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ABSTRACT

A two-dimensional time-dependent model of a wind-driven coastal polynya is presented. The model combines
and extends previous one-dimensional time-dependent and two-dimensional steady-state flux formulations. Given
the coastline geometry, and the time-varying surface winds and heat fluxes as free parameters, the model calculates
the growth rate, distribution and motion of frazil ice within the polynya, and the mass fluxes of frazil ice and
consolidated new ice at the polynya edge. The difference between these two mass fluxes determines the velocity
of the polynya edge at all times and, hence, its evolution. Analytical solutions are found for the special case
when the coastline is a straight line segment of finite length D (an idealization of an island) and the forcing
fields are spatially uniform and constant in time. Two timescales and two spatial scales are shown to be important
in characterizing the shape, size, and evolution of the polynya: the consolidated new ice and frazil ice timescales,
tce and tfe, respectively, and the offshore and alongshore adjustment length scales, Roe and Rae, respectively. The
timescale tce is the time required for the polynya to grow ice of thickness equal to the collection thickness of
frazil at the polynya edge. The timescale tfe is the time it takes frazil to cross the equilibrium width of the
polynya, which is, in turn, determined by the length scale Roe. In combination, tce and tfe control the timescale
for the polynya to respond to variations in the forcing. The length scale Rae is the distance that the angle between
the consolidated new ice and frazil ice drifts spans along the equilibrium polynya edge. This length scale measures
the sensitivity of the polynya edge to alongshore variations in the coastline geometry and, in particular, to its
total extent. It is shown that if Rae is comparable to D, then the offshore dimension of the polynya and the
timescale for the polynya to reach equilibrium can be very different from those obtained from a one-dimensional
formulation. The model is applied to the study of seasonal and short-term variability of the St. Lawrence Island
polynya, in the Bering Sea.

1. Introduction

A feature of the sea ice cover over shallow coastal
areas is the appearance of wind-driven polynyas, regions
of partially ice-free waters that form between the coast-
line and the ice pack as a result of the wind-driven
offshore advection of ice. As the the pack is pushed
away from the coast, an area of open water is left behind
in which frazil ice formation occurs. Because the coastal
shelf is not very deep, the entire water column is usually
near the freezing point and no oceanic heat flux is sup-
plied from below. Frazil ice growth rates over the po-
lynya region can therefore be very large (up to several
meters of ice per year; Schumacher et al. 1983). The
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frazil ice created is also transported downwind and it
eventually collects along the trailing ice floes at the
polynya edge. The size and shape of the polynya are
governed by the balance between the export of new ice
out of the polynya and the production of frazil ice within
the polynya. Wind-driven polynyas tend to form recur-
rently in specific locations of the Arctic Ocean, the sub-
Arctic seas, and the Southern Ocean. Depending on the
coastline geometry and the environmental conditions,
their widths range from hundred or thousands of meters
to a hundred kilometers (Smith et al. 1990).

Wind-driven polynya models developed to date fall
into two categories, namely, grid models and flux bal-
ance models. Grid models employ finite difference for-
mulations of sea ice thermodynamics and dynamics in
order to determine the ice growth and motion in the area
of the polynya (e.g., Lynch et al. 1997; Fichefet and
Goosse 1999). On the other hand, flux balance models
are based on the idea of Lebedev (1968) that the balance
between the flux of frazil ice produced in the polynya
and the wind-driven offshore divergence of ice governs
the location of the polynya edge. These kind of models
are the subject of our present study.
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FIG. 1. Diagrams illustrating the polynya model in the one-dimensional (a) and two-dimensional
cases (b). The frazil ice growth rate is F in the area of nearly open water adjacent to the coast,
the polynya (i), and is transported with velocity u toward the polynya edge. The thickness of
frazil ice is denoted by h. Frazil ice arriving at the polynya edge, C(R, t) 5 constant, piles up
to a thickness H and moves into the consolidated new ice region (ii) with velocity U. In (b), the
dotted lines represent frazil ice trajectories.

We distinguish two regions in a wind-driven coastal
polynya (Fig. 1a): (i) an inner region of nearly open
water where frazil ice grows and (ii) an outer region
surrounded by first-year ice pack and occupied by a mat
of consolidated new ice and young ice floes that have
formed by accretion of frazil ice arriving from region
(i). We will refer to region (i) as the ‘‘polynya,’’ proper,
and the boundary between regions (i) and (ii) will be
termed the ‘‘polynya edge.’’ The goal of a flux model
is to predict the location and temporal evolution of the
polynya edge.

Based on the flux balance principle, Pease (1987)
introduced a one-dimensional time-dependent model of
a wind-driven polynya. In this model, all the frazil ice
produced within the polynya is assumed to be instan-
taneously collected at the polynya edge. In other words,
the net frazil ice production in the polynya is exactly
balanced by the net flux of ice out of the polynya, namely

dR
FR 5 H U 2 , (1)1 2dt

where F is the frazil ice production rate (volume of ice
grown per unit area per unit time), R is the polynya
width, and H and U are the collection thickness of frazil
ice and the consolidated new ice velocity at the polynya
edge, respectively. In (1), it is assumed that the frazil
ice growth rate within the polynya is spatially uniform.
Ou (1988) extended the previous model to include a
finite drift rate for frazil ice. In this case, an equation
for dR/dt is derived by exploiting the balance between
the fluxes of frazil ice and consolidated new ice at the
polynya edge:

dR dR
h u 2 5 H U 2 , (2)R R1 2 1 2dt dt

where hR and uR are the frazil ice depth and the frazil
ice velocity at the polynya edge, respectively. If the
frazil ice velocity field is specified, hR can be obtained
from the continuity equation for frazil ice depth, h, sub-
ject to the boundary condition h 5 0 at the coast.

The theory of Pease (1987) provides expressions for
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the steady-state width and the equilibrium timescale of
a polynya under constant forcing. The steady-state po-
lynya width is Roe 5 HU/F. The equilibrium timescale
is a small multiple (3 or 4, say) of tce 5 H/F, which is
simply the e-folding time implied by (1). This timescale
is of the order of several hours to one day. Pease tested
the model for winter conditions in the Bering Sea and
reached two major conclusions: (i) the polynya width
is only moderately sensitive to wind speed since both
ice drift and frazil ice production vary linearly with the
wind stress magnitude and (ii) the polynya width is very
responsive to surface air temperatures. The latter is due
to the fact that air temperatures strongly affect the frazil
ice production but not the ice drift (e.g., colder air leads
to larger ice growth and a smaller polynya for a given
wind). Ou (1988) showed in turn that, when a finite
frazil ice drift is taken into account, (i) the time required
for the polynya to reach equilibrium is shorter than in
the formulation of Pease (1987) and that (ii) normally
a polynya is in approximate equilibrium with synoptic
(of the order of days) atmospheric variations and its
width is therefore reasonably described by the steady-
state polynya width.

The one-dimensional model of Pease (1987) has been
applied in a number of studies. Mysak and Huang (1992)
used the model to simulate the formation and mainte-
nance of the North Water polynya. They coupled the
Pease (1987) model to a reduced-gravity ocean model,
and showed that, in addition to the short-period time-
scale tce, a second long-period timescale (of the order
of weeks) exists, associated with the influence of oce-
anic heat flux on the frazil ice production rate. Markus
and Burns (1995) discussed satellite-derived estimates
of the location and extent of a polynya near Halley Bay,
Antarctica, and compared them with the theory of Pease
(1987). The model exhibited reasonable skill in repro-
ducing the area fluctuations of the polynya. Kozo et al.
(1990) used a purely advective polynya model in which
the polynya size is the product of the consolidated ice
velocity and the duration of an offshore wind episode.
Their analysis suggested that polynya size is reasonably
well correlated to observed geostrophic winds over the
Bering Sea.

A two-dimensional steady-state polynya flux model
was discussed by Darby et al. (1994). They assumed
that the frazil ice moves at a fixed angle to the right of
the surface wind and with a speed proportional to the
wind speed. This polynya model was coupled to a re-
duced-gravity ocean model and used to determine the
area of the North Water polynya. The coupled model
did not take into account the influence of ocean currents
on frazil ice motion. The general theory for a two-di-
mensional steady-state polynya flux model was ex-
pounded by Darby et al. (1995). The steady-state po-
lynya edge is described by the curve C(R) 5 const,
where R is the position of a point of the polynya edge.
The polynya edge is determined by requiring the normal

fluxes of frazil and consolidated new ice across the po-
lynya edge to be in balance:

nC · (HU 2 hCuC) 5 0, (3)

where nC is a unit vector perpendicular to the polynya
edge, and H, U, hC, and uC are the collection thickness
of frazil ice, the consolidated new ice velocity, the frazil
ice thickness, and the frazil ice velocity at the polynya
edge, respectively. As in the one-dimensional case, if
the frazil ice velocity field is known over the entire
domain, hC can be determined by solving the continuity
equation for frazil ice depth, h, inside the polynya, with
h 5 0 at the coast.

In addition to the offshore equilibrium length scale,
Roe, the two-dimensional theory introduces an along-
shore adjustment length scale, Rae, which is proportional
to Roe but which also depends on the directions of drift
of frazil and consolidated new ice relative to each other
and to the coastline. Darby et al. (1995) showed that
the polynya edge shape is insensitive to coastline fea-
tures with length scales smaller than Rae. In Darby et
al. the frazil ice motion was prescribed to be rectilinear.
Willmott et al. (1997) allowed frazil ice to move along
curvilinear trajectories that were determined via the
free-drift momentum balance approximation.

In this paper, we formulate a two-dimensional time-
dependent polynya flux model. The model requires the
specification of the coastline boundary and of time-
varying surface wind, shortwave radiation, air temper-
ature, and relative humidity. The model calculates ice
production and drift rates, which allow the temporal
evolution of the polynya edge to be determined. The
model is applied to the investigation of the seasonal and
short-term variability of the St. Lawrence Island polyn-
ya.

The paper is organized as follows. Section 2 provides
a formulation of the polynya model and outlines the
numerical method for determining the solution. Section
3 presents analytical and numerical polynya solutions
in the presence of idealized coastlines. Section 4 dis-
cusses the application of the model to the simulation of
the St. Lawrence Island polynya. Section 5 closes the
paper with a summary and some concluding remarks.

