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ABSTRACT

Traditionally, the conservation equations in oceanography include the Boussinesq approximation, and the
velocity variable is interpreted as the Eulerian mean velocity averaged over turbulent scales. If such a view is
adopted, then the conservation equations for tracers contain errors that are often as large as the diapycnal mixing
term. This result has been known for about a decade and, at face value, implies that all Boussinesq ocean models
contain leading-order errors in their conservation equations. To date there has not yet been a solution proposed
to avoid this conundrum. Here it is shown that the conundrum can be solved by interpreting the horizontal
velocity vector carried by Boussinesq ocean models as the average horizontal mass flux per unit area divided
by the constant reference density that appears in the horizontal momentum equation. The authors argue that the
vector labeled the ‘‘velocity’’ in present ocean models is not, and never was, the Eulerian mean velocity. If it
were, then the conservation equations for salinity anomaly and potential temperature would contain systematic
errors whose magnitude would be as large as the diapycnal mixing terms. By interpreting the model’s horizontal
‘‘velocity’’ as being proportional to the horizontal mass flux per unit area, the conservation equations in the
present generation of Boussinesq models are actually much more accurate even than previously thought. In
particular, when these Boussinesq models achieve a steady state, they are actually almost fully non-Boussinesq,
and in a nonsteady state there is no systematic error in the diapycnal advective/diffusive balance due to the
Boussinesq approximation. With the above interpretation of the model’s ‘‘velocity,’’ it is also relatively simple
to change the model code to make it fully non-Boussinesq even when the flow is unsteady.

A conclusion of the authors’ work is that the Boussinesq approximation actually consists of three parts, not
two, as has been assumed in the past. Traditionally, the Boussinesq approximation consists of replacing (i) the
equation for conservation of mass by the equation for conservation of volume and (ii) the density that appears
in the temporal and advection operators by a constant reference density. Here the authors show that it is also
important to (iii) ensure that using a divergence free velocity to advect tracer does not lead to significant error,
an aspect of the Boussinesq approximation that has previously been overlooked.

1. Introduction

The conservation equations of oceanography are
treated in many texts, including Batchelor (1967) and
Gill (1982). In theoretical analysis and numerical mod-
eling, it is traditional to make the Boussinesq approx-
imation where every appearance of density is replaced
by a fixed reference density except in the buoyant force
in the vertical momentum equation. Since the reference
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density is usually taken to be 1000 kg m23 and since
the in situ density of seawater can be as large as 1050
kg m23, it appears as though the Boussinesq approxi-
mation leads to errors in the conservation equations that
are typically 3% but can be as large as 5%.

Spiegel and Veronis (1960) examined the conditions
under which the effect of fluid compressibility can be
neglected in the mass conservation equation, the equa-
tion for potential temperature, and the inertia term in
the momentum equations. However, their work did not
consider the averaged equations in a turbulent fluid, and,
more seriously, they did not examine the error in the
potential temperature equation that arises from using a
divergence-free velocity as the advecting velocity. Con-
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cern about neglecting the velocity divergence in the av-
eraged Boussinesq tracer equation has been raised by
McDougall and Garrett (1992, hereafter MG92) and Da-
vis (1994). Using scale analysis, MG92 found that, due
to the neglect of the divergence of the Eurlerian mean
velocity, the flux form of the averaged Boussinesq tracer
equation is in error by at least 30% in comparison with
the diapycnal mixing term. MG92 were rather horrified
to imagine that the conservation equations that we use
in oceanography could be in error by 30% due to the
Boussinesq approximation and they advanced the fol-
lowing (false) argument, which has since been debunked
by Davis (1994, see his section 3e). MG92 noted that
the advective form of the scalar conservation equations
does not contain a term involving the divergence of the
Eulerian mean velocity, = · , and suggested that so longu
as = · 5 0 is rigorously enforced, then the erroneousu
divergence forms of the conservation statements would
reduce to the correct advective forms and so all would
be well. In short, MG92 were saying that two wrongs
(the false assertion that = · 5 0 in two separate places)u
would cancel each other. Davis (1994) pointed out that
if accurate observations of the horizontal Eulerian-mean
velocity were available everywhere, and if the flux form
of the averaged Boussinesq tracer equation were ver-
tically integrated over a region bounded by an isoline
of the tracer in order to deduce the diapycnal property
flux, then the missing term would lead to a misesti-
mation of the diapycnal property flux that is as large as
that expected with canonical values of the diapycnal
diffusion coefficient. This argument of Davis (1994) is
the same point that is made above, namely that the term
involving = · is of the same order (MG92 say at leastu
30%) as the diapycnal mixing term in the averaged con-
servation equations. The argument of Davis (1994) is
correct as it stands, and MG92 must stand corrected:
the two wrongs that they identified do not make a right.

In this note, we reexamine the important issue of the
averaged conservation equations as they apply to the
ocean, and, in particular, the accuracy of the equations
solved by currently existing ocean models, which com-
monly include the Boussinesq approximation. Follow-
ing a review of the Boussinesq approximation in section
2, we revisit the issue raised by MG92 in section 3, but
this time concentrate on the effect of using a divergence-
free velocity, such as carried by Boussinesq models, to
advect the averaged tracer field. If, as is traditional, one
assumes that the horizontal momentum equations of an
ocean model are prognostic equations for the Eulerian-
mean (that is Reynolds averaged) horizontal velocity,
the method of Lu (2001) can be used to confirm that
the model’s tracer conservation equation is indeed in
error by an amount equivalent to the magnitude of the
diapycnal mixing term; but now, in contrast to MG92,
the error is independent of any constant offset of the
tracer. We note that the relative magnitude of the error
is enhanced by the large cancellation between the hor-
izontal and vertical advection terms in the model’s tracer

equation on sloping isopycnal surfaces, leaving a much
smaller advection (of Boussinesq magnitude with the
conventional interpretation of the model’s variables) to
balance the diapycnal mixing. We then go further in
section 4 and suggest a complete reinterpretation of the
velocity variable carried by models. In section 5, we
show that with the new interpretation of the velocity
variable, the conservation equations carried by Bous-
sinesq ocean models are almost identical to their non-
Boussinesq counterparts in steady state, with the im-
plication that Boussinesq ocean models are actually
much more accurate than had hitherto been imagined.
The analysis is extended to the nonsteady equations in
section 6. The new interpretation of the velocity variable
leads to a rather straightforward way of making an ocean
model fully non-Boussinesq, as is demonstrated in the
follow-up paper by Greatbatch et al. (2001). Finally,
section 7 provides a summary and conclusions.

