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ABSTRACT

This work provides the general theory of the volume and mass conservation in terms of its transport across
surfaces (open or closed) defined by a constant value of an oceanographic property obeying a balance law. This
fluid property can be any spatial density f (amount of quantity per unit volume), or its specific value [ aff̂
(amount of quantity per unit mass, where a is the specific volume). The main expressions obtained relate the
volume transport across a f -surface to the flux of the quantity (hf ) across the f -surface boundary, and the
mass transport across a -surface to the flux hf across the -surface boundary. These expressions differ, inf̂ f̂
general, from the volume and mass conservation of the f -surface, being however equivalent for closed (unlimited)
f -surfaces. The main expressions are generalized to the three-dimensional case, and the relation to previous
results is discussed.

1. Introduction

Volume and water mass conservation, and the bal-
ances of salt and heat play a primary role in the study
of oceanic processes, especially in those involving water
mass transformation due to interior mixing, sea surface
heating, and water mass fluxes (see, e.g., Walin 1982;
Tziperman 1986; Garrett et al. 1995; Garrett and Tandon
1997; Nurser et al. 1999). The main idea in these ap-
proaches is the application of balance laws and volume
or mass conservation to surfaces extending from the
upper ocean to the ocean interior, relating therefore flux-
es in the upper layer to interior processes like heat or
buoyancy diffusion.

The objective of this work is to find the most general
expressions for the volume and mass transport across
surfaces (open or closed) defined by a constant value
of an fluid property obeying a general balance law. This
fluid property can be any spatial density f (amount of
quantity per unit volume), or its specific value [ aff̂
(amount of quantity per unit mass, where a is the spe-
cific volume). As a consequence, this work solves some
mathematical problems arising in the analytical treat-
ment of volume and mass transport across arbitrary sur-
faces in the ocean, and clarifies some previous results
by putting them in a general framework where the re-
lation to the first principles becomes clear. For example,
we will prove that in this approach the selection of the
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fluid property obeying a balance law (potential density,
temperature, salinity, potential vorticity, etc.) is inde-
pendent of the underlying physical assumption of mass
or volume conservation and therefore any balance law
can be employed. We will also show that the expressions
obtained are not equivalent to the conservation of mass
or area (volume in the three-dimensional case) of the
f -surface.

2. Balance equations and f-coordinate surface

When measurements of some oceanographic field
f (x, t) (e.g., the temperature or salinity field) are avail-
able, it becomes useful to apply the general theory of
rates of change of integral expressions in arbitrary vol-
umes (see appendix A for the basic mathematical the-
ory) to the particular case where the arbitrary surfaces
are isosurfaces of the spatial density f, or isosurfaces
of the specific value In order to do so we define thef̂ .
velocity field w (introduced in a general way in appendix
A) by specifying that its component normal to a
f -surface equals the speed of displacement of that
f -surface, that is,

d fw 5 f 1 w · =f [ 0. (1), tdt

This equation defines only the component of w normal
to the f -surface. The component of w tangent to the
f -surface is set to zero (thus, w is completely defined
by the field f ). Let nf [ =f |=f |21 be the unit vector
normal to the f -surface. Thus, we define

wf [ 2f ,t |=f |21nf , (2)
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FIG. 1. Schematic showing the 2D orthogonal curvilinear coordi-
nate system (j, h).

and therefore the f -surfaces are material surfaces with
respect to the velocity wf . The label f in wf makes
explicit that there is a field wf for every fluid property
f, but there is only one fluid velocity field u. The def-
inition of the fluid velocity for a f -observer (an ob-
server moving with the field wf , or a wf-observer) reads
now v 5 u 2 wf . As a trivial example note that 5ḟḟ

0 ⇒ vf · nf 5 0, which implies, for example, that all
diapycnal fluxes of a incompressible fluid ( 5 0) areṙ
zero (isopycnals are material surfaces). With wf so de-
fined, the following relations hold:

ḟ 5 f 1 (w 1 v ) · =f 5 v · =f, (3a), t f f f

f 5 2w · =f. (3b), t f

Relation (3a) means that the rate of change of f in a
fluid particle is equal to the fluid advection relative to
the f -observer (for a f -observer the fluid velocity is
vf ) because f is constant in the places he occupies
during his own motion. Relation (3b), [equivalent to
(2)], means that the temporal change of f in a fixed
spatial point x is equal to minus the advection of f by
the wf field. Note that the absence of time derivatives
of f that follows when employing, say, 2wf · =f in-
stead of f ,t, is only apparent, since the temporal change
is included in the definitions of wf and vf .

