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ABSTRACT

The horizontal property flux induced by tides is examined by both analytical and numerical models. It is
found that this flux is highly heterogeneous in the vertical and may be directed up the mean gradient near the
bottom. This countergradient tidal flux is a consequence of differing boundary conditions satisfied by velocity
and property fields, and hence a robust feature. The corresponding tidal diffusivity is substantial where tides
are strong and hence potentially important in the mean property balance.

1. Introduction
Tidal fronts are ubiquitous in coastal oceans. Prom-

inent examples include that over the Georges Bank off
the northeastern United States, which may extend to the
outer shelf because of strong tides. How properties
might be transported across a frontal boundary is a sub-
ject of longstanding interest because of its implications
on biological productivity and dispersal of pollutants,
among others. Studies on the cross-frontal exchange of-
ten focus on advection by the mean motion (e.g., Loder
and Wright 1985), with less attention paid to tide-in-
duced fluxes. These fluxes play a key role in studies of
shear dispersion by oscillatory flows (e.g., Okubo 1967;
Smith 1982), which however generally consider verti-
cally averaged fields. We undertake to examine the ver-
tical structure of tidal-induced property fluxes and show
that they are highly heterogeneous, and may in fact be
countergradient locally.

For the organization of the paper, we consider in sec-
tion 2 a simple analytical model to elucidate the basic
physics of tide-induced property flux. Solution from a
primitive-equation numerical model is presented in sec-
tion 3 to corroborate analytical results. The importance
of this tide-induced flux is assessed in section 4.

2. Analytical model
For simplicity, let us consider a cross-shore plane on

which a mean property field has vertical isolines (Fig.
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1), and which is subject to a cross-shore tidal current.
A Cartesian coordinate system is used with x and z axes
pointing shoreward and upward respectively. For con-
venience of discussion, we use temperature as a proxy
for the property field, which increases shoreward. With
‘‘prime’’ and ‘‘overbar’’ denoting tidal and mean var-
iables respectively, let us consider tidal fields governed
by the equations:

21u9 5 2r p9 1 k*u9 , (2.1)t 0 x zz

T9 1 u9T 5 k*T9 , (2.2)t x zz

where subscripts indicate partial derivatives, and k*, a
vertical diffusivity, is assumed constant and applied to
both momentum and property fields. For simplicity, we
have neglected earth’s rotation, which does not affect
the basic mechanism. The earth’s rotation is included
in the numerical solution to be shown later. We have
also neglected stratification so that the pressure gradient
is vertically uniform and constitutes the external forcing
for the tidal current. This tidal current interacts with the
mean thermal gradient, which causes in turn temperature
fluctuations. To isolate the tidal effect, we impose the
boundary conditions that

u9 5 0 at z 5 0, (2.3)

u9 5 0 at z 5 H, and (2.4)z

T9 5 0 at z 5 0, h. (2.5)z

That is, the surface is free of both stress and heat flux,
and the bottom is nonslip and insulating. Given the local
tidal forcing and mean thermal gradient T x, (2.1)p9x
through (2.5) can be solved at any x for the tidal fields
u9 and T9, which can then be used to calculate the tidal
flux u9T9 .

Before we proceed with the solution, it is trivial to
see that, when vertically integrated, this tidal flux is
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FIG. 1. The model configuration for the analytical model, in which
a cross-shore tidal current interacts with a mean property field having
vertical isolines.

FIG. 2. Analytical solution for the case of k 5 0.01: (a) amplitude,
(b) phase, and (c) the tidally induced horizontal flux.

downgradient, as one would expect from the second law
of thermodynamics. Multiplying (2.2) with T9, and av-
eraging it over a tidal cycle, one obtains

u9T9 T 5 k*T9T9 , (2.6)x zz

which can be integrated vertically to yield [using the
boundary conditions (2.5)]

H H

2T u9T9 dz 5 2k* (T9) dz , 0. (2.7)x E E z

0 0

The two terms on the lhs are thus opposite in sign, or
the vertical-averaged flux is directed down the mean
gradient. We shall see later however, this tidal flux is
highly heterogeneous in the vertical, and may reverse
sign locally.

