Taylor and Veronis 1996) and is evident in Fig. 4 of
Özgökmen et al. At later times the most unstable scales
dominate, and a statistical equilibrium is established in
which fingering and mean solute gradients remain nearly
uniform (Figs. 1b,c). Because fluxes of solute leaving
the bottom of the domain are continually replenished at
the top, the system does not subsequently ‘‘run down’’
as in Özgökmen et al.

The absence of layer formation in this calculation
suggests that layer formation from initially uniform gra-
dients as observed by Özgökmen et al. (1998) is strongly
influenced by their choice of boundary conditions and
that the Stern (1969) scenario requires vertical inho-
mogeneity to operate, if indeed it plays a role here.

3. Staircases as metastable equilibria

A second hypothesis for the formation of staircases
from initially uniform T and S gradients is that per-
manent steps are induced by disturbances such as me-
chanical mixing or imposed flux imbalances. In this
picture, staircases and statistically homogeneous salt fin-
gering (such as that in Figs. 1b,c) both represent meta-
stable equilibria. This notion is supported by the Stern
and Turner (1969) experiments, described in the last
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section, in which either uniform fingering or layers de-
velop depending on initial conditions.

The metastable equilibrium hypothesis implies that
the stepped structures observed in the laboratory rep-
resent true equilibria and that interface thicknesses
would persist indefinitely at equilibrium values if the
property jumps across them remained constant. In lab-
oratory experiments to date the property jumps always
decrease over time; thus the equilibrium thickness pre-
diction has been tested only indirectly thus far. As prop-
erty jumps run down, the interfaces generally broaden,
linearly with t when fingering is vigorous (Stern and
Turner 1969; Linden 1973; Taylor and Veronis 1996)
and as t1/2 when fingers are only marginally unstable
(Taylor and Veronis 1996). In the former instance, the
interface spreads at a speed that is at least an order of
magnitude smaller than vertical velocities in the fingers
(Linden 1973). A uniform spread rate is consistent with
predictions which assume a critical Stern number and
the so-called 4/3 law for solute flux (Stern and Turner
1969). This relatively slow rate of spread has been in-
terpreted as evolution through a series of quasi equilibria
(e.g., Stern and Turner 1969). Further evidence in favor
of an equilibrium interface thickness is provided by the
observation of Schmitt (1979) that interface spread can
be reversed by replenishing the destabilizing property
concentration in the upper layer.

The notion of an equilibrium interface thickness could
be tested more directly by devising an experiment in
which properties are extracted from the lower layer and
replenished in the upper layer in such a manner that the
property jumps are maintained.4 Such maintenance is
achievable in numerical simulations having periodic
boundaries that allow the fluxes exiting the lower
boundary to reenter from above. In an attempt to model
an equilibrium interface, a numerical simulation was
undertaken using the two-dimensional pseudospectral
code described in MG. Parameters were s 5 7 and t
5 0.01, characteristic of seawater, and Rr 5 2. The
computational domain height L ø 42d, where d [
(nkT/gaTz)1/4, was spanned by 1024 grid points and the
width L/2 by 512 grid points. Initial conditions consisted
of a step in T and S, with property jumps smoothed
across five or so grid points according to a tanh profile.
Small random perturbations to S were imposed.

As in similar experiments (Shen 1993), a series of
fingers initially developed at the interface (Fig. 2a). The
subsequent spread of the interface is compared against
the spreading of a purely diffusive interface governed by

Ft 5 kFFzz (3.1)

with

4 More simply, one could examine the effect of layer depth, which
determines the rate of run down, on the rate of interface spread.

F(z, 0) 5 nF0, nL , z , (n 1 1)L,

n 5 · · · , 21, 0, 1, 2, · · · (3.2)

The solution to (3.1)–(3.2) is

` 2 2F z F 1 4m p 2mpz0 0F(z, t) 5 1 exp 2k t sin ,O F 21 2L p m L Lm51

(3.3)

(Elliott and Tait 1977). Interface sharpness for the mod-
eled T and S fields and for F was quantified as the
integrated difference between the horizontally averaged
fields and constant-gradient diffusive equilibria:

L /2

L (t) [ 2 [^T(z, t)& 2 T z] dzT E z

0

L

1 [^T(z, t)& 2 T z] dz, (3.4)E z

L /2

L /2

L (t) [ 2 [^S(z, t)& 2 S z] dzS E z

0

L

1 [^S(z, t)& 2 S z] dz, (3.5)E z

L /2

L /2

L (t) [ 2 [F(z, t) 2 F z] dzF E z

0

L

1 [F(z, t) 2 F z] dz, (3.6)E z

L /2

where T z, S z, and F z are the equilibrium gradients, and
the brackets denote horizontal averages. The evolution
of the two-dimensional salinity field and of ^T& and ^S&
is depicted in Figs. 2 and 3. In Fig. 4, evolution of LT

and LS is compared against that of LF for different
values of kF. Here T, S and F are scaled to have unit
equilibrium gradients. Time is expressed in units of
d2/kT. Because initial F is a perfect step, LF initially
is slightly greater than LT and LS. For t & 20, the
fingering interface spreads significantly faster than by
thermal diffusion alone. However, by t 5 50 the inter-
face is decaying at much the same rate as a thermal
diffusive interface. Similar results were reported by
Shen (1989) for s 5 1, t 5 0.1, and Rr 5 2. [At such
a rate, 10-m steps would decay on a timescale of order
6 months and 50-m steps on a timescale of order 15
years. In addition, steps would lose their ‘‘sharpness’’
on timescales an order of magnitude shorter (Elliott and
Tait 1977).]

The failure of this numerical experiment to attain a
layered equilibrium should not be weighed as evidence
against the multiple equilibrium hypothesis because it
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FIG. 2. Salinity field in a numerical simulation of fingers developing
at an initially sharp interface for (a) t 5 6.13, (b) t 5 9.19, (c) t 5
12.25, and (d) t 5 84.18. In each frame, lighter shades represent
higher salinities, and darker shades lower salinities.

FIG. 3. Horizontally-averaged temperature in numerical simulation
of fingers developing at an initially sharp interface, at the same times
represented in Fig. 2: (a) t 5 6.13, (b) t 5 9.19, (c) t 5 12.25, (d)
t 5 84.18. Instead of equilibrating at a finite thickness, the simulated
interface decays toward a constant-gradient equilibrium, represented
by the dashed lines. The interface sharpness measure LT corresponds
to the area between the dashed lines and solid curves.

is two-dimensional and samples only a single set of
parameters. It does, however, suggest the existence of
a criterion dividing conditions under which true layered
equilibria arise (if indeed they do) and do not arise.

Finally, a particularly effective way to produce mul-
tiple layers in the laboratory is to impose an S flux from
above onto a stable T gradient (Stern and Turner 1969;
Schmitt 1997). Experiments in which a destabilizing S
gradient is also present have not been reported. How-
ever, in the case of diffusive convection, layers develop
in an analogous fashion when a T flux is applied from
below, whether a destabilizing T gradient is present
(Linden 1976) or not (Turner 1968). In the diffusive
case, layer thicknesses have been shown to collapse to
a function of Rr alone when scaled by kT/N , where N
is the buoyancy frequency of the mean stratification

(Kelley 1984). Such a relation has not yet been dem-
onstrated for fingering staircases.

4. Negative density diffusion

Salt fingering has the distinctive property that, while
vertical T and S fluxes are downgradient, vertical density
flux is upgradient. This is because the potential energy
released in transporting salt downward must exceed that
expended in transporting heat upward, resulting in a net
downward transport of mass.