Appendix A shows that the general balance equation
for f (x, t) can be written as (A8). Combining both the
general balance (A8) and (3a) we obtain, in the absence
of supply zf ,

v · =f 1 f= · u 5 2= · h , (4a)f f

rv · =f̂ 5 2= · h . (4b)f̂ f

For incompressible fluids, relation (4a) states that, at a
point x, the advection of f apparent to a wf-observer
equals the (minus) divergence of hf . Since = · hf (x, t)
can be interpreted as the flux of hf across the boundary
of the point x, integral expressions of (4) on arbitrary
curves and surfaces (next section) are related to fluxes
of hf across the boundary of these arbitrary curves and
surfaces. This concept is an expression of the one- and
two-dimensional (2D) versions of the divergence the-
orem. Furthermore, the incompressibility condition does
not need to be imposed if instead of (4a) we consider
specific quantities and use (4b). This latter option is
more general (it only assumes mass conservation) and
leads to expressions involving the transport of mass
across -surfaces.f̂

In order to integrate (4) over a f -surface it is useful
to establish an orthogonal curvilinear coordinate system
(n1, n2, n3) 5 [j(x, z), y, f (x, z)], in such a way that
=j · =f 5 0 (see Fig. 1). This orthogonal coordinate
system differs from the nonorthogonal coordinate sys-
tem that considers f as the vertical coordinate and (x, y)
remain unchanged (e.g., the density coordinate system
used by Tziperman 1986). The problems we shall con-
sider in the next section are, for simplicity, 2D [in the
(x, z) plane], and therefore functions do not depend on

y. However, we continue working in the three-dimen-
sional (3D) space (considering the y coordinate) in order
to use the general tools of the vector and tensor algebra.
The Jacobian of the transformation is J 5 |=f |21|=j|21.
Because of the orthogonality of the transformation the
reciprocal basis and tangent basis vectors are parallel:

1 2 3e 5 =j e 5 =y 5 j e 5 =f

22 1 2 22 3e 5 |=j | e e 5 e e 5 |=f | e ,1 2 3 (5)

and therefore the unit reciprocal-basis vectors and unit
tangent vectors coincide, nj [ ê1 5 ê1 5 |=j|21=j,ê2

5 ê2 5 j, nf [ ê3 5 ê3 5 |=f |21=f. The differential
arc length along the j-coordinate curve is dl(1) 5

dj 5 |=j|21 dj, and the differential area vector in21/2g11

the coordinate surface f 5 constant is

dS(3) 5 J=f dj dy 5 nf |=j|21 dj dy 5 nf dy dl(1).
(6)

Having set in this section 1) the general balance equa-
tion for f in terms of the fluid velocity vf relative to
a f -observer (4), and 2) the orthogonal curvilinear co-
ordinate system with f providing one of the family of
surfaces, we are now in a position to integrate (4) over
a f -surface and relate the volume and mass transport
(next section) across a f -surface to the vector flux hf .

3. Volume and mass transport

First, we assume the fluid is incompressible and ob-
tain the volume transport across a f -surface. In order
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to do so we multiply (4a) by |=f |21 dl(1) dy 5 J dj dy
and integrate on a f -surface. Using the expression of
the divergence of a vector field A in terms of its con-
travariant components Ai,

]
21 i= · A 5 J (JA ), (7)

i]n

we obtain

j2

v · dS(3)E E f

j y1

j2 ] ]
1 35 2 (Jh ) 1 (Jh ) dj dy. (8)E E [ ]]j ]f

j y1

(For clarity we drop momentarily the symbol f from
hf ). Since Jh1 5 |=f |21|=j|21h · e1 5 |=f |21h · nj, and
Jh3 5 |=f |21|=j|21h · e3 5 |=j|21h · nf , relation (8)
can be partly integrated,

j21 2Dy v · n dl(1) 5 2Dy[|=f | h · n ]E f f j j1
L (j ,j )f 1 2

j2 ]
212 Dy (|=j | h · n ) dj.E f]f

j1

(9)