For convenience of the derivation, the variables are
henceforth nondimensionalized according to following
rules: z by the local water depth H, t9 by s21 (s being
the tidal frequency), u9 by [u9] [ s21 | | (the ab-21r p90 x

solute sign indicates the amplitude), and T9 by [T9] [
s21[u9]T x. Defining the dimensionless diffusivity

k 5 k*(sH 2)21, (2.8)

and expressing the tidal fields as complex variables of
the form

2itu9 5 U(z)e , (2.9)
2itT9 5 T(z)e , (2.10)

the governing equations become

2iU 5 2i 1 kU , (2.11)zz

2iT 1 U 5 kT , (2.12)zz

with boundary conditions

U 5 0 at z 5 0, (2.13)

U 5 0 at z 5 1, and (2.14)z

T 5 0 at z 5 0, 1. (2.15)z

For convenience, we have set the phase of the tidal
forcing to be such that U is real in the absence of friction.
The solution for U can be derived from (2.11), (2.13),
and (2.14), which can be substituted into (2.12) to obtain
a solution for T subject to the boundary conditions
(2.15). The analytical solution of U and T is given in
the appendix. Once the tidal fields are obtained, the tidal
flux of heat can be calculated through the expression

1
u9T9 5 Re{UT*}. (2.16)

2

It is seen that the only dimensionless parameter that
enters the governing equations (2.11) through (2.15) is
the dimensionless diffusivity k, which measures the im-
portance of vertical mixing. We have plotted in Fig. 2
the solution for the case of k 5 0.01. The e-folding
scale of the general solution (see appendix) is (2k)1/2 5
0.14, which characterizes the height of the bottom
boundary layer. As expected, the amplitude of tidal cur-
rent is approximately unity in the interior, and decreases
to zero at the bottom through the frictional boundary
layer (Fig. 2a). It is interesting to note that the tidal
current exhibits an upward phase propagation in the
frictional boundary layer (Fig. 2b), consistent with pre-
vious studies (see, e.g., Fig. 4 of Loder and Wright
1985). This can be understood by noting that the general
solution to (2.11) has a nonhomogeneous boundary con-
dition at the bottom (see appendix), the signal of which
thus propagates upward. Physically, in the bottom
boundary layer, the tidal forcing is partially balanced
by the stress acting on the instantaneous velocity, while
in the interior the tidal forcing merely accelerates the
flow which thus lags behind the flow near the bottom.
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FIG. 3. Tidal heat flux as a function of the dimensionless diffusivity
k and height above bottom, calculated from the analytical solution.

The total phase range should be within a quadrant or a
few tens of degrees, as indicated in the figure.

Since the temperature signal is caused by the tidal
current advecting the mean thermal gradient (2.12), its
amplitude would mimic that of the tidal current were
there no vertical mixing, which accounts for its general
trend of an upward increase (Fig. 2a). But because the
temperature fluctuation satisfies the zero-gradient rather
than zero-amplitude condition at the bottom, its ampli-
tude diminishes less severely than that of the tidal cur-
rent in the bottom boundary layer. Nonetheless, this
nonuniformity in the amplitude would cause a diffusive
heat flux in the bottom boundary layer, which is down-
ward (upward) during the warm (cool) cycle. Consid-
ering that the bottom is insulating, this heat flux would
cause a downward phase propagation in the bottom
boundary layer, opposite to that of the tidal current (Fig.
2b).

Since the two phase curves cross each other where
the temperature gradient has a maximum [i.e., where
the rhs of (2.12) vanishes so that the two fields are in
quadrature], the horizontal heat flux thus is positive
(countergradient) below this point and negative (down-
gradient) above, as indicated in Fig. 2c. Outside the
influence of the bottom mixing, the phase curve of tem-
perature must reverse slope so as to merge with that of
the tidal current in the interior. There however could be
a slight overshoot near the surface, resulting in a small
positive heat flux. We have also calculated the solution
(not shown) when k is sufficiently large (say, of unity)
that the whole water column is diffusive. As expected,
the amplitude variation in both tidal current and tem-
perature is lessened, and this is more so for the tem-
perature field for the reason given above. Also the phase
propagation for both fields becomes less distinct, re-
sulting in a much-reduced tidal flux.