Negative diffusion sharpens rather than smooths fluc-
tuations. The negative diffusion of density associated
with salt fingers thus suggests a means for generating
and maintaining staircases (Schmitt 1994). This hy-
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FIG. 4. Evolution of interface sharpness measures LT, LS, and LF

for temperature, salinity, and a hypothetical scalar F having diffusion
coefficient kF. Thick solid curve: LT; thick dashed curve: LS; thin
curves: LF, for indicated kF. A boxcar filter 7 time units in width
has been applied to LT and LS.

pothesis is evaluated with the aid of some numerical
experiments below.

a. Diffusion equation for density

Suppose that salt fingering causes slow negative dif-
fusion of density and convection more rapid positive
diffusion. The influence of fingering on horizontal-mean
density r (averaged laterally over many finger widths)
can then be represented by a simple one-dimensional
diffusion equation,

rt 5 (Krrz)z, (4.1)

where z is the vertical coordinate and Kr is an effective
vertical diffusion coefficient specified by

f 2 21K 5 K 5 20.1 cm s ,r r

r , 0 (fingering), (4.2)z

c 2 21K 5 K 5 1000 cm s ,r r

r $ 0 (convection). (4.3)z

The value assigned to the negative fingering diffusivity

is comparable to estimates based on microstructurefKr

measurements and numerical simulations5 and is large
enough to overcome the estimated smoothing effects of
intermittent turbulence (Schmitt 1994). The large value
assigned to the positive convective diffusivity reflectscKr

the assumption that convective mixing occurs very rap-
idly compared to mixing by salt fingers. The results are
insensitive to its exact value, provided k | |.c fK Kr r

Equations (4.1)–(4.3) were solved numerically using
an implicit finite difference scheme,

Dt
n11 n n n11 n11r 5 r 1 [k (r 2 r )i i r,i1(1/2) i11 i2(Dz)

n n11 n112 k (r 2 r )], (4.4)r,i2(1/2) i i2i

where superscripts denote time levels, subscripts denote
grid points, and Dt and Dz denote time step and grid
spacing. One hundred grid points were employed, with
Dz 5 20 cm and Dt 5 400 s. Boundary conditions were
periodic (modulo the density contrast across the do-
main), which required inverting a cyclic tridiagonal sys-
tem at each time step. Initial conditions consisted of
small-amplitude random noise superimposed on a uni-
form stable r gradient. Subsequent evolution of r(z, t)
for a particular realization of initial conditions is shown
in Fig. 5. Other realizations are qualitatively similar.
Initially, the density fluctuations are minute. Because of
negative diffusion, the fluctuations amplify, giving rise
to numerous density inversions. Convection rapidly
mixes across the inversions, yielding density steps be-
tween adjacent grid cells. Smaller steps weaken and
merge successively with larger ones until a single step
spans the entire domain. Merging occurs because layers
having larger density jumps below than above transport
more mass across the steeper density interface below
than they receive from above. Density thus decreases
until the layer merges with the one above it. (It should
be noted that this process depends upon grid spacing
because the upgradient density flux across a jump Dr
spanning one grid cell is Dr/Dz. Reducing Dz in-fKr

creases the upgradient fluxes and speeds the merging
processes.) Although having a fixed interface thickness
and flux proportional to Dr seems artificial, such be-
havior is not unlike that of laboratory salt fingering
interfaces, whose thicknesses are relatively insensitive

5 In terms of effective salt diffusivity KS and temperature diffusivity
KT, Kr 5 (RrKT 2 KS)/(Rr 2 1) (Shen 1995). On the basis of mi-
crostructure measurements, Schmitt (1988) estimates effective salt
diffusivities of 0.28 to 0.74 cm2 s21 (assuming buoyancy flux ratio
aKTTz/bKSSz ø 0.5) for fingering interfaces in the western tropical
North Atlantic (Rr ø 1.6). These estimates are based on ratios of
flux to mean gradient averaged over layers and interfaces, however.
In the present context, what is needed is the ratio of flux to gradient
within an interface. The latter is roughly ten times the mean gradient,
implying KS ø 0.03 to 0.07 cm2 s21, and Kr ø 20.02 to 20.06 cm2

s21. Merryfield and Grinder, in numerical simulations of heat/salt
fingers in an infinitely thick interface, find Kr ø 20.13 cm2 s21 at
Rr 5 1.5.
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FIG. 5. Evolution of density r(z, t) from small fluctuations imposed on an initially uniform
gradient, according to negative diffusion equations (4.1)–(4.3). Density is expressed in arbitrary
units.

to salinity jump DS, scaling as (bDS)21/3 (Stern and
Turner 1969; Linden 1973). Similarly, fingering salt
fluxes at a fixed Rr are often cited as following bFS }
(bDS)4/3 (e.g., Schmitt 1979; Taylor and Bucens 1989),
which is not too different from Fr } Dr.

The results shown in Fig. 5 superficially appear to
support the notion that negative density diffusion is re-
sponsible for staircases. However, at least two consid-
erations cast doubt on this interpretation. The first is
that the physical scale of the steps increases with time
and is limited only by the height of the computational
domain. Thus there is no obvious mechanism for es-
tablishing a preferred scale. The second is that (4.1)–
(4.3) do not provide a consistent description of the mix-
ing process. This is because countergradient transport
of r is a consequence of the combined transports of T
and S, which should be treated separately. Such a treat-
ment is considered next.

b. Diffusion equations for temperature and salinity

Consider horizontal-mean T and S, which are gov-
erned by

T 5 (K T ) , (4.5)t T z z

S 5 (K S ) , (4.6)t S z z

and together determine horizontal-mean density through

r 5 r0[1 2 a(T 2 T0) 1 b(S 2 S0)], (4.7)

where T0, S0 and r0 denote constant reference values
and a linear equation of state is assumed. Equations
(4.5)–(4.7) were solved using

f 2 21 f 2 21K 5 K 5 0.2 cm s , K 5 K 5 0.08 cm s ,S S T T

r , 0 (fingering), (4.8)z

c 2 21 c 2 21K 5 K 5 1000 cm s , K 5 K 5 1000 cm s ,S S T T

r $ 0 (convection),z (4.9)

where and have been assigned values similar tof fK KS T

those found in a Rr 5 1.5 numerical simulation (MG).
When initial T, S consist of small fluctuations about
uniform gradients, large-amplitude steps did not spon-
taneously arise. Convective layers did form when de-
partures from uniform gradients were sufficiently large
because of the more rapid decay of S fluctuations than
T fluctuations. The scale of these layers is determined
by that of the imposed disturbances. A sequence of lay-
ers such as a staircase thus might be generated by a
train of internal waves, although one would need to
show how such a process could produce coherent steps
hundreds of kilometers in lateral extent. Zhurbas et al.
(1987) obtained similar results using Rr-dependent KT

and KS. They suggested that regular disturbances in T
and S might be produced by thermohaline intrusions
(see sec. 5), but made no attempt to account for crucial
lateral advection effects.

5. Staircases as intrusions

This section develops the hypothesis that thermoha-
line staircases arise from double-diffusive intrusions.
Such a connection was proposed by Zhurbas and Oz-
midov (1983), who found that steps in the C-SALT re-
gion develop T and S inversions near their peripheries.
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After a brief review of some properties of intrusions,
linear and nonlinear calculations are presented which
support this hypothesis. Observational evidence is then
discussed.

a. Nature of intrusions

Salt fingers occur because diffusive transport of T
exceeds that of S. However, salt fingers themselves
transport S more effectively than T, and this unequal
transport, in conjunction with lateral T and S gradients,
gives rise to inclined, fingerlike intrusions. Stability
when vertical T and S gradients favor fingering and
lateral T and S gradients are density-compensating has
been explored by Stern (1967), Toole and Georgi
(1981), McDougall (1985), Niino (1986), and Walsh and
Ruddick (1995, 2000). Kuzmina and Rodionov (1992)
and May and Kelly (1997) consider the influence of
baroclinicity. Under oceanic conditions, predicted ver-
tical wavelengths are of order tens of meters, and slopes
are less than one degree or so from horizontal. A dis-
tinctive feature of intrusions driven by salt fingering is
that warm and salty intrusions rise across isopycnals,
whereas cool and fresh intrusions sink.