Note that vf · nf dl(1) is the volume transport (by unit
distance in the y direction) across the differential surface
element dS(3). Here dl(1) is the distance measured on
the f -surface along the j-coordinate curve. Symbol
Lf (j1, j2) stands for the path on the f -surface from j
5 j1 to j 5 j2. In the most general case the limits j1

5 and j2 5 are arbitrary and thereforej̃ (f ) j̃ (f )1 2

depend on f (see Fig. 2a). Since these limiting func-
tions, and , must be specified for every case, wej̃ j̃1 2

can employ Leibniz’s rule to relate the integral of the
derivative to the derivative of the integral, and write the
second term on the right-hand side of (9) as

j̃ (f )2 ]
21(|=j | h · n ) djE f]f

j̃ (f )1

]j̃ ]j̃2 121 215 2 |=j | h · n 1 |=j | h · nf f[ ] [ ]]f ]fj5j j5j2 1

j̃ (f )2]
211 |=j | h · n dj. (10)E f]f

j̃ (f )1

Note that /]f 5 |=j|21=j · ]R1,2(f )/]f 521|=j| ]j̃1,2

nj · ]R1,2(f )/]f, where R1,2(f ) is the position vector of
the points in the limiting curves.

For limits j1 and j2 not depending on f (as in Fig.
2b) the first two terms on the right-hand side of (10)
can be removed and relation (9) is finally written (di-
viding by Dy) as

(j ,f )21 2v · n dl(1) 5 2[|=f | h · n ]E f f j (j ,f )1

L (j ,j )f 1 2

]
2 h · n dl(1). (11)E f]f L (j ,j )f 1 2

This equation is one of the main results of this work.
Note that it is independent of the parameterisation cho-
sen for the j-coordinate curves (this must be the case
because only f is a physically measurable field). Phys-
ically, relation (11) means that the volume transport
across a limited f -surface equals the flux of h across
the f -surface boundary in the (j, y, f ) space. The
boundary of the f -surface in this space is formed by
the two points [(j1, f ) and (j2, f )] plus the two limited
surfaces f 6 df 5 constant. This latter concept (the
flux of h across these two boundary surfaces) can be
understood by considering that

j (f )2]
f (f, j) djE]f

j (f )1

1j (f )2

21 15 lim (2df) f (f , j) djE[df→0 1j (f )1

2j (f )2

22 f (f , j) dj , (12)E ]2j (f )1

where f 6 [ f 6 df. In order to compute the second
term on the right-hand side of (11), choose two points
[(j1, f ) and (j2, f )] over any f -surface (see Fig. 3);
move normal from the f -surface to get the four points,
(j1, f 6) and (j2, f 6); integrate h · nf along the sur-
faces f 6 (curves in 2D space) from j1 to j2; compute
the difference; and divide by 2df. These arguments
show that (11) is in fact an expression of the divergence
theorem ( = · h dy 5 h · ds) applied to a curve.# )V ]V

Previous formulations related to this development are
derived and discussed in appendix B.

The physical dimensions of (11) are those of volume
transport (volume/time), and therefore (11) is indepen-
dent of the physical dimensions of the balanced quantity
f. In this sense (11) may be interpreted as an expression
for the volume conservation in terms of the volume
transport across a f -surface. If the divergence term in
(4) were kept in the previous development, we would
have obtained a relation similar to (11) (with some ad-
ditional terms) which, while not expressing volume con-
servation, would be a mathematical identity since no
constitutive equation for the flux h has been adopted.
Thus, the balance equation for f is used, in this de-
velopment, with the purpose of taking into account the
relative motion and geometry of the f -surfaces.

Relation (11) is however different from the expres-
sion of volume conservation of the f -surface (area con-
servation in the 2D case). This latter concept is instead
presented in the appendix A and is given by (A4). Ap-
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FIG. 2. Schematic showing (a) the f-surfaces limited by functions j1 5 and j2 5 , and (b) the f-surfaces limited by j-coordinatej̃ (f) j̃ (f)1 2

surfaces (C.S.).