2. Description of the model

Figure 1b shows a schematic diagram of the polynya
model. For a wind blowing offshore, frazil ice is formed
in the polynya region (i) and is transported toward the
consolidated new ice region (ii), where it collects along-
side the ice floes. The polynya edge is represented by
the curve C(R, t) 5 const, where R is the position
vector of a point of the polynya edge. (A list of the
most relevant variables used in the paper can be found
in the appendix.) The evolution of the polynya edge can
be determined if the thickness, h, and velocity, u, of
frazil ice, the frazil ice collection thickness at the po-
lynya edge, H, and the velocity of the consolidated new
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ice, U, are known. In general, all the above quantities
are functions of both space and time. Note that h and
H are not in situ ice thicknesses; that is, they do not
denote the actual ice thickness at a given point, rather
they represent the volume of ice per unit area in a vi-
cinity of that point. For instance, inside the polynya, a
significant amount of frazil ice is kept in suspension
within the water column (Omstedt and Svensson 1984)
and the surface ice is very often collected in Langmuir
wind rows. Within this context, the concept of an in situ
frazil ice thickness is not suitable. Likewise, the down-
wind consolidated new ice region is normally perforated
with numerous holes and, therefore, H is more appro-
priately viewed as an area-averaged thickness (Pease
1987).

Using a generalization of (2), the evolution equation
for the polynya edge is

HU 2 h u ]CC C=C · 1 5 0, (4)
H 2 h ]tC

where = is the two-dimensional gradient operator and
hC and uC are the frazil ice thickness and velocity at the
polynya edge, respectively. Equation (4) can be solved
using the method of characteristics (e.g., Haberman
1998). The characteristic curves of (4) satisfy

dR HU 2 h uC C5 . (5)
dt H 2 hC

Since the polynya edge is not a material surface, only
the component of dR/dt perpendicular to the polynya
edge is physically relevant. Denoting by nC a unit vector
perpendicular to C(R, t) and pointing toward the con-
solidated new ice region, we see that, when the polynya
reaches equilibrium, nC · dR/dt 5 0, which is equivalent
to (3). Note also that whether ice convergence or ice
divergence occurs at the polynya edge depends on
whether nC · (uC 2 U) is greater or smaller than zero,
respectively. In the latter case, hC 5 0 and, from (5),
dR/dt 5 U.

The evolution of h, u, H, and U is determined as
follows. The distribution of frazil ice within the polynya
can be obtained from the following system of equations:

dr dh
5 u, 5 F 2 h= · u. (6)

dt dt

In (6), r is the position vector along a frazil ice trajectory
and F is the frazil ice production rate. If the spatial and
temporal distributions of u are known, the character-
istics of the frazil ice depth equation coincide with the
frazil ice trajectories. Frazil ice trajectories can in prin-
ciple emanate not only from the coast, but also from
regions of the polynya edge where ice divergence oc-
curs, and this is shown schematically in Fig. 1b. In all
cases, for t . t0, where t0 is the initial time, the boundary
condition for h at points where a frazil ice trajectory
emanates is h 5 0.

Since the extent of synoptic atmospheric systems is

much larger than typical polynya length scales, we as-
sume that the atmospheric forcing is uniform over the
polynya and, consequently, that freezing rates are also
uniform. Following Pease (1987), the frazil ice produc-
tion is determined as

2ri LiF 5 4 4(1 2 a)Q 1 se T 2 se Ts a a s w

1 raChCpUa(Ta 2 Tw) 1 raCe LeUa(qa 2 qs),

(7)

where a is the water surface albedo, Qs is the down-
welling shortwave radiation, s (55.67 3 1028 W m22

K24) is the Stefan–Boltzmann constant, ea is the air
emissivity, Ta is the air temperature, es (50.97) is the
surface emissivity, Tw (521.88C) is the water temper-
ature, ra (51.3 kg m23) is the air density, Ch (51.75 3
1023) is the sensible heat transfer coefficient, Cp (51004
J K21 kg21) is the specific heat for air, Ua is the wind
speed, Ce (51.75 3 1023) is the latent heat transfer
coefficient, Le is the latent heat of vaporization (52.5
3 106 J kg21), qa is the mixing ratio at Ta, qs is the
saturated mixing ratio at Tw, ri (5950 kg m23) is the
ice density, and Li (53.34 3 105 J kg21) is the ice latent
heat of fusion. The above parameter values have been
taken from Fichefet and Morales Maqueda (1997), ex-
cept that for ri , which comes from Pease (1987). Both
the short and longwave radiations absorbed at the sur-
face strongly depend on cloud coverage, type and optical
thickness, and a, Qs, and ea are therefore functions of
these cloud variables. However, Pease neglects alto-
gether the shortwave radiation contribution, on the basis
that it is very small from October throughout February,
and ignores cloud effects on downwelling longwave ra-
diation by adopting a constant atmospheric emissivity
ea 5 0.95. This author also neglects surface latent heat
fluxes.

The frazil ice drift field can exhibit complex spatial
patterns, even when a spatially uniform wind forcing is
imposed. For winds of 3 m s21 or faster, frazil ice has
been observed to drift along wind rows associated with
Langmuir circulations (Martin and Kauffman 1981).
These wind rows are oriented at an angle, u, of 138 or
less to the right of the wind (in the Northern Hemi-
sphere) and their spacing oscillates between 2 and 200
m (Leibovich 1983). Since the persistence time of the
wind rows (of the order of 1 h) is normally shorter than
the residence time of frazil ice within a mature polynya,
it is reasonable to assume that the existence of Langmuir
circulation structures does not lead to any net horizontal
convergence or divergence of frazil ice within the po-
lynya. According to Leibovich (1983), typical windward
Langmuir currents have speeds that are a few percent
of the wind speed. Correspondingly, we prescribe

u 5 eL[cos(u)Ua 2 sin(u)k 3 Ua], (8)

where eL (50.06) is a constant of proportionality, u
(508) is a turning angle positive to the right of the wind
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(in the Northern Hemisphere), k is an upward unit vec-
tor, and Ua is the surface wind velocity.

The physical processes governing the collection of
frazil ice at the polynya edge are not well understood,
although the frazil ice collection thickness is expected
to depend on wind speed and fetch (Bauer and Martin
1983; see section 5). Following Pease (1987), we use a
constant value for H (50.1 m), which, if thermodynamic
growth of consolidated new ice is neglected, represents
the area-averaged thickness of ice in region (ii).

Finally, the drift of consolidated new ice is param-
eterized by Zubov’s law (Wadhams 1986):

U 5 eZ[cos(Q)Ua 2 sin(Q)k 3 Ua], (9)

where eZ (50.03) is a constant of proportionality and
Q (5288) is a turning angle positive to the right of the
wind (in the Northern Hemisphere). Note that, since, in
the Arctic, the observed surface geostrophic wind ve-
locity makes an angle of 238–338 to the right of a Ua

(Overland and Colony 1994), the consolidated ice drift
will be approximately aligned with the geostrophic wind
(which is another way of stating Zubov’s law).

In order to solve (5) and (6), it is necessary to specify
the location of the polynya edge, C(R, t) 5 const for t
# t0. In addition, knowledge of H(R, t), U(R, t), u(r, t),
and F(r, t) is required for all t, both t # t0 and t . t0.
This is because we do not make any particular as-
sumption regarding the initial state of the polynya. Since
the thickness of frazil ice at the polynya edge depends
on the history of the ice as it drifts offshore, we need,
in general, to be able to compute the frazil ice trajec-
tories for all times. Of course, this will not be necessary
in the special, but very important, case when the polynya
was closed for t # t0. For arbitrary coastline geometry
and forcing fields, the polynya equations have to be
solved numerically. This is done in the following man-
ner. Suppose that the solution algorithm has determined
the location of the polynya edge at times t0, t1 5 t0 1
Dt, · · · , tN2 1 5 t0 1 (N 2 1)Dt, where Dt is the time
step. To advance the solution from tN21 to tN 5 t0 1
NDt, a series of M points, , · · · , , along the1 MR RN21 N21

polynya edge at time tN21 is selected. Consider the point
(1 # k # M). If ice divergence occurs atk kR RN21 N21

(i.e., frazil ice is leaving the polynya edge), then khN21

5 0, and 5 , where and are,k k k k[dR/dt] U h UN21 N21 N21 N21

respectively, the frazil ice depth and the consolidated
new ice velocity at at time tN21. If ice convergencekRN21

occurs at (i.e., frazil ice is arriving at the polynyakRN21

edge), then has to be calculated in order to deter-khN21

mine . To find , the first of (6) is integratedk k[dR/dt] hN21 N21

backward in time until, at a time tint # tN21, the frazil
ice trajectory first intersects a boundary point, P, from
which frazil ice emerges. Note that P can be located
either on the coastline or on a sector of the polynya
edge where ice divergence occurs. In the latter case,
owing to the fact that, in general, tint will not coincide
with any of the times t0, . . . , tN21, the location of the
polynya edge at tint, and hence P, will have to be de-

termined by interpolation of the known polynya edge
solutions at the consecutive times tj and tj11, where tj

# tint # tj11. Since the trajectory followed by frazil ice
from P at time tint to at time tN21 is known (i.e.,kRN21

we assume that u does not depend on h), the second of
(6) can be integrated forward in time, with initial con-
dition hP, tint) 5 0, to obtain . Thus, cank kh [dR/dt]N21 N21

now be calculated from (5), and the polynya edge so-
lution advanced from to .k kR RN21 N

3. Polynya solutions for uniform forcing and
idealized coastlines

To facilitate understanding of the time-dependent be-
havior of a two-dimensional wind-driven coastal po-
lynya, we present a number of analytical and numerical
polynya solutions for simple coastline geometries. In all
cases, the atmospheric forcing fields (i.e., the air tem-
perature and wind velocity), and hence F, u, and U, are
assumed to be spatially uniform. We use a Cartesian
coordinate frame, S, in which the coordinates of a point
on the polynya edge will be denoted by (X, Y) and those
of a point along a frazil ice trajectory by (x, y). With
respect to S, the consolidated new ice velocity is (U, V)
and the frazil ice velocity is (u, y). Equations (5) and
(6) then become

dX HU 2 h u dY HV 2 h yC C5 , 5 , (10)
dt H 2 h dt H 2 hC C

dx dy dh
5 u, 5 y , 5 F. (11)

dt dt dt

a. Infinite straight coastline: Polynya response to an
impulsive change in the forcing

Consider an infinite straight coastline, which coin-
cides with the y axis, and with the polynya occupying
the region x $ 0. Given a point, P, with coordinates
(xP, yP), the set of points (xP, y) will be said to be located
to the ‘‘west’’ (‘‘east’’) of P if y 2 yP , 0 (y 2 yP .
0). Similarly, the points (x, yP) will be said to be located
to the ‘‘north’’ (‘‘south’’) of P if x 2 xP , 0 (x 2 xP

. 0). Assume that for t , t0 a polynya exists in equi-
librium with an atmospheric forcing, with U 5 U0, u
5 u0, and F 5 F0. The polynya edge at t 5 t0 is given
by the infinite straight line 5 X0 5 (U0H)/F0.[X]t5t0

At t 5 t0, the distribution of h within the polynya is
given by h(x, t0) 5 [(hC0 2 hB0)/X0] x 1 hB0, where hC0

5 (F0/u0) X0 and hB0 5 0 are the initial thicknesses of
frazil ice at the polynya edge and at the coast, respec-
tively. In section 3c, an example arises in which 0 #
hB0 # hC0 occurs during the evolution of a two-dimen-
sional polynya, which is the reason for allowing h(x, t0)
to depend on hB0.