Because double-diffusive intrusions grow most rap-
idly where lateral T and S gradients are large, they are
expected to be most conspicuous at fronts. Observations
show that many fronts indeed harbor intrusive features
(e.g., Gregg 1975; Horne 1978; Ruddick 1992), al-
though intrusions have also been found where lateral
gradients are spatially extended (Rudels et al. 1999).

A somewhat standard characterization of fully de-
veloped intrusions is that they feature prominent T and
S inversions so that regions of salt fingering (T and S
increasing upward) alternate in depth with regions of
diffusive convection (T and S increasing downward).

b. Linear theory

In this subsection, linear theory is employed to argue
that conventional intrusions featuring prominent T and
S inversions are not the only possible outcome of in-
trusive instability and that staircaselike configurations
as are possible as well. A criterion dividing these two
outcomes is derived. As in recent studies by Walsh and
Ruddick (1995, 1998, 2000, henceforth WR95, WR98,
WR00, respectively), attention is focused on effects of
Rr-dependent fingering fluxes and turbulent mixing,
whereas effects of rotation are excluded. This can par-
tially be justified by the fact that rotation does not affect
the growth rate, wavelength, or cross-front slope of the
fastest-growing intrusions (McDougall 1985; Kerr and
Holyer 1986). Such modes also have vanishing along-
slope velocity, but do possess an alongslope component
of slope when rotation is accounted for. Baroclinic ef-
fects (Kuzmina and Rodionov 1992; May and Kelly
1997) are also excluded.

To motivate the discussion, consider the initial de-

velopment of intrusions at a particular horizontal lo-
cation. Assuming that initial gradients are uniform and
that a single Fourier mode dominates, temperature and
salinity evolve according to

imz1ltˆT(x , z, t) 5 T z 1 Te , (5.1)0 z

imz1ltˆS(x , z, t) 5 S z 1 Se , (5.2)0 z

where m is vertical wavenumber, l is growth rate, T̂
and Ŝ are the (possibly complex) intrusion amplitudes
(e.g., Toole and Georgi 1981), and T z and S z are the
background vertical gradients.

It is convenient to represent this evolution on the
(aTz, bSz) plane as in Fig. 6, where approximate bound-
aries dividing regions of salt fingering, convection, dif-
fusive convection and stability are indicated. Initial am-
plitudes are assumed arbitrarily small, so (5.1)–(5.2)
represent essentially a point on this plane (Fig. 6a). As
the intrusions develop, (5.1)–(5.2) describe line seg-
ments having a slope (aT̂/bŜ)21 (Fig. 6b), which must
be ,1 for intrusions to grow. If (T, S) continue to be
described by their linear eigenfunctions, one of two pos-
sible developments must occur. The first, labeled ‘‘I,’’
is that Sz reverses sign before Tz and a portion of the
intrusion becomes stable (Fig. 6c). At still later times,
Tz also reverses sign, and intrusions consist of a cyclical
arrangement of fingering, stable, diffusively convective,
stable, and fingering layers (Fig. 6d). The second pos-
sible development, labeled ‘‘S,’’ is that evolution occurs
toward aTz 5 bSz, the locus of neutral stability to con-
vection (Fig. 6b). At later times this criterion is exceeded
(Figs. 7c,d), and intrusions consist of alternating fin-
gering and convective layers—a thermohaline staircase.

It remains to establish whether evolution toward stair-
case configurations can be realized. Referring again to
Fig. 6, growing intrusions governed by (5.1)–(5.2) will
evolve toward staircases if

aT̂/bŜ . aT z/bS z [ R r. (5.3)

Is it straightforward to express this criterion in terms of
system parameters. The linearized equations governing
small departures T and S from a state of uniform T and
S gradients and no motion are

(T )T 1 uT 1 wT 5 2F , (5.4)t x z z

(S)S 1 uS 1 wS 5 2F , (5.5)t x z z

(WR95) where u and w are horizontal and vertical ve-
locity and F (T ) and F (S) are vertical diffusive fluxes of
temperature and salt. (The momentum equations need
not be considered here.) The fluxes are assumed, as in
WR00, to consist of Rr-dependent fingering contribu-
tions, which differ for T and S, together with a turbulent
flux that mixes T and S equally:

(T ) fF 5 2[K (R ) 1 K ]T , (5.6)T r turb z

(S) fF 5 2[K (R ) 1 K ]S , (5.7)S r turb z

where and are effective fingering diffusivities forf fK KT S
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FIG. 6. Schematic depiction of intrusion growth on the (aTz, bSz) plane, according to (5.1)–(5.2). Long-
dashed lines denote constant N, and short-dashed lines constant Rr. Heavy lines separate fingering, convective,
diffusive convective and stable regimes. (a) Initial conditions, lying close to background gradients, are denoted
by the dot. (b) Growing intrusions describe line segments which lengthen in time. A line segment whose
slope is less than is labeled by ‘‘S,’’ and one whose slope is greater than is labeled by ‘‘I.’’ (For21 21R Rr r

intrusions to grow, this slope must lie between 0 and 1.) (c) As growth continues, I begins to penetrate the
stable regime, and S the convective regime. (d) Still later, I penetrates the diffusive–convective regime as
well. Intrusion I then consists of sequences of fingering, stable, diffusive convective, convective and fingering
layers, whereas S consists of alternating fingering and convective layers.

T and S, and Kturb is an effective turbulent diffusivity.
The fingering diffusivities are related by 5 g f /Rr,f fK KT S

where flux ratio gf is a relatively slowly varying func-
tion of Rr, taken to be constant. Substituting (5.6)–(5.7)
into (5.4)–(5.5) and considering perturbations (T, S) 5
(T̂, Ŝ)eikx1imz1lt yields

2 2 fˆ ˆ[l 1 m (g K9 1 K )]aT 1 m g (K 2 K9R )bSf S turb f S S r

5 i(maT 2 kaT )ĉ, (5.8)x z

2 2 fˆ ˆ2m K9aT 1 [l 1 m (K 1 K9R 1 K )]bSS S S r turb

5 i(mbS 2 kbS )ĉ, (5.9)x z

where is the derivative of with respect to Rr,fK9 K ĉS S

is streamfunction, for which (u, w) 5 and KS(2ĉ , ĉ ),z x

and are evaluated at R r. Straightforward evaluationK9S
of aT̂/bŜ from (5.8)–(5.9) and substitution into (5.3)

yields the proposed criterion for evolution of intrusions
into thermohaline staircases:

2 fm K (R ) sS r
l , (1 2 g ) 2 (R 2 g )f r f[R 2 1 Gr S

K turb2 (R 2 1) , (5.10)rf ]K (R )S r

where GS [ S x/S z is the background isohaline slope,
and s [ k/m, the cross-frontal intrusion slope, is positive
for growing intrusions.