FIG. 3. Schematic showing the volume transport across a limited
f -surface and the flux of hf across the f -surface boundary.

plied to wf , this means that the rate of change of the
f -surface volume (area) equals the volume transport,
across the f -surface boundary, of the incompressible
fluid. Both concepts are however related when the ar-

bitrary volume is defined by a closed (unlimited)
f -surface (or a number of closed f i-surfaces). In this
case we have

(A4)dwf dy 5 2 v · dS(3)E R fdt V (f ) ]V (f )

(11) ]
5 h · dS(3), (13)R f]f

]V (f )

meaning that the rate of change of the volume enclosed
by a f -surface equals the flux of hf across the f -surface
boundary.

A more general way of dealing with similar problems
is based on the conservation of mass instead of the
conservation of volume. This alternative approach starts
from the balance equation (4b), using therefore the spe-
cific field [ af instead of the spatial density f. Nowf̂

is the velocity of a fluid particle relative to the ob-vf̂

server moving with velocity on the surface 5w f̂f̂

constant. The relation equivalent to (11), and the second
main equation of this article, is

ˆ(j ,f )21 2rv · n dl(1) 5 2[|=f̂ | h · n ]ˆ ˆE f f f j ˆ(j ,f )1
L (j ,j )ˆ 1 2f

]
2 h · n dl(1).E f f̂]f̂ L (j ,j )ˆ 1 2f

(14)
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FIG. 4. Schematic showing a f -surface limited by two j- and
h-coordinate curves in the 3D space.

The first term on the left-hand side is the transport of
mass through the limited surface 5 const. The termsf̂
on the right-hand side are the flux of hf across the
boundary of the limited -surface. In an analogous wayf̂
to (11), relation (14) means that the mass transport
across a limited -surface equals the flux of hf acrossf̂
the -surface boundary. Note that, as long as the massf̂
of a fluid body is conserved and there is no supply zf ,
relation (14) is exact. However, it is apparent that most
applications of (14) require the density field be known.
The difference between (11) and (14) is important for
non-isochoric motions (divu ± 0), like compressible
phenomena in the ocean or in atmospheric applications
when spatial coordinates are used.

Relation (14) is different from the expression of mass
conservation of the fluid particles on the f -surface. This
latter concept is instead given by (A6), applied to ,wf̂

and means that the rate of change of the mass of the
fluid in the -surface (which, in general, is not a ma-f̂
terial surface, and therefore is not formed by the same
fluid particles at different times) equals the mass trans-
port, across the f -surface boundary, of the (mass-con-
served) fluid. Both concepts are again related when the
arbitrary volume is defined by a closed -surface (or af̂
number of closed -surfaces) byf̂ i

d (A6)wf̂ r dy 5 2 rv · dS(3)ˆE R fdt ˆ ˆV (f ) ]V (f )

(14) ]
5 h · dS(3), (15)R f]f̂ ˆ]V (f )

meaning that the rate of change of the mass in the vol-
ume enclosed by the -surface equals the flux of hff̂
across the -surface boundary.f̂

When the flux field hf and the f -surface are of a
full 3D nature the procedure given above must be
generalized by the establishment of an orthogonal cur-
vilinear coordinate system (n1 , n 2 , n 3 ) 5 [j(x, y, z),
h(x, y, z), f (x, y, z)]. Thus J 5 |=j|21 |=h|21 |=f |21 ,
dl(1) 5 |=j|21 dj, dl(2) 5 |=h|21 dh, dS(3) 5 J=f
dj dh 5 n f |=j |21 |=h |21 dj dh; 51Jhf

|=f |21 |=h|21 hf · n j , 5 |=f |21 |=j|21 hf · nh , and2Jhf

5 |=j|21 |=h|21 hf · nf . For control surfaces lim-3Jhf

ited by j- and h-coordinate lines, the generalization
of (11) is

j2

21v · dS(3) 5 2 |=f | h · n dl(2)E E f j[ ]
j1

h2

212 |=f | h · n dl(1)E f h[ ]
h1

]
2 h · n dl(1) dl(2), (16)E f f]f

meaning that the volume transport across a f -surface
limited by orthogonal coordinate surfaces j 5 j1, j 5

j2, h 5 h1, and h 5 h2, equals the flux of hf across
the f -surface boundary (see Fig. 4). The interpretation
of these terms is analogous to the 2D case. A relation
equivalent to (16) but for the mass transport [analogous
to (14)] may be also derived in a similar way.