Assume that at t 5 t0 the atmospheric forcing changes
impulsively and that, for t $ t0, the consolidated new
ice velocity, frazil ice velocity, and frazil ice production
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acquire new values U, u and F, respectively. In essence,
this problem is one-dimensional in the x direction and
has been solved by Ou (1988). Nevertheless, we will
revisit this problem because the methodology used to
solve it is the same as that employed in the case of a
finite-length straight coastline. Unfortunately, the lo-
cation of the polynya edge cannot, in general, be ex-
pressed as an explicit function of t. However, since H,
U, u, and F are constant for t $ t0, the only time-
dependent variable controlling the polynya edge evo-
lution is hC. We will therefore first solve (10) and (11)
for hC as an implicit function of t. In so doing, we will
be able to define as well a timescale for the polynya to

reach the new equilibrium state. Subsequently, hC will
be introduced back into (10) in order to determine the
location of the polynya edge as an explicit function of
hC. The characteristic length scales of the steady-state
polynya will also be derived. Finally, we will discuss
some salient features of the polynya solutions thus ob-
tained.

1) EVOLUTION OF hC AND DETERMINATION OF THE

POLYNYA EQUILIBRIUM TIMESCALE

Take a point (X, Y) of the polynya edge at time t $
t0. The thickness of frazil ice arriving at the polynya
edge point at time t is given by

h 2 hC0 B0 [X 2 u(t 2 t )] 1 h 1 F(t 2 t ), t , t , (12a)0 B0 0 c X0h (X, Y, t) 5C F X, t $ t , (12b)cu

where tc is such that [X 2 u(t 2 t0)] 5 0. In words,t5tc

tc is the time after which all frazil ice particles arriving
at the polynya edge have been exposed only to the new
forcing (Ou 1988).

It is expedient to define the new variable p 5 1 2
hC /H. Physically, the frazil ice cannot be thicker than
its collection thickness and, therefore, 0 # p # 1.

This inequality imposes a restriction on the possible
values of hB0 , which we will not consider here. This
restriction is overcome by using a parameterization
for H along the lines of the one outlined in section
5. By eliminating X between (10) and (12), an evo-
lution equation for p is formed whose solution is giv-
en by

F Zp 2 pe(t 2 t ) 5 2(p 2 p ) 2 Zp ln , t , t , (13a)0 0 e cH Zp 2 pe 0
F p 2 pe (t 2 t ) 5 2(p 2 p ) 2 p ln , t $ t , (13b)c c e cH p 2 p e c

where p0 5 , Z 5 u(hC0 2 hB0)/(FX0), pe 5 1 2[p]t5t0

U/u, and pc 5 .[p]t5tc

The value of tc can be obtained as follows. From (12a)
we find that, when t → tc, with t , tc, then p → 5p9c
1 2 hB0/H 2 F/H(tc 2 t0) (note that 5 pc if and onlyp9c
if hB0 5 0). By taking the limit t → tc in (13a), and
setting p 5 in the resulting equation, we obtain anp9c
expression for tc, namely

F hB0(t 2 t ) 5 1 2 2 Zpc 0 eH H

FX /(uH )01 (Zp 2 p ) exp 2 . (14)e 0 1 2pe

A timescale for the polynya to reach its new equilib-
rium can be found from (13b) by determining the time,
t 5 te $ tc, at which the value of p is pe 5 , where[p]t5te

pe 2 pe 5 e(pe 2 pc), and 0 , e K 1. We find that

F
21(t 2 t ) 5 1 2 [1 2 ln(e )]p 1 e(p 2 p ). (15)e 0 e e cH

If the polynya was closed at t 5 t0, then pc 5 1 and
the definition of pe is equivalent to Roe 2 Xe 5 eRoe,
where Roe 5 HU/F is the steady-state polynya width
and Xe 5 . In this case, te is the time required for[X]t5te

the polynya to open to a width (1 2 e)Roe.
In practice, if hB0 5 0, the equilibrium adjustment

timescale in (15) can be approximated by F/H(te 2 t0)
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ø 1 2 [1 2 ln(e21)]pe. We observe that this approxi-
mation is independent of the initial state of the polynya.
It is also interesting to note that the approximation can
be expressed in terms of the two timescales tce 5 Roe/U
5 H/F and tfe 5 Roe/u in the following way:

te 2 t0 ø tfe 1 ln(e21)(tce 2 tfe). (16)

The timescale tfe is simply the time required for frazil
ice to traverse the width of the equilibrium polynya, Roe.
The timescale tce 5 H/F is the time required for the
polynya to grow frazil ice up to a thickness H. If we
choose e 5 0.01, (16) leads to the following bounds for
the adjustment timescale: H/F # te 2 t0 # 4.6H/F. The

lower bound is the finite adjustment timescale in the
limit pe → 0, or equivalently tfe → tce (in fact, the only
case when the adjustment timescale is finite corresponds
to this limit), while the upper bound corresponds to the
limit pe → 1 (i.e., U → 0 or u → `).

2) EVOLUTION OF THE POLYNYA EDGE AND

DETERMINATION OF THE POLYNYA

CHARACTERISTIC LENGTH SCALES

We now derive expressions for X and Y in terms of
p. Changing independent variable in (10) from t to p
gives differential equations for X and Y, which are sep-
arable in p. The solutions are


F Zp 2 pe(X 2 X ) 5 2 p 2 p 1 (Zp 2 p ) ln , t , t ,0 0 e e c [ ]uH Zp 2 pe 0 (17)
F (X 2 X ) 5 2(p 2 p ), t $ t ,c c cuH


F Zp 2 pe(Y 2 Y ) 5 2 p 2 p 1 (Zp 2 q ) ln , t , t ,0 0 e e c[ ]yH Zp 2 pe 0

 (18)
F p 2 pe (Y 2 Y ) 5 2 p 2 p 1 (p 2 q ) ln , t $ t ,c c e e c[ ]yH p 2 p e c

where Y0 5 , Yc 5 , and qe 5 1 2 V/y .[Y] [Y]t5t t5t0 c

Equations (13), (14), and (17) uniquely determine the
polynya width, X, as a function of t. An initial polynya
edge point (X0, Y0) will transform into a point (X, Y) at
time t according to (13), (14), (17), and (18). The path
followed by such point during its evolution is termed a
characteristic. Figure 2 depicts the polynya edge evo-
lution to equilibrium for a case in which the polynya
was initially closed (p0 5 pc 5 1). The ice speeds are
|U| 5 0.6 m s21 and |u| 5 2|U|. The frazil ice production
is F 5 0.27 m day21.

Let us now consider the steady-state polynya solution
in order to determine its characteristic length scales.
From (10) and (11), the steady-state polynya width, Roe,
is given by

Roe 5 HU/F. (19)

In addition to Roe , an alongshore adjustment length
scale, Rae , can also be defined. To understand how Rae

arises, suppose that in the interval I 5 {y : y1 , y ,
y 2} the infinite-length coastline exhibits small depar-
tures from the straight line boundary x 5 0. Specifi-
cally, let the coastline be given by x 5 c(y), where c
is such that c 5 0 outside I and |c| K Roe . We assume
that |dc /dy| K 1, in order to guarantee that frazil ice
trajectories starting at a given point of the land bound-

ary will not subsequently intercept the coastline again.
The coordinates of any point Q on the steady-state
polynya edge can be written as (X 5 Xe 1 X9, Y ),
where Xe 5 Roe and X9 (|X9| K Roe) is a perturbation
induced by the coastline irregularities. It can be shown
that a frazil ice trajectory arriving at the equilibrium
point Q emanates from a coastal point P whose x co-
ordinate is ø c(Y 2 y /uRoe), to first order in thex9P
perturbation. The thickness of frazil ice arriving at Q
is then hC 5 hCe 1 , where hCe 5 HU /u 5 (F /u) Roeh9C
and 5 (F /u)(X9 2 ), where X9 2 is the ‘‘excessh9 x9 x9C P P

offshore distance’’ traveled by frazil ice due to the
perturbation in the coastal outline. We next observe
that, dividing the first of (10) by the second of (10),
we obtain an expression for the slope of the steady-
state polynya edge, dX /dY, as a function of hC [to con-
vince oneself that this is indeed the equation for the
steady-state polynya edge, one has simply to set ]C/]t
5 0 in (4)]. An equation for the polynya edge pertur-
bation readily follows and is given by

y
X9 2 c Y 2 Roe1 2udX9

5 , (20)
dY y V

R 2oe1 2u U
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FIG. 2. Infinite straight coastline. At t 5 t0 5 0 the polynya was closed. For t0 # t the ice drift
regime becomes that depicted by the thick (U) and thin (u) vectors. The dashed lines are the
polynya edge characteristics. At t 5 te 5 20.2 h (e 5 0.01), the polynya has virtually reached
its steady state. The solid lines show the location of the polynya edge at t 5 te/4, t 5 te/2, and
t 5 `. The length scales Roe (;19 km) and Rae (;12 km) are also shown.

to first order in the perturbation. In (20), the denomi-
nator

y V
R 5 R 2 (21)ae oe1 2u U

is an alongshore adjustment length scale. There is a
useful geometrical interpretation of the length scale Rae,
as illustrated in Fig. 2. Consider a consolidated new ice
trajectory and a frazil ice trajectory both emanating from
the same point on the coastline [e.g., the point (0, y1)
in Fig. 2]. The length of the line segment defined by
the two points where these two trajectories intercept X
5 Roe is given by |Rae|.