Implications of (5.10) are now examined. In this dis-
cussion, density ratio R r and turbulent mixing coeffi-
cient Kt, which depend upon local conditions, are al-
lowed to vary. The buoyancy flux ratio for fingering is
set to g f 5 0.6, a value fairly well constrained by lab-



MAY 2000 1055M E R R Y F I E L D

FIG. 7. Functional forms considered for , the effective ver-fK (R )S r

tical salt diffusivity due to salt fingering. FIG. 8. Example of the dependence on Rr of l, the intrusion growth
rate and rhs of (5.10). Intrusions evolve toward staircase configura-
tions when l , rhs, which occurs when Rr is less than a critical
value , which in this instance ø1.12. Parameters: WR0 flux law,stairRr

GS 5 5 3 1024, Kturb 5 0.1 cm2 s21, Pr given by (5.11). The vertical
axis is labeled in units of buoyancy frequency N.

oratory and numerical experiments (e.g., Schmitt 1979;
MG). In specifying , three functional forms arefK (R )S r

considered (Fig. 7). The first two are based on the ad
hoc formula (Rr) 5 Kmax of WR98, choosing Kmax

f 2nfK RS r

5 1 cm2 s21 and nf 5 0 (case WR0) or nf 5 2 (WR2).
The third form is obtained from the Merryfield and
Grinder simulations of salt fingering subject to uniform
background gradients: 5 0.17(1 2 tRr)/(Rr 2 gf )fKS

cm2 s21 (case MG). The growth rate l is determined by
m, s and the parameters through a linear eigenvalue
problem (WR00). When the fastest-growing mode is
considered, m and s acquire specific values. Finally, the
effective Prandtl number, Pr [ A(R r)/[ ) 1 Kturb]fK (RS r

where A is effective viscosity, appears in the linear ei-
genvalue problem. The proper choice for this parameter
is not well known, and a range of choices is thus con-
sidered. Following Ruddick (1985), WR98 take mo-
mentum flux to be proportional to the fingering buoy-
ancy flux plus a turbulent flux so that

1 2 gf fPr 5 Pr K (R ) 1 K0 S r turb1 2R 2 1r

f4 (K (R ) 1 K ), (5.11)S r turb

with Pr0 5 10. Conversely, laboratory experiments of
Ruddick et al. (1989) suggest that fingering does little
to enhance viscous stress. Assuming that viscous stress
is enhanced by turbulence alone implies

Pr K 1 n0 turbPr 5 , (5.12)
fK (R ) 1 KS r turb

where the molecular viscosity n ø 0.01 cm2 s21 has
been introduced to ensure a physical lower bound.

Several properties of criterion (5.10) merit discussion.

1) Staircases tend to be favored at low values of Rr

because the right-hand side of (5.10) increases more

rapidly than growth rate l as Rr → 1. This tendency
is illustrated in Fig. 8, where l and the right-hand
side of (5.10) are plotted against Rr for given byfKS

WR0, Kturb 5 0.01 cm2 s21, Pr given by (5.11) with
Pr0 5 10, and m and s characterizing the fastest-
growing mode. According to criterion (5.10), stair-
cases are favored when Rr is less than a critical value

, which in this instance is about 1.12.stairRr

2) Staircases are favored by a low turbulent mixing
coefficient Kturb. Figure 9 illustrates how the pre-
dicted threshold varies with Kturb for givenstair fR Kr S

by WR0 (solid curves) and WR2 (dashed curves),
with Pr specified by (5.11) (thick curves) and (5.12)
(thin curves). In each instance, threshold growsstairRr

larger as Kturb decreases.
3) Threshold is considerably larger when salt fin-stairRr

gering is presumed not to contribute to viscous stress,
so that Pr is specified by (5.12). For example, for
flux law WR2 and Kturb 5 0.01 cm2 s21 (Fig. 9a),

increases from 1.08 when Pr is specified bystairRr

(5.11) to 1.44 when Pr is specified by (5.12), assum-
ing Pr0 5 10. For (5.11) and flux law MG, (5.10) is
not satisfied for any Pr0 $ 1, Rr . 1.

4) Threshold becomes still larger as the coefficientstairRr

Pr0 in (5.12) decreases from 10 to 1 (Fig. 9b).
5) Criterion (5.10) tends to be satisfied for sufficiently

large m even when it is not for the fastest-growing
mode. In Fig. 10, contours depict linear growth rate
versus m and s. Values of (m, s) where evolution is
toward staircases are indicated by ‘‘1’’ and values
where evolution is toward conventional intrusions
are indicated by ‘‘2.’’ With Rr 5 1.1, flux law WR2
and Pr given by (5.12) with Pr0 5 10, (5.10) is
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FIG. 9. Critical value , below which staircases form, as a function of Kturb for (a) flux laws WR0 andstairRr

WR2, Pr given by (5.11) and (5.12) and Pr0 5 10, and (b) flux law MG, Pr given by (5.12) with Pr0 5 10,
2, and 1.

satisfied for the fastest-growing mode (Fig. 10a). For
Rr 5 1.6, the fastest-growing mode evolves toward
conventional intrusions, but modes having compa-
rable s and m * 30% larger evolve toward staircases
(Fig. 10b).

6) Criterion (5.10) is independent of GS provided s K
1 because l, s, and m2 are then proportional to GS

(see appendix).
7) In the limit of large Prandtl number, aT̂/bŜ can be

obtained analytically (McDougall 1985; WR95).
When 5 0 and Kturb 5 0, this leads to 5 1stairK9 RS r

1 g/3, or 5 1.133 when g 5 0.6.stairRr

c. Nonlinear calculations

In the preceding subsection, linear theory was em-
ployed to determine the conditions under which intru-
sions evolve toward staircase configurations rather than
toward conventional intrusions. To assess whether these
tendencies are realized in equilibrated intrusions, non-
linear calculations are needed.

Equilibration of intrusions has been examined pre-
viously by WR98, who solved the nonlinear equations
of motion in a tilted reference frame aligned with the
intrusions. Because the ambient T and S gradients were
assumed uniform, the governing equations of WR98
depend only on the spatial coordinate normal to the
intrusions. All numerical solutions shown by WR98
equilibrated as conventional intrusions. This is not in
contradiction with the present results, as discussed be-
low.

1) FORMULATION

The approach adopted here for computing the non-
linear evolution of intrusions is similar to that of WR98,
although the equations solved and numerical method
employed are different. As a starting point, consider the
Boussinesq equations of motion in two dimensions,

2 2¹ c 1 J(c, ¹ c) 5 2T 1 S 1 (Ac )t x x xz xz

1 (Ac ) , (5.13)zz zz

T 1 J(c, T ) 5 (K T ) , (5.14)t T z z

S 1 J(c, S) 5 (K S ) , (5.15)t S z z

together with equation of state (4.7). Here c is stream-
function, defined as in section 5b, and J(c, · ) 5 cx]z

2 cz]x is the Jacobian operator. Time has been ex-
pressed in units of inverse buoyancy frequency N21 of
the undisturbed state, diffusivity in units of Kmax 5 1.0
cm2 s21, length in units of d [ (Kmax/N)1/2, temperature
in units of N 2 d/ga, and salinity in units of N 2 d/gb.
The effective viscosity A, like KT and KS, is assumed
to operate on vertical gradients only.

To complete (5.13)–(5.15), effective viscosity A and
diffusivities KS and KT must be specified as functions
of the vertical gradients of temperature and salinity. In
a nonlinear calculation, vertical gradients may depart
from the fingering regime, and transports under con-
vective, diffusive convective and stable conditions must
be specified as well. These transports are somewhat un-
certain, and the functional forms suggested by WR98
are adopted here (Table 1), except in instances where
cases MG for fingering diffusivities and (5.12) for fin-
gering-regime viscosity are considered.

Two-dimensional equations (5.13)–(5.15) were
solved using a pseudospectral algorithm much like that
described in MG. Such computations pose significant
challenges because the growing intrusions are subject
to convective and stratified-shear instabilities, which ex-
cite motions on temporal and spatial scales much smaller
than those of the intrusions. By using very high reso-
lution together with hyperviscosity and hyperdiffusion
to damp the smallest scales, numerically stable solutions
were obtained. However, because of the significant com-
puting resources required, it was not feasible to follow
many such runs to equilibrium. In addition, explicit con-
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FIG. 10. Linear growth rate (units of N ) as a function of intrusion
slope s and dimensionless vertical wave number m (units of
[Kmax/N ]1/2). Plus signs indicate where criterion (5.10) for evolution
toward staircases is satisfied. Minus signs indicate where evolution
is toward conventional intrusions. In both cases, Kturb 5 0.01 cm2

s21, GS 5 5 3 1024 and the WR2 flux law is employed, with Pr given
by (5.12) and Pr0 5 10: (a) Rr 5 1.1, maximum growth rate 2.66 3
1024; fastest-growing mode evolves toward a staircase; (b) Rr 5 1.6,
maximum growth rate 0.75 3 1024; fastest-growing mode evolves
toward conventional intrusions.

vective and gravity-wave motions complicate the inter-
pretation of these runs. Therefore, results of these com-
putations are not described here. Instead, a one-dimen-
sional problem was solved, as described below.