4. Summary

This work has introduced the general theory of the
volume and mass conservation in terms of its transport
across isosurfaces (open or closed) of an oceanographic
quantity obeying a general balance law. In the volume
conservation case the moving surface (neither material
nor steady) is defined by a constant value of the spatial
density f and the general expressions obtained relate
the volume transport across the f -surface to the flux of
hf across the f -surface boundary. In the more general
case only mass conservation is assumed, the surface is
defined by a constant value of the specific quantity f̂
[ af, and the expressions relate the mass transport
across the -surface to the flux hf across the -surfacef̂ f̂
boundary. These relations [(11) and (14)], together with
the 3D generalisation (16), are the main results of this
work. These expressions differ in general from the ex-
pressions for the volume (or area) and mass conserva-
tion of the f -surface, being however equivalent for
closed (unlimited) f -surfaces.

Some previous results have been derived as particular
cases of the general theory, and have been clarified at
the light of the present generalization and interpretation
(appendix B). These previous results are not as complete
as the main relations (11) or (14). For example, the flux
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of h across the two points (j i, f ), i 5 1, 2, in (11),
seem never been simultaneously included in previous
developments. The general expression (10), valid even
when limits j1 and j2 depend on f, the mass transport
equation (14), and the 3D generalization (16), are, to
the best of my knowledge, also new.

The development introduced here makes also clear
that the selection of the fluid property obeying a balance
law is independent of the underlying physical assump-
tion of mass or volume conservation, and therefore any
balance law can be employed. Thus, the role of the flux
hf in this theory is to modify the geometry (shape,
gradients, and location) of the f -surfaces, the final ex-
pressions being independent of the physical dimensions
of the balanced quantity used. The final equations are
independent of the constitutive equation chosen for the
flux field hf , and the boundary conditions, being there-
fore a general development where many physical pro-
cesses (as interior diffusion and mixing, balance of po-
tential vorticity, balance of energy, etc.) can be consid-
ered.

APPENDIX A

Mathematical Preliminaries

This appendix introduces the mathematical tools for
dealing with rates of change of integral expressions in
arbitrary volumes, the general balance equations, and
the relevant curvilinear coordinate transformation. Let
the rate of change of a field A measured by an observer
at point (x, t) having a velocity c(x, t) be denoted by

dcA/dt [ A,t 1 c · =A, (A1)

where = is the 3D gradient operator, and A,t denotes the
partial derivative of A(x, t) with respect to time. Let u
be the fluid velocity field. For c 5 u we simplify duA/dt
5 dA/dt 5 Ȧ. For managing balance equations in in-
tegral form in arbitrary control volumes (i.e., neither
material nor steady) it is useful to employ the kinematic
identity

d d fw wf dy 5 1 f = · w dyE E 1 2dt dtV V

5 [ f 1 = · ( fw)] dy , (A2)E , t

V

[see Truesdell and Toupin (1960, section 81)]. The sym-
bol dw/dt indicates that the volume of integration V is
material with respect to the velocity w. The field w is
the velocity of the points that form the arbitrary volume
V. The balance equation for V is obtained from (A2)
for f 5 constant, (dw/dt)( dy) 5 = · w dy 5# #V V

w · ds, and states that the volume change equals the)]V

compression or expansion of the volume boundary. A
steady volume (w 5 0) is trivially conserved. The field
v [ u 2 w is the velocity of a fluid particle relative to

an observer having velocity w, that is, the fluid velocity
for a w-observer. From (A1) follows that dwf/dt 5 ḟ 2
v · = f, and therefore

d dw f dy 5 f dy 2 f v · ds, (A3)E E Rdt dtV V ]V

meaning that the rate of change of the extensive quantity
with spatial density f in an arbitrary volume equals the
rate of change of the extensive quantity in the fluid
particles in the arbitrary volume minus the flux of fv
(or transport of f ) relative to the moving boundary ]V.
The rate of change of volume in terms of v is obtained
from (A3) for f 5 constant.

For an incompressible fluid, = · u 5 0, = · w 5
2= · v, thus (d/dt) ( f dy) 5 ḟ dy , and therefore# #V V

(A3) reads (dw/dt)( f dy) 5 ḟ dy 2 fv · ds; that# # )V V ]V

is, the rate of change of f in an arbitrary volume is
related to the change of f in the fluid particles inside
the volume (ḟ ) minus the the f -transport relative to the
moving boundaries ( fv). For f 5 constant we have

dw dy 5 2 = · v dy 5 2 v · ds, (A4)E E Rdt V V ]V

which states that the rate of change of an arbitrary vol-
ume equals the (minus) volume transport (of an incom-
pressible fluid) relative to the moving volume. For a
material volume w 5 u, v 5 0, and therefore, for a
incompressible fluid, (A4) states that the volume of a
material element is conserved (dV/dt 5 V̇ 5 0).