2. The governing equations

The instantaneous conservation equations for mass,
for a conservative scalar, C, and for momentum are

r 1 = · (ru) 5 0, (1)t

(rC) 1 = · (ruC) 5 = · (rk =C), (2)t C

(ru) 1 = · (ruu) 1 2V 3 (ru) 5 2=p 2 kgrt

1 = · (m=u)

1
1 =(m= · u). (3)

3

The terminology here is standard, with m being the vis-
cosity and kC is the molecular diffusivity of property
C. It should be noted that C is defined as the mass of
tracer per unit mass of fluid (Gill 1982). Property C can
also be interpreted as the potential temperature. When
the Boussinesq approximation is made, (1)–(3) are re-
placed by

= · u ø 0, (4)

C 1 = · (uC) ø = · (k =C), (5)t C

1 r
u 1 = · (uu) 1 2V 3 u ø 2 =p 2 kgt r ro o

1
1 = · (m=u). (6)

ro

The Boussinesq approximation is really composed of
three separate approximations. The first two approxi-
mations have long been discussed in the literature—for
example, by Spiegel and Veronis (1960)—and these two
aspects of the Boussinesq approximation are attributed
to Boussinesq (1903). The third and potentially most
damaging aspect of the Boussinesq approximation has
apparently only been realised and published as recently
as 1992 by MG92.
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In the first of the Boussinesq approximations the
equation for the conservation of mass, (1), is replaced
by the equation for the conservation of volume, (4). The
conditions under which this approximation is valid are
discussed in detail in Batchelor (1967, his section 3.6),
Gill (1982, his section 4.10), and Kundu (1990, chapter
4).

The second part of the Boussinesq approximation in-
volves replacing the density in (2) and on the left hand
side of (3) by a constant representative density, ro. In
this way the driving horizontal pressure gradient in (6)
is thought to be in error by the replacement of r21 with

. In the ocean, the in situ density varies by no more21r o

than 5% and this is the level of approximation associated
with this second aspect of the Boussinesq approximation
so that traditionally the Boussinesq approximation is
thought to cause an error of at most 5% in the velocity
vector.

The anelastic approximation (Ogura and Phillips
1962) is a method for reducing the magnitude of the
error associated with the Boussinesq approximation. In
the anelastic approximation, the in situ density on the
left-hand side of the conservation equations, (1)–(3), is
replaced by a function of pressure (or depth) so that
most of the effects of the fluid’s compressibility are
included. While this would be a distinct improvement
over the standard Boussinesq interpretation of the pre-
sent Boussinesq model equations, it does require sub-
stantial modification to the Boussinesq model code. We
do not pursue this further because we manage to derive
a 100% accurate set of averaged equations that is easier
to implement in an ocean model than is the anelastic
approximation.

It seems that, prior to the work of MG92, all discus-
sions of the Boussinesq approximation have failed to
consider the effect of using a divergence free velocity
as the advective velocity in the tracer and momentum
equations. MG92 considered the divergence form of the
averaged conservation equations, and pointed out that
the term associated with the divergence of the Eulerian-
mean velocity can easily be as large as the diapycnal
mixing term. In this paper we will show that the solution
to this serious conundrum raised by MG92 and Davis
(1994) is to reinterpret the horizontal ‘‘velocity’’ carried
by Boussinesq ocean models as the average horizontal
mass flux per unit area normalised by ro. This reinter-
pretation of what is normally called the velocity in Bous-
sinesq ocean models overcomes all three aspects of the
Boussinesq approximation in the situation where the
flow is steady and geostrophic. In this way we will show
that the so-called Boussinesq ocean models have always
been more accurate than we had a right to expect—all
we must do is to stop referring to the model ‘‘velocity’’
and instead realize that it is proportional to the average
mass flux per unit area.

Another approximation commonly made in ocean
models is to replace the real equation of state, r 5 r(S,
u, p), with r 5 r(S, u, pref), where S and u are the

salinity and potential temperature carried by the model
and pref is a reference pressure that depends only on
depth. In this way, most of the dependence of density
on pressure is taken into account. Dewar et al. (1998)
have argued, nevertheless, that using this simplified
equation of state leads to significant error and that the
full equation of state should be used to compute density
for use in the hydrostatic equation. We return to this
issue in section 5.

3. The Boussinesq conundrum

We now revisit the concern raised by MG92 that aris-
es in applying the Boussinesq approximation to the av-
eraged tracer conservation equation. We derive this re-
sult by first writing Eqs. (1)–(3) in the advective form

21= · u 5 2r (r 1 u · =r), (7)t

21C 1 u · =C 5 r = · (rk =C) 5 d , (8)t C C

21u 1 u · =u 1 2V 3 u 5 2r =p 2 kg 1 d . (9)t u

The molecular viscosity terms in (9) are given by du 5
r21= · (m=u) 1 r21=(m= ·u). Following MG92 and1

3

Davis (1994) these instantaneous equations are ensem-
ble averaged (or temporally averaged with a long av-
eraging time) finding (still without any approximations
whatsoever)

21= · u 5 2r (r 1 u · =r )t

212 r = · (u9r9), (10)

C 1 u · =C 5 d 2 = · (u9C9)t C

1 C9= · u9, (11)
21u 1 u · =u 1 2V 3 u 5 2r =p 2 kg 1 dt u

2 = · (u9u9) 1 u9= · u9. (12)

The so-called incompressibility condition is the as-
sumption that the right-hand side of (10) can be ignored
compared with the individual components of = · suchu
as z. The classic Boussinesq approximation replacesw
2 in (12) with 2 =H 2 21

zk and ignores21 21r =p r p r po

the last terms in (11) and (12). It is usually thought this
involves say a 5% error in the horizontal pressure gra-
dient term in the deep ocean. Note that while the classic
Boussinesq approximation replaces in situ density with
the reference density in the instantaneous tracer equa-
tion, (2), in our Reynolds-averaged tracer equation, (11),
this is equivalent to ignoring the term on theC9= ·u9
right-hand side. All these changes are commonly re-
ferred to as the Boussinesq approximation.