Consider a coordinate system (x, z) that is rotated
with respect to (x, z) by 2u, where u 5 2tan21s (Fig.
11). Equations (5.13)–(5.15) can be expressed with re-
spect to the new coordinates by applying the transfor-
mation

] 5 cosu ] 2 sinu ] , (5.16)x x z

] 5 sinu ] 1 cosu ] . (5.17)z x z

If ambient T and S gradients are uniform so that intru-
sions are invariant with respect to the along-intrusion
coordinate x, (5.13)–(5.15) become

2Z 5 2sinu(T 2 S) 1 cos u(AZ ) , (5.18)t z zz

2T 5 2U(T cosu 1 T sinu) 1 cos u(K T ) , (5.19)t x z T z z

2S 5 2U(S cosu 1 S sinu) 1 cos u(K S ) , (5.20)t x z S z z

where Z 5 czz is vorticity, U 5 2cz is along-intrusion
velocity, and

RG rST 5 , T 5 , (5.21)x zR 2 1 R 2 1r r

G 1SS 5 , S 5 (5.22)x zR 2 1 R 2 1r r

are the background gradients. As throughout this paper,
it is assumed that horizontal temperature and salinity
gradients are density compensating.

For each choice of parameters, slope s is that of the
fastest-growing mode, and the range in z of the com-
putational domain is equal to the wavelength of the
fastest-growing mode. Boundary conditions with re-
spect to z are periodic, and (5.18)–(5.22) are solved
numerically by means of a Fourier pseudospectral
scheme, with dealiasing according to the 2/3 rule (Can-
uto et al. 1988). Between 64 and 512 Fourier modes are
considered, as dictated by requirements of resolution.
Initial conditions consist of density compensating per-
turbations to T and S, constructed by assigning Gauss-
ian-distributed random values to the Fourier coefficients
and scaling by inverse wavenumber squared. The initial
perturbations were assigned dimensionless variances of
1022.

2) RESULTS

The nonlinear evolution of intrusions is in accord with
tendencies deduced from linear theory: in all instances
considered, intrusions equilibrated as staircases when
criterion (5.10) was satisfied and as conventional intru-
sions when it was not. An example is shown in Fig. 12,
where the critical value dividing staircase and con-stairRr

ventional-intrusion regimes is traced by the heavy
curve. Flux law MG and Pr given by (5.12) with Pr0 5
1 are considered, and ambient conditions are charac-
teristic of the C-SALT region (except for Rr; see Table
2). When (Rr, Kturb) lies to the left of this curve, the
numerical solutions equilibrate as staircases (filled cir-
cle; inset a). Conventional intrusions are realized to the
right of this curve (open circles; insets b, c, d).

A notable feature of the numerical solutions is that
for staircases the along-intrusion velocity U(z) consists
of pairs of narrow, oppositely directed jets centered on
the fingering interface (Fig. 12, inset a). The resultant
shear, coupled with along-intrusion property variations,
maintains the sharp interfacial T and S gradients. This
is in marked contrast to conventional intrusions for
which U(z) has broad extrema nearly spanning the depth
range of each intrusion (Fig. 12; inset b).

The development of laminae in staircases and con-
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TABLE 1. Specification of effective diffusivities KS and KT and effective viscosity A (units of cm2 s21). In all cases gf 5 0.6 and gd 5 0.2.

Salt fingering
rz , 0, 1 , Rr , `

Diffusive convection
rz , 0, 0 , Rr , 1

Stable
rz , 0, Rr , 0

Convection
rz $ 0

fK (WR0)S 1
fK (WR2)S

22Rr

fK (MG)S

1 2 tRr
0.17

R 2 gr f

KS
fK 1 KS turb

dg R K 1 Kd r T turb Kturb Kconv

dK (WR0)T 1
dK (WR2)T

23Rr
dK (MG)T

23Rr

KT
fg K /R 1 Kf S r turb

dK 1 KT turb Kturb Kconv

A (5.11)
1 2 gf

fPr K 1 K0 S turb1 2R 2 1r

1 2 gd dPr K 1 K0 T turb1 21 2 Rr

Pr0Kturb Pr0Kconv

A (5.12) Pr0Kturb 1 n Pr0Kturb 1 n Pr0Kturb 1 n Pr0Kconv

FIG. 11. Schematic illustration of coordinate system (x, z), tilted
with respect to (x, z) by an angle 2u 5 tan21s, where s . 0 is the
intrusion slope. Also shown is the manner in which warm, salty
intrusions rise across isopycnals (which here are horizontal), and cool,
fresh intrusions sink.

ventional intrusions is illustrated in Fig. 13. For stair-
cases, convection sets in at some critical intrusion am-
plitude and rapidly grows in extent (Fig. 13a). This is
exactly the scenario suggested by Fig. 6. Conventional
intrusions first develop stable layers, which rapidly give
way to layers of diffusive convection and convection
(Fig. 13b). Such behavior was also found by WR98,
and prior to the onset of convection it matches the ‘‘I’’
scenario of Fig. 6.

From the numerical solutions, depth-averaged dia-
pycnal and isopycnal fluxes of T and S can be calculated.
(These are defined with respect to mean isopycnals,
which here are level.) Results are expressed in terms of
effective diffusion coefficients, defined as (mean flux)/

(mean gradient). Three types of coefficients are consid-
ered: diapycnal coefficients and describing mix-dif difK KT S

ing by fingering, diffusive convection, and convection;
diapycnal coefficients and describing diapyc-adv advK KT S

nal advection by intrusions; and isopycnal coefficients
and describing isopycnal advection by intru-iso isoK KT S

sions. Results for the model runs in Fig. 12 and others
are summarized in Table 3, where dimensional values
are assigned based on estimated C-SALT conditions
(Table 2). The diapycnal coefficients are independent of
GS, whereas the isopycnal coefficients scale as (see22GS

appendix).
Several key aspects of these results are now noted.

1) Mixing coefficients and are larger than co-dif difK KT S

efficients KT and KS describing mixing by spatially
uniform salt fingering. For the staircase run in Fig.
12, for example, 5 0.359 cm2 s21 and 5dif difK KT S

0.793 cm2 s21, whereas KT 5 0.091 cm2 s21 and KS

5 0.212 cm2 s21.
2) The advective diapycnal fluxes are upgradient.
3) Total diapycnal heat fluxes, proportional to 1difK T

, are sometimes upgradient for conventional in-advK T

trusions, though not for staircases. Upgradient ver-
tical fluxes of heat also were found in the analytical
intrusion model of Garrett (1982). Total diapycnal
salt fluxes are consistently downgradient.

4) Isopycnal mixing coefficients and are oneiso isoK KT S

to two orders of magnitude smaller for staircases than
for conventional intrusions, perhaps because along-
intrusion velocity is concentrated in the fingering
interfaces.

It is evident from these results and from Fig. 9 that
all of the numerical solutions of WR98 equilibrated as
conventional intrusions because they considered Rr 5
1.6 and Pr given by (5.11), choices for which staircases
are excluded regardless of flux law and Kturb.

Finally, it was found that higher resolution was re-
quired for staircases than for conventional intrusions.
Table 4 shows and versus resolution for thedif difK KT S
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FIG. 12. Equilibria of intrusions under C-SALT conditions with flux law MG, Pr given by (5.12)
with Pr0 5 1, and Rr and Kturb as indicated. The heavy solid curve represents . Insets showstairRr

profiles of S (solid curves in the left panels), T (dashed curves), and horizontal velocity u for
equilibrated intrusions as functions of z. Conventional intrusions (open circles) are found where
Rr . , whereas staircases (filled circle) are found where Rr , . For clarity, two repetitionsstair stairR Rr r

of the periodic numerical solutions are shown.