The density of mass r is defined by M 5 dm 5#B

r dy , and mass conservation is#V

dM d
5 r dy 5 (ṙ 1 r= · u) dy 5 0,E Edt dt V V

ṙ 1 r= · u 5 0, (A5)

in integral and local form, respectively. Using (A3) with
f 5 r the mass conservation in an arbitrary volume
may be written as

dw r dy 5 2 rv · ds, (A6)E Rdt V ]V

which states that the rate of change of mass in an ar-
bitrary (changing) volume equals the (minus) mass
transport across the volume boundary.

Next, we consider some extensive fluid property F
5 # f dy having a spatial volume density f 5 f (x, t)
obeying the general balance equation

d
f dy 1 h · n ds 5 z dy . (A7)E E f E fdt V ]V V

The field f (x, t) is the spatial volume density of the
balanced quantity, hf (x, t) is the true flux vector, zf (x, t)
is the spatial volume density of the rate of supply of
the balanced quantity, and n is a unit vector normal to
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the surface boundary. A balance equation expresses the
time derivative of an extensive quantity contained in a
volume in terms of its flux through the boundary and
the external source of the quantity. With the concept of
mass available (a [ r21 is the specific volume) we
introduce also the specific value [ af, that is, thef̂
amount of the quantity per unit mass. The local form
of (A7) may therefore be written in the following equiv-
alent ways:

f 1 = · (fu 1 h ) 5 z , (A8a), t f f

ḟ 1 f= · u 5 2= · h 1 z , (A8b)f f

˙rf̂ 5 2= · h 1 z . (A8c)f f

Given the mass conservation (A5), Eqs. (A8b) and
(A8c), express the balance of the same quantity though
using different fields (the spatial density and the specific
value).

The previous results have been expressed in direct
vector notation in order to show their coordinate-free
nature. Now we assume that |=f | ± 0 (the f -surfaces
provide therefore a family of surfaces) and will con-
sider this set of f -surfaces as a new coordinate surface
family. In order to do this we establish a one-to-one
curvilinear transformation R(n1 , n 2 , n3): (x, y, z) 5
[x(n1 , n 2 , n3), y(n1 , n 2 , n3), z(n1 , n 2 , n3)], which can
be inverted (n1 , n 2 , n 3 ) 5 [n1 (x, y, z), n 2 (x, y, z),
n3(x, y, z)]. [This notation mimics that in D’haeseleer
et al. (1991) but note that n3 5 f.] There are three
families of coordinate surfaces (n i 5 constant, the other
two n j , nk variable), and three families of coordinates
curves produced when one coordinate n i is allowed to
vary while the other two, n j and nk , are held fixed.
Summation convection is implicit in repeated indices
(i, j, k), except for caret (^) indices. Tangent-basis vec-
tors (tangent to the n j coordinate surfaces) are e i [
]R/]n i , and unit tangent vectors ê [ |e ı̂ |21e ı̂ , where
|e i |21 is the scale factor. Reciprocal-basis vectors (per-
pendicular to the coordinate surfaces n i 5 ci) are e i [
=n i . The covariant and contravariant components of a
vector d are defined by di [ d · e i and di [ d · e i ,
respectively. The metric coefficients gij [ e i · e j , and
gij [ e i · e j ; g [ det[gij] 5 det[gij]21 . The Jacobian of
the coordinate transformation J 5 J(n1 , n 2 , n3) [
](x, y, z)/](n1 , n 2 , n3) 5 e1 · e 2 3 e3 5 (e1 · e 2 3 e3)21

5 g21/2 . The differential arc length along a coordinate
curve n i is dl(i) [ (gı̂ı̂)1/2 dn ı̂ 5 J |=n j 3 =nk| dn i (i,
j, k cyc 1, 2, 3). The differential element of area in the
coordinate surface n i 5 constant is dS(i) [ |e ĵ 3 e k̂ |
dn ĵ dn k̂ 5 J |=n i| dn j dnk ; and the differential area vector
dS(i) 5 |=n ı̂|21=n ı̂ dS(ı̂) 5 J dn j dnk=n i .