In the appendix we confirm MG92’s results that (i)
the average of the molecular diffusion term, , holdsdC

no surprises and so can either be ignored or absorbed
into the turbulent mixing term; and that (ii) isC9= ·u9
small enough to be ignored. Hence (11) reduces to the
regular advective form of a conservation statement,
namely
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C 1 u · =C 5 2= · (u9C9). (13)t

This seems to confirm the accuracy of the tracer equa-
tion in the Boussinesq model equations (we dispute this
below). MG92, nevertheless, showed that the diver-
gence form of the Boussinesq tracer equation is in error
by as much as the diapycnal mixing term in that equa-
tion. Diapycnal mixing is known to be an important and
often dominant physical process in the deep ocean.
MG92’s analysis showed that if we knew exactly the
Eulerian-mean velocity, , and used this velocity tou
evaluate the tracer budget using the divergence form of
the Boussinesq tracer equation, then serious error would
result. This point is also made by Davis (1994).

This causes us to now question the traditional inter-
pretation of the velocity in ocean models as being the
Eulerian-mean velocity, because we do not want to be-
lieve that Boussinesq ocean models are so seriously in
error as to be incapable of representing the diapycnal
advective–diffusive balance. We now use the method of
Lu (2001) to examine more closely the error involved
in a Boussinesq ocean model when we make the usual
(but we now believe incorrect) assumption that the hor-
izontal momentum equations are prognostic equations
for the Eulerian-mean horizontal velocity. The model’s
velocity vector is therefore defined as û 5 1 dwk,u
where here (in contrast to Lu) is the Eulerian meanu
velocity. The model’s vertical velocity is different from
the Eulerian mean because of the requirement that the
model’s three-dimensional velocity field be divergence
free; dwk is therefore chosen, following Lu (2001), so
that = · û 5 0 everywhere and dw 5 0 at the ocean
bottom so that

z

dw 5 2 = · u dz. (14)E
2h

Writing (13) in terms of the model’s velocity û (ignoring
, and ), we obtaind C9= ·u9C

]C ]C
1 û · =C 5 1 = · [ûC ]

]t ]t

]C
5 2= · [u9C9] 1 dw . (15)

]z

It follows from (15) that the usual assumption that
the horizontal velocity carried by an ocean model is the
Eulerian-mean horizontal velocity results in the error
term dw z in the tracer conservation statement in suchC
a model. MG92 showed that the dominant contribution
to = · comes from the compressible nature of seawateru
according to

2= ·u ø 2g (p 1 u · =p) ø gw/c ,t (16)

where g is the adiabatic compressibility of seawater,
equal to (rc2)21 where c is the sound speed, and the
right-hand side of (16) has been written using the hy-
drostatic approximation. Assuming a typical mean ver-
tical velocity , of 2 3 1026 m s21 gives an estimatew

for = · of 10211 s21. Using a depth scale of 1000 mu
this implies, from (14), that dw ø 1028 m s21. Putting
C 5 S (salinity), we estimate z to be 1023 m21. HenceS
dw z has magnitude 10211 s21, and so is the same orderS
of magnitude as the diapycnal mixing term (assuming
a diapycnal diffusivity of 1025 m2 s21). This analysis
of errors in ocean models is more relevant than the one
advanced by MG92 because it recognises that the ve-
locity variable carried by a Boussinesq ocean model is
divergence free, and so is û, not .u

It is important to realize that the extra source term,
dw z, that appears in (15) is a leading-order term thatC
upsets the proper balance between diapycnal advection
and diapycnal diffusion in this equation. Davis (1994)
emphasized that this missing term can lead to a 100%
misestimation of the diapycnal diffusivity in inverse
studies of the ocean circulation (assuming that the Eu-
lerian-mean velocity is available to the inversion). The
form of the term as we have written it, namely dw z,C
would seem to indicate that the term is inherently ad-
vective in nature. This is not the case. As Davis showed,
this term could equally well be regarded as a noncon-
servative alteration to the diapycnal diffusivity. [The
fundamentally nonconservative nature of this term is
apparent from our analysis of the unsteady equations in
section 6, following Eq. (43).] We have shown here that
if one interprets the horizontal velocity as the Eulerian-
mean velocity, then this Boussinesq conundrum source,
dw z, is far too large to ignore, amounting to as muchC
as the effects of diapycnal mixing. Unless we can find
a way around this Boussinesq conundrum, we ocean-
ographers have no right to use so-called Boussinesq
models for any application where diapycnal mixing is
significant, for example, in climate modeling.

It is also important to note that (15) has been written
in equivalent advective and divergence forms. It follows
that the error identified by MG92 is not confined to the
divergence form of the conservation statement, but is
also a feature of the advective form. In particular, the
use of the divergence free velocity û to advect tracer
leads to an error, represented by the dw z term. If theC
advection velocity were the full Eulerian mean velocity,

, then, (13) shows that there is then no serious error.u
The problem is that in models, the advective velocity
is not the Eulerian mean velocity, because in contrast
to the Eulerian mean velocity, the model velocity is
divergence free. It follows that the third part of the
Boussinesq approximation, identified originally by
MG92 as a problem with the divergence form of the
averaged Boussinesq tracer equation, has its counterpart
when the equation is written in advective form, and
arises because the Boussinesq velocity is no longer the
Eulerian-mean velocity.