The analytical solution has thus shown that horizontal
heat flux induced by tides is highly nonuniform in the
vertical and can have both signs. Near the bottom, in
particular, this heat flux is directed up the mean gradient.
To explain this physically, let us imagine we are at the
peak of the ebb cycle, so that the tidal current is directed
offshore, which causes the local temperature to rise,
reaching a maximum a quarter cycle later. Since the
magnitude of the temperature change mimics somewhat
that of the tidal current, there would be a downward
diffusion of heat, causing the temperature to rise above
the insulating bottom. This warming reaches a maxi-
mum another quarter cycle later, by which time the tidal
current has reversed, or a warm anomaly is correlated
with an onshore current. Similarly in the next half of
the tidal cycle, a cold anomaly is correlated with an
offshore current, so that the net flux averaged over a
tidal cycle is countergradient. Farther up the water col-
umn, above the point of maximum temperature gradient,
the same argument leads to a tidal flux of the opposite
sign.

For a further examination of the tidal flux, its vertical

distribution is calculated and plotted in Fig. 3 as a func-
tion of the tidal diffusivity k. In the inviscid limit, the
heat flux vanishes since temperature and current fluc-
tuations are in quadrature (as the bottom boundary layer
is infinitely thin). As k increases, the nonzero heat flux
begins to emerge in the bottom boundary layer, which
grows to occupy the whole water column when k reach-
es O(0.1), and heat flux attains a maximum of O(0.1).
As k increases further, the heat flux begins to diminish
and approaches zero as vertical mixing erases the ver-
tical phase propagation. We have so far considered an
analytical model to elucidate the basic mechanism for
the countergradient tidal flux. We shall next present the
solution from a primitive-equation numerical model,
and show that it corroborates the analytical results.

3. Numerical solution

The numerical model used is a primitive-equation
model based on second-moment turbulence closure and
which solves interactive thermal and dynamical fields
(Chen and Wang 1990). For the present purpose, the
model is configured on a two-dimensional cross-shore
plane as shown schematically in Fig. 4, with horizontal
and vertical grid spacing of 2 km and 3 m, respectively.
The boundary conditions at the top and bottom surfaces
are the same as that of the analytical model except a
stress condition (instead of nonslip) is applied at the
bottom. At the inshore boundary, velocity has zero nor-
mal-gradient, and temperature is set at a fixed value of
128C, which provides a buoyancy source for the gen-
eration of the thermal front. At the offshore boundary,
zero normal-gradient condition is imposed for both ve-
locity and temperature. At t 5 0, the whole fluid except
that near the inshore boundary is set at 68C, which merg-
es linearly to the boundary value of 128C over six grids,
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FIG. 4. Contours of (a) mean temperature and (b) vertical diffusivi-
ty, calculated from the numerical model. FIG. 5. Same as Fig. 4, but for the amplitude of (a) the tidal cur-

rent and (b) temperature.

FIG. 6. Same as Fig. 4, but for the phase of (a) the tidal current
and (b) temperature.

and tidal current is switched on by imposing a periodical
surface at the offshore end that is of semidiurnal fre-
quency. The amplitude of the forcing is adjusted so that
the maximum tidal current (i.e., at the shallow end) is
about 1 m s21. The topography and the tidal amplitude
used are intended to be representative of that over
Georges Bank. The strong tidal mixing over the shallow
shelf causes the initially sharp temperature gradient at
the inshore boundary to smooth out and move offshore
until it reaches the shelf break when a quasi-steady state
is established (after about 300 days).