Given that the angle between U and u is positive (i.e.,
U is located to the right of u), the steady-state polynya
edge solution east of the semi-infinite straight line l2 5
{(x, y) : yx 2 u(y 2 y2) 5 0, x $ 0} will be the same
as in the case of a perfectly straight coastline, namely,
X 5 Roe. Equation (20) can then be integrated westward
from the point (X0 5 Roe, Y0 5 y2 1 y /uRoe), where X9
5 0, thereby showing that

y
c Z 2 Roe1 2Y uY 2 Y Y 2 Z0 0X9 5 2exp 2 exp dZ.E1 2 1 2R R Rae ae aeY0

(22)

It is clear from (22) that Rae fulfills a twofold role. On
the one hand, it controls the amplitude, |X9|, of the po-
lynya edge response to a perturbation in the coastline
shape [in the integrand of (22), the coastline perturba-
tion c(y) is scaled by a factor 1/Rae]. On the other hand,
Rae also provides an e-folding length scale for the west-
ward decay of X9 (due to the presence of the exponential

outside the integral). In Fig. 2, for example, the per-
turbation will decay by e21 over a distance |Rae| westward
of the line l1. Modifications in the coastline with off-
shore and alongshore length scales smaller than Rae will
barely affect the polynya edge shape.

3) DISCUSSION OF POLYNYA SOLUTIONS

The time-dependent polynya behavior crucially de-
pends on the orientations of both the consolidated new
ice and frazil ice velocities. This is illustrated in Figs.
3 and 4, which show results from two series of polynya
experiments. In each experiment, for t , t 0 5 0 the
polynya is in a steady state in which the ice drift is
characterized by the velocities U 0 (|U 0| 5 0.6) and u 0

(|u 0| 5 2|U 0|). The frazil ice production rate is F 5
0.27 m day21 . An impulsive change in wind direction
occurs at t 5 t 0 and the consolidated new ice and frazil
ice velocities become U1 and u1 , respectively. The wind
speed and air temperature remain constant and, there-
fore, |U1| 5 |U 0| and |u1| 5 |u 0|. When the polynya
attains its new equilibrium state [within 1% of pe 2
pc ; see (15)], the forcing reverts to the ‘‘old’’ wind
regime for t , t 0 , the consolidated new ice and frazil
ice velocities becoming U 2 5 U 0 and u 2 5 u 0 , re-
spectively.

Figure 3 shows the polynya width as a function of
time when the angle between the consolidated new ice
and frazil ice drifts, f, is 08. The evolution of the
polynya width in time is shown for five different ori-
entations of U 0 and u 0 , with U1 and u1 held constant.
In all cases, the polynya edge takes ;24 h to advance
to its new steady state after the first impulsive change
in wind direction. The retreat phase after the second
change in wind direction also lasts for ;24 h. This
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FIG. 3. Infinite straight coastline. Evolution of the polynya width (X ) vs time (t) when f 5 08. In (a), for t , t0 5
0 the ice drift is as represented by the thick (U0) and thin (u0) leftmost arrows (in arbitrary units). The angle between
the normal to the coastline and U0 is b 5 2908. At t 5 t0, the ice drift regime changes to U1 and u1, with U1

perpendicular to the coast. When the polynya reaches equilibrium, the ice drift becomes U2 5 U0 and u2 5 u0. The
long-dashed, solid, and short-dashed lines depict the evolution of X for each drift regime. The circles indicate the
location of the polynya edge at t 5 tc. Plots (b), (c), (d), and (e) are as (a), except b 5 2398, 2138, 1138, and 1398,
respectively.

24-h timescale agrees well with the one obtained from
(15) or (16) with e 5 0.01 and pe 5 0.5. Since the
behavior of the polynya depends only on the magnitude
of the offshore components of the consolidated new
ice and frazil ice velocities, the evolution of the po-
lynya edge is identical when U 0 /u 0 make an angle 6b
with the normal to the coastline, provided |U 0| and |u 0|
are constant (cf. Figs. 3b and 3e, and Figs. 3c and 3d).
However, this symmetry is broken if f is nonzero. For
example, in Fig. 4, f 5 1288 and, when the polynya
evolves to an equilibrium state in which U1 is normal
to the coastline, pe 5 1 2 1/cos(288) ø 0.43, and te

; 23 h. The time required for the polynya to return
to its initial state varies according to the direction of
U 0 (5U 2), from ;41 h when U 0 is parallel to the coast
( pe 5 1) to ;9 h when U 0 forms an angle, b, with the

normal to the coastline of 1398 ( pe 5 0). For b .
1398, U . u, and the steady-state polynya width is
unbounded because no equilibrium of ice fluxes at the
polynya edge is possible.

The transient behavior of the polynya can be such
that the polynya opening (closing) is preceded by a par-
tial closing (opening). This can be understood as fol-
lows. If the polynya is in equilibrium for t , t0, the
flux balance at the polynya edge is M 5 HU0 2 hC0u0

5 0, where hC0 5 . If the offshore components[h ]C t5t0

of the ice drift regime change impulsively to U and u,
the flux balance at t 5 t0 is M 5 Hu(U/u 2 U0/u0).
Whether the polynya width increases or decreases dur-
ing the transient adjustment depends on whether the sign
of U/u 2 U0/u0 5 p0 2 pe is positive or negative,
respectively.
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FIG. 4. As in Fig. 3 except f 5 1288.

b. Finite-length straight coastline: Polynya response
to an impulsive change in the forcing

Consider the case when the coast is a finite-length
straight-line segment coinciding with the y axis and
with end points (0, 0) and (0, D ). A coastline of this
type can be viewed as an idealization of a long and
narrow island. Let us assume that the polynya forms
to the south of the island, occupying a finite-area region
of the half-plane 0 # x. We will first study the case
when the polynya opens to equilibrium from an initial
state in which the polynya was closed. A complete
analytical solution will be obtained for this case. Sub-
sequently, we will examine the response of a steady-
state polynya of nonzero area to an impulsive change
in the forcing. This more general problem introduces
novel polynya features, which are worthwhile dis-
cussing. The polynya equations for this case can also
be solved analytically. However, the complete con-
struction of the analytical solution becomes intractable,
and therefore a numerical procedure is adopted for
solving this problem.

1) RESPONSE OF A POLYNYA INITIALLY CLOSED

AND DETERMINATION OF THE POLYNYA

EQUILIBRIUM TIMESCALES

Let us suppose that for t , t0 the entire oceanic do-
main is covered by motionless first-year ice. At t 5 t0,
a steady wind is applied and a polynya opens to the
south of the coastline. We assume that, when the first-
year ice is free to move, its velocity is the same as that
of the consolidated new ice exported from inside the
polynya [see (9)] and that it is stationary when its ad-
vance is hindered by the coastline. That is, we assume
an idealized ice rheology in which the ice resists con-
vergence with arbitrarily large compressive strength and
opposes no resistance to divergence or shearing. In this
approach, a region of motionless first-year ice exists
north of the island bounded by the coastline to the south
and by the semi-infinite lines L2 5 {(X, Y) : VX 2 UY
5 0, X , 0} to the west and M2 5 {(X, Y) : VX 2 U(Y
2 D) 5 0, X , 0} to the east (Fig. 5). Elsewhere, the
ice cover moves in free drift. The boundaries between
the motionless and the moving first-year ice (i.e., L2
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and M2) can be considered as coastline extensions along
which the polynya width is zero.

According to (10), a polynya edge characteristic
originating at t 5 t 0 from a point (X 0 , V /UX 0) on L2

will advance with velocity U until it reaches the origin
at a time t 5 tL . For t $ tL the characteristics will then
follow the straight line path coinciding with the semi-
infinite line L1 5 {(X, Y ) : VX 2 UY 5 0, X $ 0},
which bounds the polynya to the west. Note that frazil
ice trajectories will emanate from L1 . Similarly, a char-
acteristic originating at t 5 t 0 from (X 0 , D 1 V /UX 0)
on M 2 will advance with velocity U until it reaches
the point (0, D ) at a time t 5 tM . For t $ tM the char-
acteristic will be affected by a nonzero flux of frazil
ice coming from the island coastline. This character-
istic will subsequently follow a progression similar to
that of any other characteristic originating on the coast-
line.

To determine the evolution of characteristics origi-
nating on the coastline, we note that the frazil ice tra-
jectory emanating from the origin (i.e., the semi-infi-
nite line l1 5 {(x, y) : yx 2 uy 5 0, x $ 0}), divides
the polynya domain into two regions, A to the east and
B to the west (Fig. 5), in each of which the polynya
solution can be easily derived. In region A, the advance
of a polynya edge characteristic starting from (X 0 5
0, 0 , Y 0 , D ) at t 5 t 0 is given by (17) and (18),
together with (13) and (14), with hC0 5 hB0 5 0 (i.e.,
p 0 5 pc 5 1). The characteristic will propagate west-
ward until, at a time t 5 t l , it intersects l1 at the point
(Xl , Yl). At t 5 t l , the characteristic enters region B

in which the frazil ice flux emanates from the boundary
L1 . In this region, a rotated reference frame, Sr , can
be defined such that the negative yr axis coincides with
the line L1 , the transformation equations from Sr to S
being

 2VX 2 UY UX 2 VYr r r rX 5 , Y 5 ; |U| |U|
 (23)

2Vu 2 Uy Uu 2 Vyr r r ru 5 , y 5 .
|U| |U|

In Sr , the consolidated new ice velocity components are
Ur 5 0 and Vr 5 2|U|. The evolution of a characteristic
that has entered region B will again be given in the
rotated system Sr by (13), (14), (17), and (18) after sub-
stitution of t0, X0, Y0, and hC0 by tl, Xrl, Yrl, and hCl,
respectively, where (Xrl 5 urXl/u, Yrl 5 y rYl/y) are the
coordinates of the intersection point of the characteristic
with l1 in Sr , and hCl 5 FXrl/ur .