Since the dominant term in the divergence of the
mean velocity is g /c2, the vertical velocity differencew
| dw | 5 | û 2 | scales as g h/c2 [from (14)], whereu w
here h is the vertical distance over which the vertical
velocity remains correlated. One of the terms on the
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left-hand side of (15) is z so the error term, dw zw C C
as a fraction of z isw C

2(dw C )/(w C ) ø gh/c ø 0.01,z z (17)

where h has been taken to be 2000 m and the sound
speed is 1500 m s21. Hence one might be tempted to
conclude that the error term in (15) is no more than 1%
of the other terms in the equation. However, we know
that the vertical and horizontal advection terms on the
left-hand side of (15) almost self-cancel, leaving a much
smaller advection that balances the divergence of the
turbulent flux on the right. Hence the relevant measure
of the error term in (15) is the ratio of dw z to theC
diapycnal mixing term; that is,

2(dw C )/(e C ) ø (gh/c )(w/e) ø 0.01(w/e),z z (18)

where ø k/h has the dimensions of velocity and wille
be referred to as the diapycnal velocity, and k is the
diapycnal diffusivity. The reason why the diapycnal ad-
vection and diffusion terms are the relevant metrics with
which to compare the neglected Boussinesq terms is that
these diapycnal advection and diffusion terms are two
of the primary terms representing real, physical pro-
cesses in the conservation equation (the others being
isopycnal advection and diffusion). By contrast, the near
cancellation between horizontal and vertical advection
in a Cartesian model says nothing about any physical
process at work in the ocean, but merely reflects the use
of a Cartesian, as distinct from an isopycnal, coordinate
system.

Since the diapycnal velocity is expected to range be-
tween 1028 and 1027 m s21, while the mean vertical
velocity is typically 1026 m s21, it is clear that the ratio
(18) can often be as large as unity implying that the
error term in the mean tracer conservation equation due
to the Boussinesq approximation is often as large as the
diapycnal mixing term in this equation. This error anal-
ysis demonstrates that it is the smallness of the diapycnal
velocity due to the layered, nearly adiabatic, nature of
the ocean that elevates the relative importance of the
error involved in the Boussinesq approximation. Re-
gions of the ocean as large as the subtropical gyres have
the mean vertical velocity, , of one sign and in thesew
regions, the missing Boussinesq error term in (15), dw

z, can be as large as the real effect of diapycnal mixingC
processes.

Here we summarize the work so far in order to pro-
vide context for what follows. We began by introducing
MG92’s amazing result that the divergence form of the
mean tracer equation, based on the three-dimensional
Eulerian-mean velocity, is in error by as much as the
magnitude of the diapycnal mixing term. MG92 clung
to the hope that with ocean models making the false
assertion that = · 5 0 in two separate places, they mayu
not suffer the full effect of this Boussinesq error. This
false hope was debunked by Davis (1994) who dem-
onstrated that the full strength of the Boussinesq error
remained after integrating the conservation equations

over large ocean volumes, and he showed that this error
was as much as the effects of diapycnal mixing. In this
section we have used the method of Lu (2001) to focus
on the error that the Boussinesq models contain in their
tracer equations, all the while using the common as-
sumption that the model’s horizontal velocity is the Eu-
lerian-mean velocity. Again, the error is as large as the
diapycnal mixing term, and this is true in both the di-
vergence and advective forms of the model’s tracer
equation. We describe these results as a conundrum be-
cause we really do not believe that present Boussinesq
ocean models actually contain this error, and yet a so-
lution to this puzzle has not emerged in the years from
the publication of MG92 and Davis (1994) to the pre-
sent. In this paper we advance a solution to this co-
nundrum: the horizontal velocity in ocean models (in-
cluding in Boussinesq ocean models) is not, and never
was, the Eulerian-mean velocity but is actually propor-
tional to the horizontal mass flux per unit area.

4. Density-weighted averaging and the average
mass flux

The new approach to be introduced here is based on
the density-weighted averaging of Eqs. (1)–(3) in a fixed
coordinate system. This method is also called Favre-
averaging after Favre (1965 a,b), and goes back at least
to Hesselberg (1926). We define

r
r ru 5 ru / r , C 5 rC/ r , u0 5 u 2 u and

r
C0 5 C 2 C , (19)

where r and
r

are the density-weighted averages ofu C
velocity and tracer concentration, and it follows that

5 5 0. Averaging the instantaneous conser-ru0 rC0
vation equations (1)–(3) in this way leads to

rr 1 = · (r u ) 5 0, (20)t

r r
r(r C ) 1 = · (r u C ) 5 2= · (ru0C0 )t

1 = · (rk =C ), (21)C

r r r r(r u ) 1 = · (r u u ) 1 2V 3 (r u )t

5 2=p 2 kgr 2 = · (ru0u0 ) 1 = · (m=u)

1
1 =(m= · u). (22)

3

Noting that on the left-hand side of these equations,
r appears mostly in the form of the product r, weu r u

are motivated to write (20)–(22) in terms of a modified
mean ‘‘velocity’’ vector,

rũ 5 r u /r 5 ru /r , (23)o o

where is simply a scaled version of the average massũ
flux per unit area, since ro is a constant reference den-
sity, say 1030 kg m23. Equations (20)–(22) then become
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r
1 = · ũ 5 0, (24)1 2ro t

r r r r
C 1 = · ( ũ C ) 5 = · (K=C ), (25)1 2ro t

r 1 roũ 1 = · ũ ũ 1 2V 3 ũ 5 2 =p 2 kgt 1 2r r ro o

ro1 = · A= ũ . (26)1 2r

Note that the molecular flux terms in (21) and (22)
(involving kC and m) have been absorbed into the tur-
bulent fluxes, and that the turbulent fluxes have been
parameterized using a Fickian approach, as is traditional
(noting that the diffusion tensors K and A may have
both symmetric and antisymmetric parts).