TABLE 2. Approximate conditions in C-SALT and Western Mediterranean staircases.

Staircase Rp GS N (s21) a (8C21) b (psu21)

C-SALT
W. Mediterranean

1.6
1.1

5 3 1024

1.3 3 1023

3 3 1023

4 3 1024

1.6 3 1024

2.2 3 1024

7.8 3 1024

7.7 3 1024

Rr 5 1.4 runs in Fig. 12. For the staircase run (Kturb 5
0.1 cm2 s21), the coefficients appear just to be con-
verging when 512 Fourier modes are employed. How-
ever, the conventional intrusion run (Kturb 5 0.1 cm2

s21) appears nearly converged when just 64 Fourier
modes are employed.

d. Comparison with observations

1) THRESHOLD Rr

An oft-noted property of oceanic staircases is that
they appear only in locations having particularly low
values of Rr. For example, the steps in the Western
Mediterranean are characterized by Rr ø 1.1–1.2
(Schmitt 1981; Krahmann 1997) and those beneath the
Mediterranean outflow by Rr ø 1.3. In the northwestern
tropical Atlantic, the locale of the C-SALT experiment,

steps are confined to regions where Rr & 1.7 (Schmitt
et al. 1987). There are no known instances of staircases
having Rr * 1.7.

The existence of staircases only in regions of suffi-
ciently low Rr is in accord with the results in sections
6b,c. The threshold predicted from linear theorystairRr

ranges from about 1.1 to more than 2, depending on
turbulence levels and assumed laws for salt flux and
viscous stress (Fig. 9). For to approach the observedstairRr

threshold of 1.7, it is necessary to assume that turbulent
mixing is extremely small (Kturb & 0.01 cm2 s21), and
that salt fingering does not contribute to viscous stress,
that is, effective Prandtl number is given by (5.12).

The threshold also becomes larger when Pr0 char-stairRr

acterizing the ratio of effective viscosity to salt diffu-
sivity is smaller than the value 10 used by WR98. For
Pr0 5 1 and fingering flux law MG, arguably the most
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FIG. 13. Evolution of intrusion structure for the Rr 5 1.4 cases shown in Fig. 12, and conditions
otherwise as in the C-SALT region (see Table 1): (a) Kturb 5 0.01 cm2 s21, intrusions evolve into
staircase consisting of alternating fingering and convective layers; (b) Kturb 5 0.1 cm2 s21, equil-
ibration is as conventional intrusions featuring a cyclical arrangement of fingering, convective,
and diffusive convective layers. As in Fig. 12, the MG flux law is employed and Pr is given by
(5.12) with Pr0 5 1. Two repetitions of the periodic solutions are shown.

TABLE 3. Effective diffusion coefficients (in cm2s21) for equilibrated model runs, assuming GS 5 5 3 1024. Superscript ‘‘dif’’ applies to
diapycnal diffusive mixing, ‘‘adv’’ to diapycnal advective mixing, and ‘‘iso’’ to isopycnal advective mixing. The first four runs correspond
to those shown in Fig. 12. Resolution: 512 Fourier modes for staircases, and 128 Fourier modes for conventional intrusions.

Rp Kturb Flux law Pr Pr0
difTK difSK advTK advSK isoTK isoSK Config*

1.4
1.4
1.6
1.6
1.4
1.4
1.4
1.4
1.6
1.6

0.01
0.1
0.01
0.1
0.01
0.1
0.01
0.1
0.1
0.1

MG
MG
MG
MG
WR2
WR2
WR2
WR2
WR2
WR0

5.12
5.12
5.12
5.12
5.12
5.12
5.11
5.11
5.11
5.11

1
1
1
1

10
10
10
10
10
10

0.359
0.306
0.148
0.256
0.567
0.647
0.299
0.458
0.429
0.568

0.793
0.789
0.566
0.726
1.23
2.28
3.41
2.26
1.77
3.24

20.013
20.305
20.137
20.226
20.040
21.05
21.91
21.16
20.538
20.974

20.011
20.401
20.162
20.340
20.033
21.35
22.17
21.44
20.753
21.29

3.32 3 105

1.03 3 107

0.51 3 107

1.21 3 107

1.04 3 106

3.59 3 107

6.88 3 107

4.73 3 107

3.23 3 107

5.61 3 107

2.07 3 105

0.97 3 107

0.38 3 107

1.13 3 107

6.10 3 105

3.30 3 107

5.59 3 107

4.21 3 107

3.82 3 107

4.64 3 107

S
I
I
I
S
I
I
I
I
I

* S: staircase; I: conventional intrusion.

plausible because it is based on numerical simulations,
reaches 1.52 when Kturb 5 0.01 cm2 s21 and 1.76stairRr

when Kturb 5 0.001 cm2 s21.

2) HEIGHT OF STEPS

According to the theory in this section, thermohaline
step height (mixed layer plus interface) can be identified
with intrusion wavelength. To evaluate the latter re-
quires a knowledge of N, Rr, and GS. For at least two
staircases, these quantities can be estimated from pub-
lished data, as summarized in Table 2. Evaluation of
wavelength also requires specification of fingering and

turbulent fluxes, and as throughout this section a range
of choices is considered.

The mean step height in the core of the western trop-
ical North Atlantic (C-SALT) staircase appears to be 30
or 40 m (Schmitt et al. 1987), as indicated by the vertical
dashed lines in Figs. 14a,b. Predicted step heights tend
to exceed the observed values, but fall within the ob-
served range for flux law MG when Pr is specified by
(5.12) with Pr0 , 10, and turbulence is weak (Kturb &
0.02 cm2 s21).

In the Algerian and Provencal Basins of the western
Mediterranean, observed step heights are typically 60
to 100 m (Krahmann 1997). In this case (Figs. 14c,d),
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TABLE 4. Dependence of effective diffusion coefficients on reso-
lution for Rp 5 1.4 runs shown in Fig. 12 (units of cm2s21).

Fourier
modes

Staircases

difTK difSK

Convective intrusions

difTK difSK

64
128
256
512

0.353
0.359
0.277
0.264

0.779
0.793
0.619
0.573

0.297
0.306
0.301
0.303

0.770
0.789
0.777
0.754

FIG. 14. Predicted vs observed step heights for the C-SALT (a,b) and Western Mediterranean (c,d) staircases.
The curves denote predicted step heights for the choices of flux law and Pr considered in Fig. 9. Dotted
vertical lines indicate ranges of observed step heights.

predicted step heights fall within the observed range for
all flux laws provided Pr is specified by (5.12), and Kturb

& 0.05 cm2 s21 (Pr0 5 10) or 0.05 cm2 s21 & Kturb &
0.2 cm2 s21 (case MG; Pr0 5 1).

3) LATERAL PROPERTY VARIATIONS

When followed laterally, staircase layers are found to
lie across isopycnals, and to become warmer and saltier
as their density increases. Such a trend, documented for
the C-SALT staircase by Schmitt et al. (1987) and for
the western Mediterranean by Zodiatis and Gasparini
(1996) and Krahmann (1997), is identical to that ex-

hibited by salt finger-driven intrusions (WR95): cool
and fresh intrusions sink across isopycnals, becoming
warmer and saltier as they mix diffusively with warmer,
saltier intrusions above and below (Fig. 11).

4) LATERAL DENSITY RATIO

In the C-SALT staircase, lateral variations of layer
temperature and salinity are related by aTx/bSx 5 0.85
6 0.03 (Schmitt 1994). In the western Mediterranean,
this ratio is 0.9 6 0.06 (Krahmann 1997).