In summary, the evolution of the polynya edge char-
acteristics is described by

 1
t 2 t 5 (X 2 X ), t $ t , (24a)0 0 0 U


V Y 5 X, t $ t , (24b)0U

in the case of a characteristic originating from L2. When
the characteristic originates from the coastline (X0 5 0,
0 , Y0 , D), its evolution equations are


1 X

t 2 t 5 X 2 (t 2 t ) ln 1 2 , t # t , t , (25a)0 ce fe 0 l1 2 u Roe


y X
Y 2 Y 5 X 1 R ln 1 2 , t # t , t , (25b) 0 ae 0 l1 2u Roe


1 Xrt 2 t 5 (X 2 X ) 2 t ln , t $ t , (25c)l r rl ce l1 2 u Xr rl


y Xr rY 5 X 1 t |U| ln , t $ t , (25d) r r ce l1 2u Xr rl

where


1 Xlt 2 t 5 X 2 (t 2 t ) ln 1 2 ,l 0 l ce fe 1 2u R oe

 (26)
Y0X 5 R 1 2 exp 2 . l oe 1 2[ ]Rae

In (25) and (26), Roe and Rae are as given by (19) and
(21), respectively, and tce 5 Roe/U, tfe 5 Roe/u. Finally,
when the characteristic starts from M2 it obeys
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 1
t 2 t 5 (X 2 X ), t # t , t , (27a)0 0 0 M U


VY 2 D 5 X, t # t , t , (27b)0 MU


1 X

t 2 t 5 X 2 (t 2 t ) ln 1 2 , t # t , t , (27c)M ce fe M l1 2 u Roe


y X
Y 2 D 5 X 1 R ln 1 2 , t # t , t , (27d) ae M l1 2u Roe


1 Xrt 2 t 5 (X 2 X ) 2 t ln , t $ t , (27e)l r rl ce l1 2 u Xr rl


y Xr rY 5 X 1 t |U| ln , t $ t , (27f) r r ce l1 2u Xr rl

where

t 2 t 5 2X /U (28)M 0 0


1 Xlt 2 t 5 X 2 (t 2 t ) ln 1 2 ,l M l ce fe 1 2u R oe

 (29)
D

X 5 R 1 2 exp 2 . l oe 1 2[ ]Rae

The shape of the equilibrium polynya edge is given by
(24b), (27d) (in region A), and (27f ) (in region B).
Figure 5 illustrates the polynya spinup to steady state
in the presence of coastlines 20 and 40 km long. The
consolidated and frazil ice speeds are |U| 5 0.6 m s21

and |u| 5 2|U|, respectively, the angle between the nor-
mal to the coastline and U is b 5 1138, and F 5 0.27
m day21. For both islands, the length scales ande eR Ro a

are ;19 and ;12 km, respectively. Note how the size
of the island affects the polynya shape. When the coast-
line length is several times larger than , the steady-eRa

state polynya width is close to the asymptotic value
. When the coastline length is comparable to or small-eRo

er than , the polynya can open up to only a fractioneRa

of .eRo

Let us now determine the time taken for the polynya
to reach equilibrium. We define the equilibrium time-
scale te to be the time when the area of the polynya, A,
reaches the value Ae(1 2 e), where 0 , e K 1 and Ae

5 [A] t5` 5 DRoe. In the steady state, the areas occupied
by the polynya in regions A and B are AAe 5 Ae 2
RaeRoe[1 2 exp(2D/Rae)] and ABe 5 RaeRoe[1 2
exp(2D/Rae)], respectively. We wish to establish ap-
proximations for te in the two limits: AAe/Ae ø 1 (i.e.,
D/Rae k 1) and ABe/Ae ø 1 (i.e., D/Rae K 1). The time-
scale te can in both cases be determined rigorously by

considering the time evolution of A as described by (24)
and (27). Nevertheless, we can estimate te by using the
following intuitive line of argument. If AAe/Ae ø 1, then
the polynya behavior will approximate that of a polynya
in the presence of an infinite straight coast coinciding
with the line x 5 0. From (16), the timescale for equi-
librium is then

D
21t 2 t ø t 1 ln(e )(t 2 t ), k 1. (30)e 0 fe ce fe Rae

If, on the other hand, ABe/Ae ø 1, the asymptotic polynya
behavior will be similar to that of a polynya in the
presence of an infinite straight coastline coinciding with
the line L1. In this limit, te will again obey (16), but
replacing tfe (5Roe/u) by 0 (since, along L1, the as-
ymptotic polynya width is 0), namely

D
21t 2 t ø ln(e )t , K 1. (31)e 0 ce Rae

We have empirically observed that for an island of ar-
bitrary length, te 2 t0 is, in fact, well approximated by
an area-weighted average of (30) and (31) (Fig. 6). The
previous analysis demonstrates that the timescale for the
opening of a wind-driven polynya adjacent to an island
depends crucially on the relative magnitude of D and
the alongshore adjustment length scale Rae. Taking e 5
0.01, and in the limit U → u, the time interval te 2 t0

can be as much as 4.6 times longer for a small island
(D/Rae K 1) than for a large one (D/Rae k 1).

2) RESPONSE OF A POLYNYA FROM AN ARBITRARY

INITIAL STEADY STATE

We will now analyze the case when a steady-state
polynya of nonzero initial area responds to an impulsive
change in the atmospheric forcing. Rather than pre-
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FIG. 5. Finite-length straight coastline. At t 5 t0 5 0 the polynya was closed. For t0 # t the ice drift
becomes that depicted by the thick (U) and thin (u) arrows. Solutions are shown for coastlines 20 (left) and
40 (right) km long. The dashed lines are the polynya edge characteristics given by (25) and (26). In both
polynyas, Roe ; 19 km and Rae ; 12 km. For the left (right) polynya, te (e 5 0.01) is 30.2 h (25.4 h). The
solid lines show the polynya edge at t 5 te/4, t 5 te/2, and t 5 `.

FIG. 6. Contours of (te 2 t0)/tce (e 5 0.01) as a function of D/Rae

and tfe/tce (5U/u) using the empirical formula te 2 t0 5 AAe/Ae[tfe 1
ln(e21)(tce 2 tfe)] 1 ABe/Ae[ln(e21)tce].

senting in full detail the analytical solution of this prob-
lem, we will simply outline the way in which it can be
obtained.

We consider an initial steady-state polynya for which
the consolidated new ice velocity, frazil ice velocity,
and frazil ice production rate are U0, u0, and F0, re-
spectively. At time t 5 t0, these quantities change im-
pulsively to U, u, and F, respectively. At this stage, it
is useful to define a reference frame, Ss, which, at time
t 5 t0, coincides with the stationary frame S and which
moves with velocity U with respect to S (i.e., the ice

pack is stationary in Ss). Vector fields in Ss will be
denoted by the subscript ‘‘s.’’ With respect to frame Ss,
the polynya edge velocity and the frazil ice velocity are
parallel to each other. Indeed, we see from (10) that the
polynya edge evolves in Ss according to

dX h dY hs C s C5 2 u , 5 2 y . (32)s sdt H 2 h dt H 2 hC C

As a consequence, when U and u are spatially uniform
and temporally constant, the equations governing the
polynya edge become one-dimensional in Ss. A char-
acteristic starting on a point Q of the polynya edge at
t 5 t0 will evolve along a straight line parallel to us 5
u 2 U. The trajectories of frazil arriving at Q will also
be parallel to us. These trajectories may emanate from
either the coastline, which recedes with velocity 2U in
Ss, or from a point, P, of frazil ice divergence on the
polynya edge. From (32), P is stationary in Ss since at
this point hC 5 0 for t . t0. Note, however, that the
initial frazil ice thickness at P is, in general, different
from zero because P might have been a point of frazil
ice convergence for t , t0 (this is why we considered
the general case hB0 $ 0 in section 3a). If the initial
distribution of frazil ice thickness is given, the polynya
edge characteristics in Ss can be calculated following an
approach similar to the one described in section 3a. The
two major differences between this problem and the one
discussed in section 3a are that 1) frazil ice can originate
from moving boundaries (the land boundary) and 2) the
initial distribution of frazil ice thickness will be, in gen-
eral, piecewise linear rather than simply linear. However,
these features can be introduced into the procedure pre-
sented in section 3a. The derivation of the polynya so-
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FIG. 7. Finite-length straight coastline. In (a), for t , t0 5 0 the ice drift is as represented by
the thick (U0) and thin (u0) arrows on the left. At t 5 t0 5 0, the ice drift regime changes to
that represented by the thick (U1) and thin (u1) arrows on the right. In (b), at t 5 24 h the ice
drift is impulsively reverted to the ‘‘old’’ regime (U2 5 U0, u2 5 u0). The dashed, dash–dotted,
and solid lines in panel a (panel b) correspond to the location of the polynya edge at t 5 0, 1,
and 12 h (t 5 24, 26, and 36 h), respectively.

lution is then straightforward, albeit cumbersome. In-
stead, we will present numerical solutions of the prob-
lem.

In section 3a(3), we have shown that, in the presence
of an infinite straight coastline, the behavior of the po-
lynya strongly depends on the angle, f, between the
consolidated new ice and frazil ice velocities. Clearly,
this result also holds for the case of a polynya adjacent
to an island. However, in this case the response of a
steady-state polynya is additionally affected by the an-
gle, c, formed by the consolidated new ice velocity for
t , t0 and the relative velocity of frazil ice with respect
to consolidated new ice for t $ t0. Specifically, if c .
0, all points of the polynya edge that are points of ice
convergence (divergence) for t , t0 [i.e., the points on
the eastern (western) boundary of the steady-state po-
lynya] remain points of ice convergence (divergence)

for t . t0. In contrast, if c , 0, there are regions of
the polynya edge that are regions of ice convergence
(divergence) for t , t0, but which become regions of
ice divergence (convergence) for t $ t0. In this latter
case, the polynya generates leadlike structures that even-
tually detach from the main body of the polynya and
follow an independent evolution. We will not discuss
here the development of these structures. Nevertheless,
one of them appears in the second case study presented
in section 4b.