These are the fully non-Boussinesq conservation
equations, written in terms of our new velocity variable
which is proportional to the average mass flux per unit
area. The Boussinesq approximation consists of replac-
ing with ro everywhere except in the vertical gravi-r
tational acceleration term. If we perform this Boussinesq
replacement procedure on (24)–(26), we obtain our ver-
sion of the Boussinesq conservation equations:

= · ũ ø 0, (27)
r r r

C 1 = · ( ũ C ) ø = · (K=C ), (28)t

1 r
ũ 1 = · ( ũ ũ) 1 2V 3 ũ ø 2 =p 2 kgt r ro o

1 = · (A=ũ). (29)

Notice that these equations correspond exactly to the
instantaneous Boussinesq equations, (4)–(6), but here
we interpret the variables (particularly the velocity) in
a special way to ensure, as we shall show, that (27)–
(29) are much more accurate than the average of (4)–
(6).

5. The steady, geostrophic hydrostatic equations
are fully non-Boussinesq

We begin by noting that if the mean fields are in a
steady state (that is if t and are zero), the fully non-rr C t

Boussinesq continuity and tracer equations [i.e., (24)
and (25), respectively] can be written very simply as
= · 5 0 and = · ( r) 5 = · (K= r). These conser-ũ ũ C C
vation equations are exactly the ones used by numerical
ocean models, and contrary to common assumption,
there are no error terms here of up to 5% magnitude,
as normally associated with the Boussinesq approxi-
mation, nor are there errors of order 30% or more, as
implied by MG92. Furthermore, under the geostrophic
and hydrostatic balance, the momentum equation also

holds without error. In summary, when the ocean is
statistically steady, geostrophic and hydrostatic, the con-
tinuity, tracer and momentum equations are, without any
Boussinesq error;

r r
= · ũ 5 0; = · ( ũ C ) 5 = · (K=C );

1
2V 3 ũ 5 2 = p; and p 5 2gr , (30)H H zro

where H is the horizontal component of and =H isũ ũ
the horizontal gradient operator. This implies that, sub-
ject to the geostrophic restriction, when the present gen-
eration of hydrostatic ocean models reach a steady state,
they are in fact fully non-Boussinesq and so do not
suffer the errors of 5% or more associated with the
Boussinesq approximation.

We wish to emphasize that the equations in (30) have
been derived without the need to make the Boussinesq
approximation and yet they are exactly the same con-
servation equations as are used in Boussinesq numerical
models of the ocean circulation. Certainly it appears
that the Boussinesq approximation has been made in
(30) because (i) is not present inside the divergencer
terms = · and = · ( r), and (ii) there is a constantũ ũ C
reference density in the 2=H /ro term. However, wep
have avoided having to make the Boussinesq approxi-
mation by redefining the velocity vector as being the
average mass flux per unit area (and then dividing by
ro to give it the dimensions of velocity).

There are two remarks that need to be made in regard
to the hydrostatic balance in (30), z 5 2g , and thesep r
remarks remain pertinent in the more general situation
where the flow is unsteady and the momentum equation
is not simply taken to be the geostrophic balance. The
first remark is the point made by Dewar et al. (1998)
that should be allowed to respond to the changingr
pressure at fixed depth. While the past practice in this
regard is not actually part of a Boussinesq approxi-
mation (since the appearance of the in situ density in
the vertical momentum equation is the only place in the
Boussinesq approximation procedure where the in situ
density is not replaced by ro) it has led to errors of
similar magnitude to that usually associated with the
Boussinesq approximation.

The second remark relates to our ability to evaluate
given the fact that the model is assumed to carry ther

density-weighted salinity and potential temperature, rS
and r. In hydrostatic ocean models, the hydrostaticu
equation is vertically integrated to yield the pressure
whose horizontal gradient appears in the horizontal mo-
mentum equations. An estimate of the error due to our
inability to exactly determine can be gained by ex-r
amining the thermal wind equation which can be found
from (30), namely,

g
2V 3 (ũ ) 5 = r . (31)H z Hro

Here one needs the horizontal gradient of , and withr
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a linear equation of state, this can be obtained from a
knowledge of and because =H 5 =Hr( , , ).S u r S u p
Before commenting on the influence of the nonlinear
nature of the equation of state, we need to consider the
fact that the model variables are r and r rather thanS u
being the Eulerian-mean salinity and potential temper-
ature. The difference between these salinities and po-
tential temperatures makes the following difference to
the horizontal density gradient,

r r
= r(S , u , p ) 2 = r(S, u , p )H H

r r
ø r (b= [S 2 S ] 2 a= [u 2 u ])o H H

r9S9 r9u9
5 r b= 2 a=o H H[ ] [ ]1 2r r

1
2ø = [(r9) ]. (32)Hro

This error in estimating the horizontal gradient of in situ
density is only 0.1% of a typical horizontal density gra-
dient, and when integrating the thermal wind equation
over the whole water column, with =H[ ] being es-2(r9)
timated using a density variation at a fixed location of
0.15 kg m23 varying horizontally by its own magnitude
in a distance of 106 m, the error in the horizontal velocity
is only 1025 m s21. This shows that the difference be-
tween =Hr( r, r, ) and =Hr( , , ) is of no sig-S u p S u p
nificant consequence.