For intrusions driven by uniform background gradi-
ents, lateral density ratio depends on the gradients and
intrusion slope, and is given by

aT G 2 sRa cosuT 1 sinuTx S rx z5 5 . (5.23)
bS b cosuS 1 sinuS G 2 sx x z S

Figure 15 compares the observed lateral density ratios
with (5.23) evaluated for the fastest-growing mode. For
the C-SALT staircase, predicted ratios lie within the
error bars for all three flux laws provided that Pr is
given by (5.12), and Kturb & 0.01 cm2 s21 (Figs. 15a,b).
(For case MG, Pr0 & 2 is required as well.) For the
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FIG. 15. Predicted vs observed lateral density ratios aTx/bSx for the C-SALT (a,b) and Western Mediter-
ranean (c,d) staircases. The curves denote predicted ratios for the choices of flux law and Pr considered in
Fig. 9. Heavy dotted lines denote observed values and light dotted lines the uncertainties, as reported by
Schmitt (1994) and Krahmann (1997).

Western Mediterranean staircase, predicted ratios lie
within the error bars under all conditions shown, al-
though optimal agreement with the centroid value 0.92
again is realized when Kturb is small and Pr is given by
(5.12) with Pr0 , 10 (Figs. 15c,d).

Other proposed explanations for the observed lateral
density ratios include modification of water properties
by combined effects of salt fingering and turbulence
(Marmorino 1990; Schmitt 1994), and interfacial ad-
vection due to nonlinearities in the equation of state
(McDougall 1991).

5) LAYER SLOPES

As mentioned above, staircase mixed layers slope
across isopycnals in the same sense as intrusions. Slopes
were estimated for the C-SALT and Mediterranean steps
using

rx 5 sinur z ø 2sr z. (5.24)

The lateral density gradient rx was estimated from Fig.
5 of Schmitt et al. (1987) and Fig. 4 of Krahmann (1997)

by dividing total lateral density contrast within a given
layer by the approximate horizontal extent of the stair-
case. These estimates are somewhat uncertain because
they assume that rx is uniform.

For the C-SALT staircase, estimated slope exceeds
the theoretical slopes (Figs. 16a,b). However, the dis-
agreement is least (&20%) for Kturb & 0.01 cm2 s21 and
Pr law (5.12) with Pr0 , 10. For the Western Mediter-
ranean staircase, estimated slope again exceeds the the-
oretical slopes (Figs. 16c,d). Disagreement is again min-
imized by Kturb & 0.01 cm2 s21 and Pr law (5.12) with
Pr0 , 10, although this time the remaining discrepancy
is approximately a factor of 3.

6) SHEAR IN FINGERING INTERFACES

The numerical solutions described above indicate
that, for staircases, intrusion shear is highly concentrated
in the fingering interface. In the staircase illustrated in
Fig. 12a, shear attains 0.8 3 1022 s21 in the center of
the fingering interface (Fig. 17a), and gradient Rich-
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FIG. 16. Predicted vs observed cross-isopycnal slope for the C-SALT (a,b) and Western Mediterranean
(c,d) staircases. The curves indicate predicted ratios for the choices of flux law and Pr considered in Fig.
9. Dotted vertical lines denote estimated cross-isopycnal slopes from data of Schmitt (1994) and Krahmann
(1997).

ardson number Ri 5 N 2/ reaches a minimum of 0.92uz

(Fig. 17d).
Observations indicate that shear indeed is concen-

trated in fingering interfaces. In the C-SALT staircase
(Rr & 1.6), interface shears averaged over 0.5-m inter-
vals sometimes exceed 1022 s21 (Gregg and Sanford
1987; Gregg 1988). While such values are in accord
with Fig. 17a, the double-jet structure seen in Fig. 12a
is not obviously present in the observed horizontal ve-
locities. However, other sources of shear are present
which could mask such signals in an instantaneous pro-
file. Richardson numbers computed from average gra-
dients across interfaces range between 1 and 5.

Shears in the staircase beneath the Mediterranean out-
flow (Rr ø 1.3) were examined by Simpson et al. (1979).
Shears evaluated from differences over 1 m again were
highest in the interfaces. Interface shear profiles typi-
cally were multipronged as in Fig. 17b, although inter-
pretation as a signature of double jets is tempered by
the relatively low resolution and the presence of layered
substructure in some of the interfaces. In profiles of
velocity there is some suggestion of ;1 cm s21 inter-

facial jets oriented NE–SW, but too little data is shown
for a definitive assessment. Interfacial gradient Rich-
ardson numbers were between 0.3 and 1, with uncer-
tainties of up to 30%.

Shear measurements also were taken by Evans (1981)
for a rather weak staircase embedded in a Mediterranean
salt lens north of Haiti (Rr ø 1.5 to 1.7). Shear computed
on 2-m intervals is again much higher in interfaces than
in layers, although shears within the staircase are much
smaller than in waters above and below.

7) COEXISTENCE OF STEPS AND INTRUSIONS

In thermohaline staircases, prominent T and S inver-
sions that resemble conventional intrusions can appear
in place of steps. Such features sometimes replace in-
dividual steps near the top of an otherwise normal stair-
case. This is seen in the C-SALT region (Mazeika 1974,
Fig. 2; Marmorino et al. 1987, Fig. 6), beneath the Med-
iterranean outflow (Tait and Howe 1968, Fig. 2; Tait
and Howe 1971, Fig. 2), and in the Tyrrhenian Sea
(Zodiatis and Gasparini 1996, Fig. 5). Observations
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FIG. 17. For a staircase step depicted in Fig. 12a, vertical profiles of (a) shear uz; (b) shear
squared; (c) buoyancy frequency N (dotted line indicates background value); (d) gradient Rich-
ardson number (dotted line indicates critical value 0.25). Except for Rr 5 1.4, C-SALT conditions
are assumed (Table 2).

show that Rr tends to increase upward near the tops of
staircases (e.g., Schmitt 1994). The appearance of in-
versions instead of steps thus may result from Rr locally
exceeding . This conjecture is supported by data ofstairRr

Zodiatis and Gasparini (1996), who show two temper-
ature profiles taken 5 months apart. In the later profile,
the uppermost large step has become inverted, while Rr

has increased from 1.26 to 1.6. (An inversion is also
developing at the top of the second large step, for which
Rr has increased from 1.19 to 1.25.)

Staircases also can evolve laterally into intrusions,
especially in the presence of steepening horizontal gra-
dients. In the C-SALT area, for example, staircases de-
velop inversions near thermohaline fronts associated
with eddies (Zhurbas et al. 1988; Marmorino 1991) and
the staircase edge (Zhurbas and Ozmidov 1983; Mar-
morino et al. 1987). In the Western Mediterranean, such
a transition occurs in the proximity of higher horizontal
gradients where Levantine Intermediate Water enters the
Algerian Basin (Krahmann 1997).

Assuming Rr is horizontally uniform, at least two
possible reasons are evident for why staircases develop
inversions near thermohaline fronts. The first, for which
there is little evidence, is that turbulent mixing is sys-
tematically larger within such fronts. This would in-

crease (Fig. 9). If the elevated threshold exceededstairRr

ambient Rr, conventional intrusions instead of steps
would develop within the front.

A second possibility is related to factors determining
the vertical scale of intrusions near fronts. Suppose first
that a region of low horizontal gradients contains fully
developed steps and that a higher-gradient region de-
velops adjacent to it, perhaps at the staircase edge or
within an eddy. Such a situation is illustrated in Fig.
18a, where growth rates are contoured for low-gradient
[GS 5 (GS)0] and higher-gradient [GS 5 2(GS)0] regions.
Plus signs denote where staircases are preferred, and
minus signs where conventional intrusions are preferred.
If the existing large-amplitude steps in the low-gradient
region (left panel) induce growth at like wavenumber
m in the higher-gradient region, the latter disturbances
will develop as conventional intrusions (right panel, sol-
id dot).