Figure 7 exemplifies the case when c . 0. The ex-
perimental configuration is identical to that in Fig. 4e
except that the coastline is a finite line segment 80 km
long. For t , t0 5 0 the polynya is in a steady state
and the ice drift is characterized by the velocities U0

(|U0| 5 0.6) and u0 (|u0| 5 2|U0|). The frazil ice pro-
duction rate is F 5 0.27 m day21. In Fig. 7a, the dashed
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FIG. 8. Geographical location of St. Lawrence Island.

line represents the location of the polynya edge in quasi-
equilibrium with the ‘‘old’’ forcing at t , t0. In practice,
this initial state was achieved by integrating the polynya
equations over one day. At t 5 t0 5 0 the wind changes
direction and the ice velocities become U1 (|U1| 5 |U0|)
and u1 (|u1| 5 |u0|). The polynya equations are then
integrated for one more day. The angle between U0 and
u1 2 U1 is c ; 1108. The polynya adapts to the new
forcing in two phases. The first phase lasts for ;1 h,
during which the polynya edge retreats toward the coast
(dash–dotted line). As explained in section 3a(3), this
initial retreat results from the negative imbalance es-
tablished initially between the consolidated new ice and
frazil ice fluxes at the polynya edge. In the second phase,
the flux imbalance changes sign and the polynya edge
moves away from the coast (solid line) approaching its
new equilibrium.

At time t 5 24 h, the polynya has virtually reached
a new steady state, as shown by the dashed line in Fig.
7b. The forcing then impulsively reverts to that applied
for t , t0 so that the ice drift regime is given by U2

(5U0) and u2 (5u0). The angle between U1 and u2 2
U2 is c ; 1908. The polynya edge now gradually re-
turns to its initial state at t 5 t0, and, as in Fig. 7a, it
does so in two phases: a rapid initial expansion that lasts
for about 2 h (dashed–dotted line) followed by a com-
paratively slow contraction (solid line).

4. Application to the St. Lawrence Island polynya

The St. Lawrence Island polynya (SLIP) is a winter
polynya that forms adjacent to the southern coast of St.
Lawrence Island (Fig. 8). The SLIP is primarily driven
by the prevailing northerly winds in the region (Pease
1987; Walter 1989; Kozo et al. 1990; Stringer and

Groves 1991; Liu et al. 1997), although the weak shelf
currents may also exert some control over the polynya
(Lynch et al. 1997). Cavalieri and Martin (1994) dis-
tinguish two subregions in the SLIP, namely St.
Lawrence east and St. Lawrence west, which are ap-
proximately separated by the 1718W meridian.

Brine rejection from the SLIP is a component of the
regional salt budget and can affect the circulation in the
vicinity of the polynya. Schumacher et al. (1983) have
observed that, south of St. Lawrence Island, rapid
U-turns of the current, from eastward to westward flow,
can result from changes in the baroclinic structure of
the water column during polynya opening events. It has
also been suggested that, since the oceanographic cir-
culation over the northern Bering Sea is dominated by
a northward flow, salty water created in the SLIP and
other polynyas in the Bering Sea can contribute to the
maintenance of the Arctic halocline (Aagaard et al.
1981).

Two assumptions made in our polynya model, namely
that ice growth rates are almost exclusively determined
by the surface energy budget, with no major contribu-
tion from oceanic heat sources, and that consolidated
new ice motion is well described by a free-drift balance,
are approximately satisfied in the SLIP. First, the depth
of the shelf surrounding St. Lawrence Island is less than
30–40 m and, therefore, the winter water column will
be well mixed. As a result, ice growth rates will be
mainly controlled by surface cooling. Second, under the
predominant northerly winds, internal stresses within
the ice pack are likely to be small because the ice ve-
locity field will be divergent. Consequently, the ice will
move nearly in free drift. A third assumption made in
the model, namely the spatial uniformity of the atmo-
spheric forcing over the entire area of the polynya is
less certain (see section 4b).

We will use the polynya theory described above to
achieve the following two goals: First, to derive cli-
matological estimates of monthly polynya extents and
opening timescales. Second, to assess the model skill
in portraying the short-term polynya response to at-
mospheric variability. To this effect, we will investigate
three polynya opening events reported in the literature.

a. Determination of monthly polynya characteristics

To define realistic values for the long-term surface
wind and frazil ice production over the SLIP, we have
used the monthly mean climatology of surface air tem-
peratures, dewpoints, and geostrophic winds of Crutcher
and Meserve (1970) and the monthly mean climatology
of cloudiness of Berliand and Strokina (1980). Using
the parameterization (7) (see Fichefet and Morales Ma-
queda 1997), bulk surface heat fluxes were computed
at the geographical location closest to the SLIP in the
data. The parameterization of the shortwave radiation
absorbed at the surface was that of Shine and Crane
(1984). This parameterization discriminates between
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TABLE 1. Simulated area of the SLIP using climatological forcing: Ua and fa are surface wind speed and direction (from N), respectively;
Ta is surface air temperature; F is frazil ice production rate; Te is the polynya equilibrium timescale (e 5 0.01); and are given inmin maxt te e

(30) and (31), respectively; is the te simulated by the model; Def is the effective cross-sectional length of the island (section 4a); Roe andsimte

Rae are the offshore and alongshore adjustment length scales (19 and 21), respectively; and Ae is the predicted equilibrium polynya area (33)
and Aobs is the observed median value (after Stringer and Groves 1991).

Month
Ua

(m s21)
fa

(deg)
Ta

(8C)
F

(m d21)

te (d)

minte
maxte

simte

Def

(km)
Roe

(km)
Rae

(km)
Ae

(km2)
Aobs

(km2)

Jan
Feb
Mar
Apr
1–15 May
Dec

10.3
9.9
9.0
7.9
6.2

10.1

43
45
44
39
36
42

213.0
214.9
213.5
26.5
23.9

211.2

0.15
0.15
0.12
0.04
0.02
0.14

1.7
1.7
2.2
6.1

13.5
1.9

3.1
3.0
3.9

10.9
24.2

3.4

2.2
2.2
2.9
8.6

20.6
2.5

115
113
114
120
123
116

18
17
20
49
84
19

9.5
8.9

10.6
25.9
44.9
10.3

2068
1890
2262
5855

10 394
2256

1940 , 2190 , 2440
1640 , 2000 , 2480
2290 , 2680 , 3550
3450 , 4660 , 5270

15 900
—

clear sky and overcast conditions. Climatological values
for the cloud optical thickness were taken from Chou
et al. (1981). The open water albedo formulations were
those of Briegleb and Ramanathan (1982) and Kondra-
tyev (1969) for clear sky and cloud-covered conditions,
respectively. Finally, the atmospheric longwave radia-
tion absorbed at the surface was formulated according
to Marshunova (1966). This parameterization describes
the effective atmospheric emissivity, ea, as a linear func-
tion of cloudiness and a nonlinear function of surface
water vapor pressure. Following Overland and Colony
(1994), the surface wind, Ua, was computed from the
geostrophic wind, Ug, by reducing |Ug| by factor of 0.8
and assuming that the angle between Ua and Ug is 1328
(i.e., Ug is located to the right of Ua). The climatological
Ua turns out to be a persistent northeasterly wind
throughout winter and spring, with month to month var-
iations in wind direction of at most 668. The frazil ice
and consolidated new ice velocities were obtained from
the surface wind by using (8) and (9). In all simulations
the frazil ice collection thickness was H 5 0.1 m.

For each month during which the estimated frazil ice
production rate, F, was positive, the polynya model was
integrated to equilibrium, starting at time t 5 t0 5 0,
from a state in which no polynya existed. Table 1 shows
the simulated equilibrium areal coverage of the SLIP,
Ae, together with the observed median polynya areas,
Aobs, and their 90% confidence intervals estimated by
Stringer and Groves (1991). As indicated by these ob-
servational confidence intervals, the natural variability
of the monthly polynya area can be quite large. Nev-
ertheless, the equilibrium extent of the modeled SLIP
agrees reasonably well with the values of the observed
monthly areal range, except for May, when the observed
polynya is much larger than the modeled one, and De-
cember, a month for which no data are provided. Cav-
alieri and Martin (1994) presented satellite-derived es-
timates of the annual-mean open water area south of St.
Lawrence Island that hover above 5000 km2, which is
larger than the ;3550 km2 average that can be obtained
from Table 1. However, Cavalieri and Martin include
all open water sources, such as open water holes in the
consolidated new ice region (Pease 1987) and leads

downwind of the polynya, in their calculations, which
may explain the discrepancy.

Applying the flux balance principle, the equilibrium
polynya area is given by

|U|H
A 5 D , (33)e efF

where Def is the ‘‘effective’’ cross-sectional length of
the island (i.e., the maximum separation between coast-
line points in a direction perpendicular to the consoli-
dated new ice motion; Fig. 9a). Clearly, for fixed |U|,
F, and H, the equilibrium area of the polynya will
change, if the wind direction changes, because the ef-
fective cross section will be modified. In the case of St.
Lawrence Island, Def can be as large as ;150 km, when
U is directed to the south or south-southwest, and as
small as ;60 km if U is directed to the east-southeast.
However, because variations in the direction of the cli-
matological winds are small, the range of values of Def

in our simulations is less than 10 km, with Def being
on average ;116 km.

From inspection of Table 1, it is apparent that Ae is
better correlated with air temperatures than with wind
velocity. Colder (warmer) weather produces smaller
(larger) polynyas, whereas stronger (weaker) winds do
not lead to a significant increase (decrease) in polynya
size. This is in agreement with results presented by
Pease (1987) and, as pointed out by this author, is due
to the fact that decreasing (increasing) air temperatures
increase (decrease) F, but not |U|, while increasing (de-
creasing) wind speeds increase (decrease) both F and
|U|. Table 1 also shows the minimum and maximum
values of the equilibrium timescale, te given by (30) and
(31) (e 5 0.01), respectively. These timescales corre-
spond to the case of an idealized island whose coastline
is a line segment of length Def oriented perpendicularly
to U. The simulated equilibrium timescales fall within
the interval ( , ). The simulated time for reachingmin maxt te e

equilibrium becomes closer to the lower (upper) bound
of te as the alongshore adjustment length scale, Rae (also
derived for the idealized island), decreases (increases)
relative to Def , in agreement with the analysis presented
in section 3b(1).
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FIG. 10. Area of the SLIP vs time during an opening event under
climatological forcing typical of Jan (J), Feb (F), Mar (Mr), Apr (A),
May (My), and Dec (D).