The nonlinear nature of the equation of state of sea-
water is a separate reason why a model cannot exactly
determine =H . Following McDougall and McIntoshr
(1996), the difference between =Hr( , , ) and =HS u p r
is of order 2ro/2=H []a/]u ], where ]a/]u is the2(u9)
variation of the thermal expansion coefficient with po-
tential temperature. This contribution to =H is esti-r
mated to be 2 orders of magnitude larger than the es-
timate obtained from (32). As such, this effect can cause
an error in the horizontal velocity of order 1023 m s21.
An error of this magnitude would not be trivial in an
ocean model if it was a persistent error (for example if
an error of this magnitude occurred all the way along
a zonal average). However this error enters as a hori-
zontal divergence and so it does not lead to any per-
sistent effects. This error in determining =H andr
=H has been present in all ocean modeling to date andp
it has never been recognized as a problem. Neither can
we envisage that this effect will cause significant in-
accuracies and so we recommend that the Eulerian-mean
density, , that appears in the vertical component of ther
momentum equation in (26), can be evaluated using the
model variables and the equation of state as r( r, r,S u

).p

6. The unsteady equations

The full continuity equation, (24), contains the tem-
poral derivative of mean in situ density in the term ( /r

ro)t, which, in unsteady situations, is nonzero. If, as an
example, we assume a warming or cooling at the rate
of 18C in 30 years, and that the density change is dom-
inated by the temperature change, then

213 21= · ũ 5 2(r /r ) ø 2 3 10 s .o t (33)

This is 50 times smaller than the estimate for the di-
vergence of the Eulerian mean velocity of 10211 s21

given by MG92. On the other hand, on the seasonal
timescale, if we assume that temperature changes by
108C in 100 days, and that the density change is again
dominated by the temperature change, we obtain ( /ro) tr
ø 10210 s21. For mesoscale eddies, we estimate ( /ro)tr
ø 1029 s21. Both these values are considerably bigger
than MG92’s estimate for = · and raise a question con-u
cerning the accuracy of the unsteady Boussinesq equa-
tions (27)–(29) in comparison with their non-Boussi-
nesq counterparts (24)–(26).

To address this issue, we again use a technique based
on the method of Lu (2001). We begin by noting that
the continuity equation is

(r /r ) 1 = · ũ 5 0.o t (34)

We now define a new velocity variable by

û 5 ũ 1 dwk (35)

and choose dw so that = · û 5 0 everywhere, and dw 5
0 at the ocean bottom. [Note that û in (35) is different
from û in (15).] It follows that this time

z ] r
dw 5 dz. (36)E [ ]]t ro2h

Let us consider what happens when ( /ro) t is gov-r
erned primarily by advective processes, as we expect to
be the case in eddy-resolving models. It can then be
shown that dw/ is of order Dr/ro or approximately aw̃
few percent, implying that to the same level of approx-
imation, (24) can be replaced by (27), despite the seem-
ingly large estimate for the magnitude of ( /ro) t notedr
above. For example, if vertical advection is dominant,
as in linear dynamics, then

(r /r ) ø w̃r /r ,o t z o (37)

and a simple scale analysis using (36) shows that

dw Hr Drzø ø . (38)
w̃ r ro o

We now turn to the tracer equation (25) and note that
the momentum equation can be treated similarly. Writ-
ing (25) in terms of the divergence free velocity û, we
obtain

r
r r (r 2 r ) r ](dwC )oC 1 = · (ûC ) 5 C 1t [ ]r ]zo t

r
1 = · (K=C ). (39)

Using the continuity equation, (34), this can be written as
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r r
(C 2 C ) 1 = · [û(C 2 C )]R t R

r
(r 2 r ) r ][dw(C 2 C )]o R5 (C 2 C ) 1R[ ]r ]zo t

r
1 = · (K=C ), (40)

where CR is a constant, reference value of r. We nowC
follow Davis (1994) and vertically integrate (40) from
the bottom, z 5 2h, to the (time-varying) height of the
iso-surface r 5 CR of the tracer r. Since dw 5 0 atC C
the bottom, and since r 5 CR at the top of the rangeC
of integration, it follows that the penultimate term in
(40) integrates to zero and the equation becomes

z(C ) z(C )R R
r r

(C 2 C ) dz 1 = · ũ (C 2 C ) dzE R H E H R[ ] [ ]t2h 2h

z(C )R (r 2 r ) ro5 (C 2 C ) dzE R[ ]ro t2h

z(C )R
r

1 = · (K=C ) dz,E
2h

(41)

where =H is the horizontal gradient operator and we
have used the fact that ûH 5 H, the subscript H de-ũ
noting ‘‘horizontal component.’’ The Boussinesq equiv-
alent of this equation can be deduced from (28) and is

z(C ) z(C )R R
r r

(C 2 C ) dz 1 = · ũ (C 2 C ) dzE R H E H R[ ] [ ]t2h 2h

z(C )R
r

ø = · (K=C ) dz.E
2h

(42)

To make our point, we assume for simplicity that we
have a linear equation of state and regard C as potential
density, although this assumption is not essential to our
argument. We now note that the diapycnal flux of tracer
across the surface r 5 CR due to diapycnal mixing isC
obtained from

z(C )R
r

= · (K=C ) dzE
2h

in both Boussinesq and non-Boussinesq versions. Fur-
ther, the Boussinesq version differs from the non-Bous-
sinesq version only by the first term on the right hand
side of (41). In particular, there is no contribution to the
Boussinesq error from dw. Furthermore, the Boussinesq
error appears as a local time derivative, and hence, av-
erages to zero under long time-averaging. It follows that
there is no systematic error in the diapycnal transport
of tracer from the Boussinesq approximation. We stress,
however, that this result has been obtained using our
interpretation of the variables in the Boussinesq tracer
equation, as written in (28). In particular, the horizontal
velocity variable is interpreted as the horizontal com-

ponent of , not as the horizontal component of theũ
Eulerian mean velocity (the vertical velocity beingu
determined from the assumption of divergence-free
flow).