Conversely, it seems plausible that under some con-
ditions intrusions established at a front will propagate
away from the front without altering their vertical scale
(Fig. 18b). In this case, if conventional intrusions are
preferred in the high-gradient region (right panel), in-
trusions having like m in the low-gradient region will
develop as staircases (left panel, solid dot). Both of these
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FIG. 18. Schematic illustration of two possible scenarios by which
steps could evolve laterally into conventional intrusions near ther-
mohaline fronts. Here the solid contours denote positive growth rates,
and dashed contours negative growth rates. Plus signs indicate (m, s)
where steps are favored on the basis of (5.10), and minuses where
conventional intrusions are favored. (a) Step size set by low-gradient
region. Suppose, for example, that an eddy leads to increased hori-
zontal gradients (increased GS). The existing steps in the low-gradient
region (left) might lead to intrusions at like m in the high-gradient
region (right; solid dot) even though growth rate is not maximized.
In this example, the intrusions in the high-gradient region would
develop as conventional intrusions. (b) Step size set by high-gradient
region. Suppose that the low-gradient region initially does not contain
intrusions, and that growing intrusions in the high-gradient region
(right) retain their characteristic m as they propagate into the low-
gradient region (left; solid dot). In this example, conventional intru-
sions in the high-gradient region would become steps in the low-
gradient region.

scenarios replicate the observed tendency for conven-
tional intrusions at a front to evolve into staircases away
from the front.

e. Discussion

The theory for thermohaline staircases developed in
this section appears able to account for a cutoff value
for Rr, as well as observed staircase properties. Predic-
tions and observations tend to be in closest agreement
when salt fingers are assumed not to appreciably con-
tribute to shear stress, when the turbulent Prandtl num-
ber is of order unity, and when turbulent mixing is very
weak (Kturb & 0.01 cm2 s21).

Such low turbulent mixing may not be implausible.
In the C-SALT staircase, turbulence due to breaking
internal waves is even weaker than the generally low
levels found elsewhere in the thermocline (Schmitt
1994), which can be ,0.1 cm2 s21 throughout large
regions (e.g., Polzin et al. 1997). Marmorino (1990)
concludes that turbulent mixing in this region increases
buoyancy flux 10%–20% over that of fingers acting
alone. The buoyancy mixing coefficient for fingering is

f f fK 5 (K 2 R K )/(1 2 R )r S r T r

(Shen 1995). For 5 0.063 cm2 s21 and 5 0.167f fK KT S

cm2 s21 (flux law MG with Rr 5 1.6), 5 20.112fKr

cm2 s21. Because Kr 5 Kturb under the assumed turbulent
flux law (equal mixing of T and S), Marmorino’s esti-
mate yields Kturb 5 0.01–0.02 cm2 s21. Turbulent mixing
coefficients as low as 0.01 cm2 s21 have been found in
the core of the Pacific Equatorial Undercurrent (Peters
et al. 1988).

While the comparisons in section 5c are encouraging,
it should be emphasized that they are based upon crude
estimates of hydrographic parameters from published
data. Estimates of GS and layer slope are especially un-
certain because they suppose uniform lateral gradients
across the staircase region and ignore possible along-
front contributions to slope. Gradients certainly are not
uniform in the Western Mediterranean (Krahmann 1997,
his Fig. 11), which may account for the relatively large
discrepancy between observed and predicted slopes
(Figs. 16c,d).

It should be emphasized that the above theory does
not account for baroclinic effects and that their likely
importance in the C-SALT region and Western Medi-
terranean has not been assessed. A stability theory for
intrusions that accounts for baroclinic shear has been
developed by May and Kelly (1997), and it should not
be too difficult to extend the procedure described in
section 5b to the baroclinic case.

Finally, the theory developed here does not explain
at least one observed property of staircases, the presence
of sublayering within fingering interfaces (Williams
1975; Marmorino 1989).

6. Summary and conclusions

This paper has sought to assess four hypotheses con-
cerning the origin of thermohaline staircases. The hy-
pothesis that staircases arise from double-diffusive in-
trusions was developed into a quantitative theory, con-
sistent with a number of observed staircase properties.
Using the stability theory of WR98, it was shown that
intrusions can evolve toward staircase configurations if
Rr and turbulent mixing coefficient Kturb are sufficiently
small. This is in accord with observations showing that
Rr & 1.7 and Kturb is unusually small in staircase regions.

In considering a range of parameter values and flux
prescriptions, turbulent diffusivities Kturb & 0.01 cm2

s21 and effective viscosities (5.12) that include no con-
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tribution from fingering tended to yield closest agree-
ment with observations. Quantities then predicted with
reasonable accuracy included step heights, lateral den-
sity ratios, layer slopes, and the threshold , althoughstairRr

such comparisons were based on rough estimates of
lateral gradients and slopes and could be improved.

Numerical solutions confirmed that staircases are vi-
able equilibria of intrusions. The equilibrated solutions
exhibit pronounced shears within the fingering inter-
faces (Fig. 12). These shears, coupled with the lateral
gradients in T and S, provide a means for maintaining
the large interfacial gradients, and might be observable.

The remaining hypotheses for staircase formation dif-
fer from the intrusion hypothesis in that they require
only vertical gradients to operate. The collective insta-
bility hypothesis of Stern (1969) and the multiple equi-
librium hypothesis are in accord with aspects of step
formation observed in the laboratory, but remain to be
linked convincingly to the fingering staircases observed
in the oceans. The negative density diffusion hypothesis
in its more realistic formulation (sec. 4b) resembles the
multiple equilibrium hypothesis in that finite-amplitude
disturbances are necessary to generate steps.

These one-dimensional mechanisms could be respon-
sible for the observed tendency of staircase interfaces
to form sublayers (Williams 1975; Linden 1978; Mar-
morino 1989), a phenomenon for which the intrusion
hypothesis as formulated here offers no explanation.

Although the intrusion hypothesis for staircases ap-
pears promising, more accurate and detailed observa-
tional comparisons should be undertaken. Further work
is also needed to improve prescriptions for fluxes and
to incorporate baroclinic effects, which have been ne-
glected here. Finally, it would be worthwhile to explore
the applicability of the intrusion hypothesis to staircases
in regions of diffusive convection.
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APPENDIX

Similarity Relations for Intrusions

It is shown here that when slope is small, solutions
to intrusion evolution equations (5.18)–(5.20) obey sim-
ple scaling relations with respect to changes in isohaline
tilt GS 5 S x/S z. In the limit s K 1, (5.18)–(5.20) become

Z 5 2u(T 2 S) 1 (AZ ) , (A.1)t z zz

T 5 2U(T 1 uT ) 1 (K T ) , (A.2)t x z T z z

S 5 2U(S 1 uS ) 1 (K S ) , (A.3)t x z S z z

to O(u2). Consider the transformation
21t → C t, (A.4)
21/2z → C z, (A.5)

u → Cu, (A.6)

T → CT , (A.7)x x

S → CS , (A.8)x x

T → T , (A.9)z z

S → S , (A.10)z z

21/2T → C T, (A.11)
21/2S → C S, (A.12)
21/2U → C U, (A.13)

Z → Z, (A.14)

which implies GS → CGS, and to which (A.1)–(A.3) are
invariant. Intrusion growth rate, slope, and wavenumber
thus obey

l } G , (A.15)S

u } G , (A.16)S

1/2m } G . (A.17)S

Similarly, the isopycnal flux and mixing coefficientisoF T

for heat obeyisoK T

iso 21F 5 U cosuT } G , (A.18)T S

iso iso 22K 5 F /T } G ; (A.19)T T x S

likewise for salinity. By contrast, the diapycnal fluxes
and mixing coefficients are independent of GS:

advF 5 U sinuT , (A.20)T

difF 5 K T cosu , (A.21)T T z

adv advK 5 F /T , (A.22)T T z

dif difK 5 F /T (A.23)T T z

(likewise for S), where ‘‘adv’’ denotes the effect of
along-intrusion advection, and ‘‘dif’’ the effect of small-
scale vertical mixing.
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