Figures 9a–d display the simulated SLIP in February,
April, the first half of May, and December, respectively,
at the moment when its extent attains a value of 99%
of the equilibrium area. During the winter months, the
SLIP almost splits into two individual sub-polynyas,
which are approximately separated by the 1718 meridian
(line Y 5 0 in the maps). As mentioned above, this is
an observed feature of the SLIP. The existence of a
SLIP-east and a SLIP-west in our model is the result of
the polynya edge response to the island geometry. Be-
cause the offshore dimension of the polynya is of the
order of 20 km or less, the polynya edge closely follows
the coastline, and therefore, its width virtually shrinks
to zero when the coastal boundary is aligned with U.
However, we note that the simulated polynyas are mark-
edly slanted to the west when compared with most ob-
served ones. The reason for this is that, while the syn-
optic winds that drive polynya events are normally from
the N or NNE [see Figs. 7 and 11 of Pease (1987) and
Fig. 3 of Lynch et al. (1997)], the Crutcher and Meserve
(1970) climatological winds tend to be northeasterly
oriented. In April and May, a single polynya exists,
which is considerably wider than the winter ones. As
the distance between the polynya edge and the coast
increases, so too does the alongshore adjustment length
scale. Consequently, the polynya edge does not repro-
duce the fine structure of the coastline geometry. As
pointed out by Kozo et al. (1990), the polynya edge
adopts the shape of an airport windsock (Figs. 9b and
9c), tracking the predominant direction of the geo-
strophic wind. However, these spring polynyas expand
so far to the south that the hypothesis of uniform wind
and air temperature over the polynya area is invalid.
The consolidated new ice will find higher air temper-
atures as it advances southward. This, combined with
increased absorption of solar radiation, will lead to ice
melting in the consolidated new ice region, even if frazil
ice is still produced farther north. In addition, at this
time of the year, the equilibrium timescale is signifi-
cantly longer than a typical synoptic period of, say, 5
days. As a consequence, the real polynya will normally
fail to reach equilibrium, which is in fact what has been
observed (Kozo et al. 1990). This can explain the large
discrepancy between our polynya area estimate for early
May and that of Stringer and Groves (1991).

Figure 10 presents a plot of the polynya area versus
time during a polynya opening event for each of the
months under study. Since, for the duration of a polynya
event, the frazil ice production, F, is assumed to be
spatially uniform and constant in time, the net annual
ice production, P (in m3 of ice), is simply given by the
integral of F times the area of the polynya over one
year. Here, we are neglecting the fact that ice production
will also be taking place in the consolidated new ice
region. If we assume, as Schumacher et al. (1983) do,
that the SLIP is open for about one-third of the time
during periods when it can exist, and that a typical po-
lynya event lasts for five days, then there will be a

polynya opening twice per month from December to
April and just one opening in May. Under these as-
sumptions, the net volume of ice produced per month
can be computed. The ice production amounts to 5–5.5
km3 month21 from December to February and decays
to 0.4 km3 of ice in May, with a net annual ice pro-
duction of ;22 km3. This figure falls short from the
estimate of 27–32 km3 of ice per year cited by Cavalieri
and Martin (1994). However, if heat fluxes over open
water in the consolidated new ice region are assumed
to be commensurate with those over the polynya and if
the concentration of consolidated new ice oscillates be-
tween 70% and 50%, values of P comparable to those
presented by Cavalieri and Martin (1994) can be re-
trieved.

b. Simulation of three SLIP opening events during
February

Pease (1987) investigated two polynya openings that
took place in February 1982 and February 1983. In
1982, the polynya started opening around 13 February,
and observations over the polynya were carried out on
15 February. In 1983, the polynya opened from about
16 February, and measurements were made on 18 Feb-
ruary. In both cases, atmospheric conditions were fairly
constant during the opening process. Since the obser-
vations were in both cases performed about two days
after the SLIP started to form, the polynya had probably
reached equilibrium at that time.

In our simulation of these two polynya events, the
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TABLE 2. Simulated area of the SLIP in February 1982/1983; Ua and fa are surface wind speed and direction (from N), respectively. Ta

is surface air temperature. F is frazil ice production rate. te is the polynya equilibrium timescale (e 5 0.01); and are given in (30)min maxt te e

and (31), respectively; is the te simulated by the model. Def is the effective cross-sectional length of the island (section 4a). Roe and Rae
simte

are the offshore and alongshore adjustment length scales (19 and 21), respectively. Ae is the predicted equilibrium polynya area (33).

Date
Ua

(m s21)
fa

(deg)
Ta

(8C)
F

(m d21)

te (d)

minte
maxte

simte

Def

(km)
Roe

(km)
Rae

(km)
Ae

(km2)

15 Feb 1982
18 Feb 1983

14.0
18.0

220
20

219.7
223.2

0.20
0.30

1.3
0.9

2.3
1.5

1.3
0.9

154
141

18
16

9.7
8.3

2808
2200

FIG. 11. As in Fig. 10 except for short timescale atmospheric conditions on 13–15 Feb 1982
(a) and on 16–18 Feb 1983 (b). The state of the polynya is shown two days after it started to
open. (a) The thick arrows indicate the location of coastal regions that induce lead formation at
the polynya edge.

net surface heat flux was derived as in Pease (1987). In
particular, surface latent heat fluxes were neglected and
upwelling longwave radiation was taken as 301 W m22.
Table 2 lists the forcing parameters, together with the
equilibrium timescales, alongshore length scales, and
equilibrium polynya areas. In both years, measured wind
speeds were larger and air temperatures colder than the
climatological values. Therefore, frazil ice production
rates were higher than those quoted in Table 1. In spite
of this, the simulated polynya areas in these two cases

turn out to be larger than the area of the February po-
lynya derived from the climatological forcing. The in-
crease in Ae found here is due to the larger effective
cross-sectional length of the island, which results from
the fact that the wind directions in the two case studies
are significantly different from the climatological one.
In February 1982, the wind was from the NNW and, in
February 1983, it was from the NNE (Figs. 11a and
11b). In contrast, the climatological wind is from the
NE, and since St. Lawrence Island offers a larger ef-
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FIG. 12. Diagram of the observed evolution of the SLIP from 21 to 27 Feb 1992. The solid
lines depict the boundary between the first-year ice and the consolidated new ice regions. The
closed contours on the leftmost panel correspond to the successive positions of a particular ice
floe. In the three panels on the right, the active polynya region is area I, the consolidated new
ice regions is area II, and the first-year pack is area III. Redrawn from Liu et al. (1997).

fective cross-sectional length to more northerly oriented
winds, the value of Def is ;30–40 km larger in these
experiments than in that of section 4a. The opening
timescales (;1 day) and offshore widths (;10–20 km)
of the simulated SLIP agree well with the estimates
derived by Pease (1987) from NOAA Advanced Very
High Resolution Radiometer images and aircraft obser-
vations, and the shape of the polynya edge and of the
consolidated new ice–first-year ice regions shown in
Fig. 11 are in qualitative agreement with contempora-
neous satellite observations [see Fig. 3 of Walter
(1989)]. In Fig. 11a, the relative velocity u 2 U is such
that, when the polynya begins to expand, some sections
of the polynya edge turn out to be regions of frazil ice
divergence. As explained in section 3b(2), temporary
leads form in the presence of these features. The location
of the coastal regions that induce lead formation at the
polynya edge are indicated by the thick arrows. How-
ever, the leads have closed well before day 2 of the
integration.

A second case study is provided by an opening event
in February 1992, which has been investigated by Liu
et al. (1997). By using wavelet analysis techniques,
these authors tracked the evolution of the polynya and
of the consolidated new ice region from 21 to 27 Feb-
ruary. This event has also been studied by Lynch et al.
(1997) with an atmosphere–sea ice coupled model. Na-
tional Centers for Environmental Prediction and Euro-
pean Center for Medium-Range Weather Forecasts anal-
ysis for that period show that the geostrophic wind was
from the NNE. In accordance with the assumption
adopted in this study that both the pack ice and the
consolidated new ice move at an angle of ;288 to the

right of the surface wind (Overland and Colony 1994),
we would have expected the ice drift to be approxi-
mately aligned with the geostrophic wind. This is not
the case. In the leftmost panel of Fig. 12, we can see
the trajectory of an ice floe that remained close to the
consolidated new ice region during the entire period of
observation. The trajectory is directed toward the south
or south-southwest and the boundary between the first-
year ice and the consolidated new ice regions is oriented
in the north–south direction. We conclude therefore that,
during this particular opening event, the ice drifted ap-
proximately in the direction of the surface wind. This
behavior is at odds with the results of Kozo et al. (1990),
who showed a good correlation between geostrophic
wind direction and polynya orientation during mid–late
March 1988. The origin of this discrepancy could be
related to differences in the oceanic circulation during
during the two periods. Lynch et al. (1997) showed that,
despite the weakness of the oceanic circulation south of
the St. Lawrence Island, the introduction of ocean cur-
rents in their simulations tended to increase the south-
ward component of the ice drift during February 1992.
A second possible reason for the discrepancy is that the
ice internal stresses are more likely to play an important
role in the ice drift in February, when the pack is com-
pact, than in mid–late March, when the ice concentration
has decreased and the ice will then tend to move in a
regime closer to free drift.

In our simulation of this SLIP event we have assumed
that both frazil ice and consolidated new ice motions
are aligned with the surface wind, and we have deduced
the wind direction from the motion of the ice floe dis-
played in Fig. 12. That U and u are parallel does not
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mean that the model becomes one-dimensional. Frazil
ice and consolidated new ice drifts will still change
direction in response to variations in the wind and, there-
fore, will not, in general, be described by rectilinear
trajectories (Fig. 13c). The surface wind speed and air
temperatures are the same as in Liu et al. (1997). Table
3 lists the forcing parameters and the simulated polynya
characteristics at 2400 UTC 21, 24, and 27 February
1992. Surface heat fluxes were computed as in Pease
(1987). The values of , , Def, Roe, and Ae are themin maxt te e

values that would be obtained if the polynya equations
were integrated to equilibrium under a constant atmo-
spheric forcing, equal to that stated for the correspond-
ing day. Since the polynya is not in equilibrium, the
actual polynya offshore length scale, Ro, and area, A,
can be significantly different from Roe and Ae. It is as-
sumed that the polynya started opening at 0000 UTC
21 February. Increasing wind speeds lead to an increase
in the ice export off the polynya over the first six days
of integration. At the same time, the frazil ice production
steadily decreases because of a warming of the weather.
The polynya size, therefore, increases until it attains a
maximum area of ;3900 km2 at about 2400 UTC 26
February. On 27 February, air temperatures dropped by
around 68 C and the polynya edge receded toward the
coast.