The importance of interpreting the horizontal velocity
variable as H can be understood by applying the sameũ
analysis to (15), in which the horizontal velocity vari-
able is interpreted as the Eulerian mean horizontal ve-
locity, H. In this case, the equivalent of (41) isu

z(C ) z(C )R R

(C 2 C ) dz 1 = · u (C 2 C ) dzE R H E H R[ ] [ ]t2h 2h

z(C ) z(C )R R ]C
5 = · (K=C ) dz 1 dw dz,E E ]z

2h 2h

(43)

where the vertical integral is between the ocean bottom,
z 5 2h, and the time-varying surface 5 CR. TheC
Boussinesq correction term now appears in terms of dw,
but unlike in (41), it is present in the vertically integrated
equation, and does not average to zero under long time
averaging, implying the possibility of systematic error
in this case. Indeed, we believe systematic error is pre-
sent since there are parts of the ocean (e.g., the interior
of the subtropical and subpolar gyres, or in the equa
torial region) where both dw and z are persistently ofC
one sign. [Note that dw is given here by (14), and that
= · is dominated by the contribution from the meanu
vertical velocity, , as discussed following (16).] It fol-w
lows that in such regions, the error term

z(C )R ]C
dw dzE ]z

2h

does not average to zero under long time averaging and
will result in systematic error.

Finally in this section, we note that there are only
four locations where the factor /ro (or its reciprocal)r
needs to be added to the Boussinesq conservation equa-
tions (27)–(29) to make them fully non-Boussinesq. It
follows that it should be relatively simple to modify
existing Boussinesq code to make it fully non-Boussi-
nesq, as demonstrated by Greatbatch et al. (2001) in the
case of the Parallel Ocean Program (POP) model (POP
is the parallel version of the Geophysical Fluid Dynam-
ics Laboratory ocean model developed at Los Alamos).
Greatbatch et al. describe the detailed changes that are
needed to the model numerics as well as some results
that illustrate the benefits of having a fully non-Bous-
sinesq model. As shown in that paper, the overhead in
additional cpu requirement is modest in the case of POP.

7. Conclusions

McDougall and Garrett (1992) and Davis (1994)
warned that the use of the Boussinesq approximation
can lead to errors in the averaged tracer conservation
equation that are the same order as the diapycnal mixing
term. This warning was based on interpreting the ve-
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locity as the Reynolds- or Eulerian-averaged velocity.
In section 3 we extended their analysis to specifically
apply to the present generation of so-called Boussinesq
ocean models in which the model velocity is required
to be divergence-free. We noted that the relative mag-
nitude of the error is enhanced by the large cancellation
between the horizontal and vertical advection terms in
the model’s tracer equation on sloping isopycnal sur-
faces, leaving a much smaller advection (of Boussinesq
magnitude with the conventional interpretation of the
model’s variables) to balance the diapycnal mixing. This
served to confirm the serious conundrum which has
plagued our field since 1992. On the face of it, the
Boussinesq conundrum means that we oceanographers
cannot use Boussinesq models for any application in
which diapycnal mixing is important, for example for
climate studies. While for the past ten years we have
thought it very unlikely that all Boussinesq ocean mod-
els have been in error by as much as the magnitude of
the diapycnal mixing term, a solution to this conundrum
has not been proposed until now.

In the present paper we show that the vector we call
‘‘velocity’’ in an ocean model is not, and never was,
the fluid velocity. Rather the horizontal velocity is (and
always was) proportional to the horizontal mass flux per
unit area. By interpreting the model horizontal velocity
in this fashion, the large error disappears from the mod-
el’s tracer equation and the conundrum is overcome.
When present so-called Boussinesq ocean models
achieve a steady state, we have shown that they are
almost completely non-Boussinesq. We also showed that
with the above interpretation of the model horizontal
velocity, the unsteady equations carried by Boussinesq
ocean models contain no systematic error in the dia-
pycnal advective/diffusive balance due to the Boussi-
nesq approximation.

The emphasis we have placed on the interpretation
of the horizontal velocity vector carried by Boussinesq
ocean models is motivated by the procedure adopted in
hydrostatic ocean models where the vertical velocity is
diagnosed from the horizontal velocity using the re-
quirement that the three-dimensional velocity vector be
divergence-free. However, there is nothing in our anal-
ysis that restricts it to the hydrostatic case. Nonhydro-
static models enforce the same zero-divergence of the
velocity field, although the full vertical momentum
equation is carried to compute the vertical velocity.
Hence, the same analyses of the Boussinesq error in the
averaged tracer equations, associated with neglecting
the velocity divergence, applies to both the hydrostatic
and nonhydrostatic cases.

Throughout the analysis in sections 5 and 6, we have
interpreted the tracer variable as the density-weighted
averaged. It should be noted that similar conclusions
apply if the tracer variable is interpreted instead as the
conventional Reynolds average [the effect of doing this
is to introduce some additional local time derivative
terms such as ( ) t that drop out in steady state, andr9C9

can be shown to be small in unsteady situations]. How-
ever, it is not possible to interpret the velocity variable
in the conservation equations of present ocean models
as being the density-weighted velocity, r, and arriveu
at the conclusions we have done here regarding the ac-
curacy of Boussinesq ocean models. This is because the
continuity equation of present ocean models does not
carry inside the divergence term. To attempt this in-r
terpretation leads to errors of the full Boussinesq mag-
nitude (see Lu 2001), which as Davis (1994) pointed
out, can be as large as the effect of diapycnal mixing
on the tracer equation.