APPENDIX B

Relation to Previous Developments

Walin (1982) derived his basic equation for the heat
balance for a particular configuration of isotherms and

heat fluxes. In order to present in general terms his
procedure and relate it to the framework introduced here
we start from the balance (4a), = · u 5 0, and assume
that every f -surface at a fixed time t defines a volume
in such a way there is a one-to-one correspondence be-
tween f and the volume Ṽ(f, t). Since dy 5 J df dj
dy, volume integration of (4a) and use of dS(3) 5 J=f
dj dy leads to ## vf · dS(3) df 5 2# = · hf dy . Using
the divergence theorem,

v · dS(3) df 5 2 h · ds. (B1)EE f R f

Differentiating with respect to f (for a fixed time t), in
the 2D space (x, z), we obtain

]
v · dS(3) 5 2 h · ds. (B2)E f R f]f[]V](f ) []V](f )

The symbol []V](f ) denotes the boundary of V which,
though assumed a function of f, need not be a closed
f -surface. However, when the f -surface is only a small
part of the boundary of V this expression has redundant
information in the term on the right-hand side, caused
by the application of two (in part) inverse operations—
namely, 3D volume integration and partial differentia-
tion. Two-dimensional integration on the f -surface
leading to relation (11) is instead a more clear and direct
approach, expressing in an explicit way the flux of hf

across the f -surface boundary. Walin’s (1982) main re-
sult is a particular case of relation (B2). He used the
thermodynamic equation with Ṫ 5 2= · hT to obtain a
relation between sea surface heat flow and volume trans-
port across isotherms. The 2D control volume used in
Walin’s derivation consists in four surfaces (S1, . . . ,
S 4), two of them are isotherms (T1 and T3), one vertical
deep surface S 4, and one horizontal upper surface S 2.
It is assumed that the heat flux hT(S 4) 5 hT(S 3) 5 0.
Thus (B1) applied to the present case is

T1

v · dS(3) dT9 5 2 h · dsEE R T

T3

5 2(H 1 H ), (B3)1 2

where Hn [ hT · ds is the heat flux through surface#Sn

Sn. Denoting G [ vT · dS(3), Walin’s (1982) main#T5T1

eq. (2.7), G 5 2 , is derived in2[]H /]T] []H /]T]1 T 2 T1 2

a simple way.
Garrett et al. (1995) and Garrett and Tandon (1997)

deal with water mass formation and surface fluxes of
volume and heat in terms of mean flow and averaged
buoyancy. Buoyancy b [ 2g(r 2 ro)/ro, where g is
the acceleration due to gravity, and ro is a constant
reference density. It is assumed that the fluxes corre-
spond to the averaged flow u . The decomposition used
is b 5 b 1 b9, u 5 u 1 u9, with b9 5 0 and u9 5 0.
The averaged buoyancy balance is
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b ,t 1 u · =b 1 b= · u 5 2= · (b9u9).

A constitutive equation for = · (b9u9) of the form
kE= · (=b) 5 2= · (b9u9), where kE is the buoyancy
eddy diffusivity, is also introduced. We proceed for the
averaged buoyancy b in a similar way to that used for
f and define the velocity of b -surfaces w b̄ 5
2b ,t |=b |21nb̄, so b /dt 5 0, and vb̄ [ u 2 wb̄. Sincedwb̄

the average operator and partial spatial derivatives are
assumed to commute, incompressibility implies = · u
5 0. Assuming that 1) the flux at the ocean surface (hs

[ hb̄ · nb̄) is given by sea surface heating and fresh water
transport (evaporation minus precipitation), and 2) the
flux in the ocean interior is given by the constitutive
equation for = · (b9u9) above, so that 2nb̄ · b9u9 5
kEnb̄ · =b 5 kEdb /dnb̄, where d( )/dn [ n · =( ) is the
directional derivative in the direction of n, and defining
A [ # vb̄ · nb̄ dl(1), and D [ 2# kEdb /dnb̄ dl(1), we
obtain, from (11), Garrett et al. (1995)’s main Eq. (1.3),
A 5 hs 2 ]D/]b , as a particular case of (11)212|=b |s

and with no approximations regarding the control vol-
ume.
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