Figures 13a–d show the modeled polynya for the
same dates as in Fig. 12 and Table 3. The model suc-
cessfully tracks the evolution of the boundary between
the consolidated new ice and the first-year ice, but the
active polynya region extends all along the coast of the
island, whereas the observations suggest that this region
was confined to the west of the 1718 meridian (line Y
5 0 in the maps). Liu et al. (1997) attribute the absence
of Langmuir streak formation on the eastern part of the
island to irregularities of the wind patterns on that side
of the coast. Walter (1989) also found that, on 18 Feb-
ruary 1983, frazil ice rows were located only west of
171.588, with gray or gray/white young ice located to
the east. This author shows that the topography of the
island impacts on the atmospheric boundary layer over
the SLIP, decreasing the wind speed and increasing the
air temperature over the western part of the island. In
order to model these effects, the hypothesis of uniform
forcing fields should be abandoned. Finally, notice that
Figs. 13c and 13d show that a narrow lead, ;15 km
long and ;1 km in width, has formed on the eastern
boundary of the polynya as a result of the wind veering
on 27 February [see section 3b(2)]. The lead closes in
;9 h.

5. Summary and concluding remarks

We have presented a theory for the evolution of a
two-dimensional wind-driven polynya. The theory is
based on the ice flux balance principle of Lebedev
(1968) and Pease (1987) in which the polynya evolution
is governed by the balance between frazil ice and con-

solidated new ice fluxes at the polynya edge. To intro-
duce time-dependence, the one-dimensional model of
Ou (1988), which incorporates the effect of finite frazil
ice drift, has been extended to two dimensions.

We have applied the model to the study of idealized
polynyas in the presence of infinite- and finite-length
straight coastlines under uniform time-varying atmo-
spheric forcing. Four parameters have been found to
play an important role in controlling the polynya be-
havior. The first two parameters are the consolidated
new ice and the frazil ice timescales, tce and tfe, respec-
tively. The timescale tce determines the time that the
polynya would take to grow frazil ice of thickness equal
to the collection thickness. The timescale tfe is the time
required for frazil ice to cross the steady-state polynya
width. The timescale for the polynya to reach the steady
state increases (decreases) with increasing tce (tfe). The
other two parameters are the asymptotic polynya width,
Roe, and the alongshore adjustment length scale, Rae: Roe

is the steady-state polynya width, and Rae provides an
estimate of the minimum length that a coastline feature,
such as an embayment or a cape, must have in order
that its shape is reproduced by the polynya edge. Po-
lynya timescales and length scales are closely related.
For example, the time taken for a polynya to open to a
near-steady state on the lee side of an island will increase
if Rae is large compared with the effective cross-sectional
length of the island.

The response of the modeled polynya to impulsive
changes in wind direction presents two interesting and
novel features. First, when frazil ice and consolidated
new ice are allowed to drift in different directions (as
will, in general, be the case), short-period swings in the
location of the polynya edge can take place. This is due
to the fact that frazil ice and consolidated new ice drifts
are assumed to respond instantaneously to changes in
wind direction (in reality, the ice motion may lag the
wind by one hour or so; see Ou 1988), whereas it takes
a finite amount of time for the frazil ice thickness at the
polynya edge to adapt to the new forcing. Thus, an
instantaneous flux imbalance can be created at the po-
lynya edge, which will result in an initial shoreward
(seaward) motion of the polynya boundary, even when
the equilibrium polynya width is larger (smaller) than
the initial one. A second feature, is that narrow sub-
polynyas, or leads, can be generated if the change in
wind direction is such that sections of the original po-
lynya edge become regions of frazil ice divergence. The
possible creation of leadlike structures of this kind in
real polynyas deserves to be investigated.

The model has been applied to the investigation of
seasonal and mesoscale variability in the St. Lawrence
Island polynya. The model captures some of the ob-
served characteristics of this polynya. For example, the
presence of two almost independent polynyas during
winter is reproduced by the model, and has been shown
to result from changes in the orientation of the coastline
relative to the prevailing southwestward ice transport.



1302 VOLUME 30J O U R N A L O F P H Y S I C A L O C E A N O G R A P H Y

F
IG

.
13

.
A

s
in

F
ig

.
10

,
ex

ce
pt

fo
r

sh
or

t
ti

m
es

ca
le

at
m

os
ph

er
ic

co
nd

it
io

ns
on

21
–2

7
F

eb
19

92
.

T
he

po
ly

ny
a

st
ar

te
d

op
en

in
g

at
00

00
U

T
C

on
21

F
eb

(t
5

t 0
5

0
d,

0
h)

.
T

he
ar

ea
w

it
hi

n
th

e
re

ct
an

gl
e

ap
pr

ox
im

at
el

y
co

in
ci

de
s

w
it

h
th

e
S

yn
th

et
ic

A
pe

rt
ur

e
R

ad
ar

(S
A

R
)

im
ag

er
y

do
m

ai
n

sh
ow

n
in

F
ig

.
13

.
C

ha
ng

es
in

w
in

d
di

re
ct

io
n

an
d

sp
ee

d
oc

cu
rr

ed
at

t
5

3
d,

0
h

an
d

at
t

5
6

d,
0

h.
F

ra
zi

l
ic

e
tr

aj
ec

to
ri

es
in

(c
)

ar
e

no
t

st
ra

ig
ht

li
ne

s
be

ca
us

e
th

e
fr

az
il

ic
e

ar
ri

vi
ng

at
th

e
po

ly
ny

a
ed

ge
ha

s
cr

os
se

d
th

e
po

ly
ny

a
un

de
r

tw
o

di
ff

er
en

t
w

in
d

re
gi

m
es

,
na

m
el

y
be

fo
re

an
d

af
te

r
t

5
6

d,
0

h.



JUNE 2000 1303M O R A L E S M A Q U E D A A N D W I L L M O T T

TABLE 3. Simulated area of the SLIP in February 1992: Ua and fa are surface wind speed and direction (from N), respectively. Ta is
surface air temperature. F is frazil ice production rate. te is the polynya equilibrium timescale (e 5 0.01); and are given in (30) andmin maxt te e

(31), respectively. Def is the effective cross-sectional length of the island (section 4a). Roe and Ro are the offshore adjustment length scale
(19) and the simulated offshore length scale, respectively. Ae and A are the predicted equilibrium polynya area (33) and the simulated polynya
area, respectively.

Date
Ua

m s21 fa

Ta

(8C)
F

m d21

te (d)

minte
maxte

Def

(km)
Roe

(km)
Ro

(km)c

Ae

(km2)
A

(km2)

21 Feb
24 Feb
27 Feb

6.0
8.4

11.4

29
26
18

219.0
213.0
219.0

0.09
0.08
0.16

3.1
3.5
1.7

5.1
5.8
2.9

136
140
154

17
27
18

12
24
19

2354
3811
2843

1649
3368
2933

It is nevertheless likely that east–west contrasts in the
wind and air temperature fields also play a role in the
existence of the double-polynya system. It has also been
demonstrated that the equilibrium area of the polynya
depends not only on the wind speed and air temperature
but also on the effective cross-sectional length of the
island for a given direction of the consolidated new ice
drift.

The model neglects a number of physical processes
that are important in simulating the polynya behavior.
We have assumed that the atmospheric forcing is spa-
tially uniform. This is not the case for polynyas with
large alongshore dimensions, such as the SLIP, because
orographic features can modify the wind and air tem-
perature fields over the polynya (Walter 1989). Also,
for springtime polynyas, which extend far offshore, spa-
tial variations in the surface heat budget will occur over
the region, thereby creating nonuniform forcing. We
have also neglected polynya–ocean interactions. We
have assumed that the oceanic sensible heat flux into
the polynya is negligible. This is obviously not ac-
ceptable if the polynya forms in a region of oceanic
upwelling (Darby et al. 1994; Fichefet and Goosse
1999), or when a polynya extends beyond the conti-
nental shelf region. The effects of ocean currents on the
ice drift have also been neglected. Ocean currents can
introduce distortions in the simulated area and shape of
the polynya (Lynch et al. 1997). In addition, baroclinic
ocean currents can be enhanced by brine rejection dur-
ing polynya opening events (Schumacher et al. 1983).
Another simplification is that the frazil ice collection
thickness is prescribed. This is an important shortcom-
ing because, as a result, the effective ice export of the
polynya is externally assigned, rather than determined
by the model. To address this problem, parameteriza-
tions of H along the lines of those described by Martin
and Kauffman (1981) and Bauer and Martin (1983)
could be used.
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APPENDIX

Key to Most Relevant Variables and Subscripts

Variables:

A Area of the polynya [section 3b(1)]
Def Effective cross-sectional length of the

island (section 4a)
F Frazil ice production rate
H Frazil ice collection thickness at the po-

lynya edge
h Frazil ice thickness
hB Frazil ice thickness at the origin of a

frazil ice trajectory
hC Frazil ice thickness at the polynya edge
nC Horizontal unit vector perpendicular to

the polynya edge
p 5 1 2 hC/H Normalized collection-minus-frazil ice

thickness [section 3a(1)]
qa Air specific humidity
qe 5 1 2 V/y Notation [section 3a(2)]
qs Surface specific humidity
R [ (X, Y) Position vector of a point on the polyn-

ya edge
r [ (x, y) Position vector along a frazil ice trajec-

tory
Rae Alongshore adjustment length scale

(21)
Roe Offshore adjustment length scale (19)
Ta Air temperature
Tw Water temperature
t Time
tc Critical time for response to an impul-

sive change in the forcing (14)
tce 5 Roe/U Consolidated new ice adjustment time-

scale [section 3a(1)]
tfe 5 Roe/u Frazil ice adjustment timescale [section

3a(1)]
te Equilibrium timescale (15)
U [ (U, V) Consolidated new ice velocity at the po-

lynya edge
Ua Wind speed
u [ (u, y) Frazil ice velocity
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uC [ (uC, y C) Frazil ice velocity at the polynya edge
Q Consolidated new ice turning angle

(section 2)
u Frazil ice turning angle (section 2)
f Angle between U and uC [section 3a(3)]
c Angle between U for t , t0 and u 2 U

for t $ t0 [section 3b(2)]

Subscripts:

0 Initial value at time t 5 t0

c Value at time t 5 tc

e Value at steady state
L Value on the line L6 [section 3b(1)]
l Value on the line l1 [section 3b(1)]
M Value on the line M6 [section 3b(1)]
r Value in the rotated reference frame Sr

[section 3b(1)]
s Value in the reference frame Ss that

moves with the ice pack [section 3b(1)]
e Value at time t 5 te
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