The mean thermal field of this state is plotted in Fig.
4a, which exhibits a frontal structure, accompanied by
an along-shore mean flow (not shown) that reaches 30
cm s21 at the surface. The vertical diffusivity is plotted
in Fig. 4b, which decreases rapidly offshore near the
shelf break as the tidal current weakens. It shows a
secondary maximum offshore because of vanishing
stratification (hence reduced Richardson number).

The amplitude of tidal current is plotted in Fig. 5a.
As expected, the tidal current intensifies shoreward as
bottom shoals because of continuity. Its amplitude is
vertically uniform in the interior but diminishes down-
ward within the friction boundary layer, the top of which
thus as marked by the dashed curve. For the particular
case considered here, it is seen that the whole shelf is
frictional. The amplitude of the temperature field is plot-
ted in Fig. 5b. Since the temperature signal is generated
by tidal current advecting the mean thermal gradient, it
is largely confined to the frontal zone. Its amplitude is
vertically uniform in the interior, just as the tidal current,

but its reduction in the boundary layer is considerably
less distinct, as explained earlier.

The phase of the tidal current is shown in Fig. 6a.
Consistent with the analytical solution, the signal prop-
agates upward, which is particularly prominent where
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FIG. 7. Same as Fig. 4, but for the tide-induced horizontal heat flux.

there is a distinct frictional boundary layer. Over the
shelf, large vertical mixing has erased the phase prop-
agation. The phase for the temperature field, which has
been displaced by 908, is shown in Fig. 6b. It has a
similar pattern as that of the tidal current except near
the bottom where the direction of phase propagation is
reversed, just as predicted by the analytical solution
(Fig. 2).

Because of this difference in phase distribution, the
heat flux, as plotted in Fig. 7, shows a positive value
(countergradient) near the bottom and negative above,
consistent with the analytical solution. Since k used in
Fig. 3 increases with enhanced vertical diffusivity and
shoaling bottom (2.8), the progression of k in Fig. 3
can be compared with the shoreward progression in Fig.
7. The qualitative agreement of the two is readily seen,
including the presence of a small positive heat flux near
the surface.

For quantitative comparison of the two, however, one
is mindful of the differences of the two models, in-
cluding a constant diffusivity and nonslip condition used
in the analytical model. Despite these differences, one
still expects the two heat fluxes to be of the same order
of magnitude. As an example, let us select the location
120 km offshore in the numerical model where the depth
is about 100 m, and an average diffusivity k* is about
100 cm2 s21, which yields k 5 7 3 1023 [from (2.8)].
Based on Fig. 3, one estimates a maximum countergra-
dient heat flux of about 0.03. To translate this into di-
mensional value, we estimate from Fig. 5 amplitudes
for tidal current and temperature (at the surface, which
define the scales) to be 50 cm s21 and 0.58C, respec-
tively, so that the above heat flux corresponds to a di-
mensional value of 0.758C cm s21. When compared with
Fig. 7, this value is of the same order. These compar-
isons suggest that the analytical model has captured the
essential features exhibited in the numerical model, the
latter of which thus can be explained by the physical
mechanism discussed earlier.

4. Discussion

The obvious question is the significance of this tidally
induced flux. One way to assess its importance is to

calculate the effective tidal diffusivity defined by thek*T
expression

u9T9 5 2k*T . (4.1)T x

As an example, let us choose the same upper-slope lo-
cation as above (i.e., 120 km offshore) where the on-
shore heat flux has a magnitude of about 0.58C cm s21

and the mean temperature gradient is about 0.18C km21.
Substituting these values into (4.1), one obtains a tidal
diffusivity of about 25 3 105 cm2 s21. Its magnitudek*T
is greater than values typically used in coastal models
(the value used in our numerical model is 2 3 105 cm2

s21. But more importantly, it is negative.
Another way to assess its importance is to compare

its effect with that of mean advection. Let L and U
denote characteristic scales of the frontal width and
mean cross-frontal velocity, respectively, then the time-
scales associated with tidal diffusion and mean advec-
tion are given by ( )21L2 and U21L, respectively. Thek*T
relative importance of the two can be measured by their
ratio, or the Peclet number ( )21UL. Using the abovek*T
value of tidal diffusivity and a frontal scale L of O(10
km), the Peclet number is of O(1) or smaller if U #
O(0.5 cm s21). Since the latter typically characterizes
the magnitude of the mean cross-frontal velocity (e.g.,
Houghton 1997), the mechanism discussed here could
be comparable to the mean advection for the tidal regime
considered here.