In a recent article, Dukowicz (2001) has introduced a
stiffer (less compressible) equation of state which has the
effect of enabling a relatively accurate evaluation of the
pressure gradient term, r21=Hp, in the horizontal mo-
mentum equation. Paradoxically, this will lead to the en-
trenchment of the full Boussinesq conundrum error be-
cause there is then no choice but to interpret the hori-
zontal velocity vector in the horizontal momentum equa-
tions as the Eulerian-mean horizontal velocity; it cannot
be interpreted as the horizontal mass flux per unit area.
This is because, while the pressure gradient term in the
standard Boussinesq model, =Hp, looks as though it21ro

suffers from the standard Boussinesq error, our reinter-
pretation of the model’s velocity as the horizontal mass
flux per unit area shows that, in fact, it is without error
[see Eqs. (26) and (29)]. The implication is that modi-
fying this term actually introduces error. Indeed, once we
are forced to interpret the model’s horizontal velocity as
the horizontal Eulerian mean velocity, the nondivergence
condition on the model’s three-dimensional velocity vec-
tor then ensures that the model’s velocity will be û in
the terminology of section 3. The conservation equations
(15) and (43) therefore apply, except that the models do
not contain the source terms dw z whose neglect isC
associated with the Boussinesq conundrum. A separate
achievement of the Dukowicz (2001) approach was a
reduction in the transport errors identified by Dewar et
al. (1998) due to models using an equation of state that
is a function of height rather than of pressure. Recently,
Griffies et al. (2000a) have shown that this issue can be
overcome by simply using the pressure in the call to the
equation of state from the previous time step of the model
and this is now the default option in the MOM code.

The accurate conservation equations that need to be
carried by a fully non-Boussinesq ocean model are given
by (24)–(26). There are only four locations where the
factor /ro (or its reciprocal) needs to be added to ther
Boussinesq conservation equations (27)–(29) to make
them fully non-Boussinesq, and the most important of
these is in the continuity equation, (24). Greatbatch et al.
(2001) have modified the code of an existing Boussinesq
ocean model to make it fully non-Boussinesq, and in-
tegrate the hydrostatic version of (24)–(26), and they
describe the detailed changes that are needed to the model
numerics as well as some results that illustrate the benefits
of having a fully non-Boussinesq model. In particular,
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with a non-Boussinesq model it is possible to make direct
comparison between the sea surface height and/or bottom
pressure computed by the model, without the need to
correct, as with a Boussinesq model, for the fact the
model conserves volume rather than mass (e.g., Great-
batch 1994). Likewise, concern over the averaged tracer
equations, such as raised by MG92, is automatically elim-
inated. However, it is important to appreciate that the
Boussinesq/non-Boussinesq model intercomparisons
shown in that paper are not able to throw light on the
Boussinesq conundrum addressed here. This is because
the error associated with the Boussinesq conundrum is
of the same order of magnitude as the diapycnal mixing
term, implying, in turn, that great care would be required
to ensure that there is no spurious diapycnal mixing aris-
ing from the model numerics (Griffies et al. 2000b). Since
a fully eddy-resolving calculation would be required (be-
cause the Boussinesq conundrum applies to averaged
equations), demonstrating the Boussinesq conundrum is
a particularly stringent test of a model (Griffies et al.
2000b), beyond the scope of the relatively simple model
experiments described in Greatbatch et al. (2001).

Finally, we believe that the conundrum raised by
MG92 and Davis (1994) points to the conclusion that
the Boussinesq approximation consists of three parts,
not two, as traditionally assumed. In addition to re-
placing (i) the equation for conservation of mass by the
equation for conservation of volume and (ii) the density
that appears in the temporal and advection operators by
a constant reference density, it is important to also con-
sider (iii) the error in the tracer equation resulting from
using a divergence free velocity as the advecting ve-
locity. As our analysis following Eq. (15) points out, it
is this error that is at the heart of the conundrum raised
by MG92 and Davis (1994). As far as we are aware,
this third part to the Boussinesq approximation has not
previously been pointed out explicitly, although it is
implicit in the work of MG92 and Davis (1994).
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APPENDIX

The Magnitude of Two Terms in (11)

a. The average of the molecular diffusion term

The molecular diffusion in the tracer equation, (8),
can be written

21d 5 r = · (rk =C)C C

215 = · (k =C) 1 k =C · (r =r) (A1)C C

and if we consider the tracer potential temperature, then
the last term in (A1) scales as

21k =u · (r =r) 5 2k a=u · =u.u u (A2)

When averaged, this becomes

]a
22k a =u9 · =u9 2 k =u · =(u9 )u u]u

2 k a =u · =u . (A3)u

The first term here scales as 2(1/2) · = , whichau9u9 u
is smaller than the turbulent flux divergence term in
(11), 2= · ( ), by 3 orders of magnitude. Takingu9u9
=( ) to be given by the square of 38C over a distance2u9
of 100 m, the second term in (A3) is 5 orders of mag-
nitude less that the dominant terms in (11). The third
term in (A3) is also 5 orders of magnitude less than the
dominant terms in (11). We conclude, in agreement with
McDougall and Garrett (1992), that to an excellent ap-
proximation,

d 5 = · (k =C ) (A4)C C

and further, in (11), can be absorbed into the turbulent
mixing term without incurring significant error.

b. The magnitude of C9 = ·u9

Using the functional form for the equation of state,
r 5 r(S, u, p), to find expressions for r21rt and r21=r
in terms of the gradients of salinity, potential temper-
ature, and pressure, and using (7) and two versions of
(8) (one for salinity and one for potential temperature),
an expression for the instantaneous velocity divergence,
= ·u, is obtained which we can use to find

22C9= · u9 5 gc w9C9 1 ak C9= · (=u9)s u

2 bk C9= · (=S9). (A5)S

Here, cs is the speed of sound in seawater. The first term
here can be estimated (say for the tracer potential tem-
perature) using an eddy diffusivity of 1025 m2 s21 op-
erating on a vertical potential temperature gradient of
1022 K m21 giving g 22 5 10212 K s21, whichc w9C9s

is 2 orders of magnitude smaller than the diapycnal
advection and diffusion terms in the conservation equa-
tion of potential temperature. The second term and third
terms in (48) can be estimated by noting (again for the
tracer potential temperature) that ku 5a u9= · (=u9)

ku 2 ku and the divergence terma = · (u9=u9) a =u9 · =u9
can be ignored. The remaining term scales as 1/
2 · = and this is no more than 10213 K s21, whichau9u9 u
is 3 orders of magnitude less than the effects of dia-
pycnal mixing in the potential temperature equation. See
Davis (1994) for further discussion of this term.C9= ·u9
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