This tidal diffusivity obviously depends strongly on
the tidal amplitude. To assess this dependence from the
analytical solution, one derives from (4.1) and the scales
used to nondimensionalize heat flux that

21 2k* 5 2u9T9s [u9] , (4.2)T

where u9T9 is the nondimensionalized heat flux shown
in Fig. 3. One notes first of all that although a nonzero
tidal heat flux requires the presence of a mean thermal
gradient—the reason that it is largely confined to the
frontal zone in Fig. 7—the tidal diffusivity is indepen-
dent of the mean thermal field since the latter does not
enter the nondimensionalized heat flux. In other words,
tidal diffusivity is a function of the tidal amplitude,
independent of the mean field.

Second, the tidal amplitude affects the tidal diffusiv-
ity through both its explicit appearance in (4.2) and its
effect on u9T9 (through k* and hence k). Based on Fig.
3 however, this latter effect is small over a wide range
of tidal amplitude: the maximum u9T9 is of O(0.05)
ranging from the weak-tide case when the frictional
boundary layer spans a small portion of the water col-
umn, up to the case when the frictional boundary layer
begins to fill up the whole water column. Within this
wide range, the tidal diffusivity thus is roughly quadratic
in the tidal amplitude. The value estimated above over
the upper slope therefore can be considerably greater
farther inshore where tidal current is stronger, possibly
augmenting its importance.

We have used temperature merely as a proxy for pas-
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sive properties that are conserved. The transport of such
property across frontal boundary has received renewed
interest on account of newly acquired data. Monitoring
dye concentration at the foot of a shelf-break front,
Houghton (1997) found that the front poses a significant
barrier for its transport in the bottom boundary layer,
consistent with model simulation of Chapman and Lentz
(1994), which contains no tides. Could the countergra-
dient flux discussed here provide an additional mech-
anism that inhibits tracer dispersion in the bottom
boundary layer? When attempting observational vali-
dation of this countergradient heat flux, one is mindful
of many other contributors to the observed flux, and the
fact that this flux stems from vertical mixing which
invariably acts to lessen its differential effect on the
mean fields.
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APPENDIX

Tidal Solution

The solution to (2.9) is

U 5 1 1 1 ,r z r z1 2a e a e1 2 (A.1)

where

21/2r 5 (2k) (1 2 i), (A.2)1

21/2r 5 2(2k) (1 2 i), (A.3)2

and the two integration constants a1 and a2 are deter-
mined by the boundary conditions (2.11) and (2.12) to
be

r r 21 r1 2 2a 5 (r e 2 r e ) r e , (A.4)1 1 2 2

r r 21 r1 2 1a 5 2(r e 2 r e ) r e . (A.5)2 1 2 1

Substituting (A.1) into (2.1), and using the boundary
condition (2.13), one derives the solution for T of the
form

T 5 Tp 1 1 ,r z r z1 2b e b e1 2 (A.6)

where TP is the particular solution given by

z
r z r z1 2T 5 2i 1 (a e 2 a e ), and (A.7)P 1 2k(r 2 r )1 2

1
b 51 r r1 2kr (r 2 r )(e 2 e )1 1 2

r r r2 1 23 {a [e 2 (r 1 1)e ] 1 a r e }, (A.8)1 1 2 2

1
b 52 r r1 2kr (r 2 r )(e 2 e )2 1 2

r r r1 1 23 {a r e 1 a [e 2 (r 1 1)e ]}, (A.9)1 1 2 2
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