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ABSTRACT

Through an idealized model, the authors consider the dynamics of subduction along a midocean front and its
linkage to the intrathermocline eddies (ITEs). The subduction is necessitated by advective–diffusive balance of
potential vorticity (PV), with its flux mainly a function of the mixed layer depth over the normal range of the
horizontal diffusivity. The mismatch of PV impedes the entry of the subducted water into the interior, resulting
in an excess flux that peaks at some intermediate mixed layer depth. This mismatch also causes the generation
of anticyclonic ITEs, whose radius contains no lower bound, and a maximum limited by the entrainment rate.
Through entrainment cooling, ITEs may leave their imprints in the surface temperature, giving rise to a me-
andering appearance of the front, even in the absence of instability.

1. Introduction

Midocean subpolar fronts separate warm and cold wa-
ter masses and represent outcrops of the thermocline into
the mixed layer. Hydrographic observations (Pollard
1986) show that the mixed layer water in the frontal zone
is often subducted into the thermocline, contributing to
ventilation of the latter. Moreover, recent observations
(Riser et al. 1986; Eriksen et al. 1991; Gordon et al.
2002) suggest that the subducted water does not just ease
into the interior, but sometimes manifests as isothermal
blobs embedded in the thermocline, hence termed ‘‘in-
trathermocline eddies (ITE)’’ (Dugan et al. 1982; Kos-
tianoy and Belkin 1989). An example of ITE is shown
in Fig. 1 (reproduced from Fig. 3 of Gordon et al. 2002),
which lies just south of the subpolar front in the Japan
Sea. The section was taken in October 1999, but its water
can be traced to the winter mixed layer in the frontal
zone, suggesting its linkage to the subduction process.

Why is there subduction? How is the subduction flux
constrained by thermal and dynamical balances in the
frontal zone? Can the subduction process be linked to
the generation of intrathermocline eddies? What is their
significance in modifying the water mass properties? It
is the desire to address these questions—thus furthering
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our understanding of the phenomena—that motivates
the present study.

As regards past studies, it should be noted that the
subduction we are concerned with is a frontal phenom-
enon, thus quite distinct from that forced by the large-
scale wind curl or surface cooling—a problem that is
more widely explored in the literature (e.g., Luyten et
al. 1983; Marshall and Nurser 1992). For the frontal
problem, most modeling studies involve a numerical
integration of the primitive equations when an initial
front is allowed to relax (Wang 1993; Spall 1995; Yosh-
ikawa et al. 2001). Such fronts are observed to develop
instability, and the accompanying transverse motion can
force subduction—and upwelling—in the frontal zone.
Of particular significance, Spall (1995) demonstrated
that the subducted water might evolve into ITEs when
the integration is carried out long enough, supporting a
dynamical linkage of the two.

Since subpolar fronts are persistent, albeit time-vary-
ing, features, we present here a different view of the
subduction process based on time-averaged balances. To
elucidate the essential physics, we consider a highly
simplified model that is amendable to analytical treat-
ment. For the organization of the paper, we first describe
the model configuration in section 2. We then discuss
the subduction process in section 3, and its possible
linkage to intrathermocline eddies in section 4. The main
findings of the model are summarized in section 5, as
well as additional discussion.

2. Model configuration
The model configuration is shown in Fig. 2, which is

intended to model a winter front when water masses are
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FIG. 1. Reproduced from Fig. 3 of Gordon et al. (2002) showing an ITE in the Japan Sea. The data are from
the Hakuho-Maru section (the long section in the inset), obtained in Oct 1999. (a) The potential temperature, (b)
salinity, and (c) s0 density. Superimposed on the density section is the geostrophic velocity relative to 1000 db.
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FIG. 2. The model configuration and symbols used in the model. The frontal zone represents an outcrop of the
thermocline into the mixed layer. It is a transition region whereby buoyancy and flow of the warm layer decrease to
zero at its cold edge. As such, the influx V0 of warm water into the frontal zone is wholly subducted and returns within
the thermocline. Because of mismatch of PV of the subducted water to that of the interior thermocline, part of the
subduction flux is dammed up in the form of anticyclonic eddies, and expended by entrainment into the warm water.

more sharply defined. As marked in the figure, the frontal
zone represents a vertical extension of the thermocline into
the mixed layer, where vertical mixing has rendered the
density and flow fields vertically uniform. We neglect the
alongfrontal variation and adopt a right-handed Cartesian
coordinate system, with positive x and y directions referred
respectively as eastward and poleward—as for the sub-
polar front in the Northern Hemisphere. For simplicity,
both warm and cold water masses straddling the frontal
zone are assumed homogeneous in density. For the former,
one may invoke mixing by mesoscale eddies, which also
homogenizes the potential vorticity (PV). For the cold
water mass, its homogeneity can be attributed to surface
cooling and convection—processes that produced the deep
water. Since no geostrophic shear may be sustained with-
out stratification, and given its great depth, the cold water
mass is assumed motionless.

In our conceptualization, therefore, the frontal zone
is not just a thermal feature, but also a transition region
whereby the flow velocity from the warm side is reduced
to zero. It should be stressed that, since the frontal zone
is explicitly resolved, there can be no discontinuity in
buoyancy or velocity at its cold edge. Since in the ab-
sence of alongfrontal variations, the mass continuity im-
plies that the total cross-frontal transport is zero, what-
ever the influx of warm water into the frontal zone, it
must be wholly subducted before the cold edge, and
returns within the thermocline. This volume flux (at y
5 0) is henceforth referred as the subduction flux—the
primary property to be determined from the model.
Since for the large-scale fronts of concern here the cause

for the differing water masses is the differential surface
heating, there must be a poleward buoyancy flux in the
steady state, taken to be external to the model. Moreover,
given the narrowness of the frontal zone (compared with
the planetary scale), this flux is assumed a constant
across the frontal zone—irrespective of local air–sea
fluxes. As we shall see later, this poleward buoyancy
flux, together with the total buoyancy difference across
the frontal zone, define the scale of the subduction flux.

To examine the subsequent fate of the subducted wa-
ter, we assume that internal mixing during the subduc-
tion process would render the subducted water vertically
homogeneous, which may then be described as an in-
trathermocline ‘‘layer.’’ Properties of this layer before
it is subjected to significant diabatic exchange with the
ambient water define its upstream conditions. Such a
three-layer configuration (warm, cold, and intrather-
mocline) represents a reasonable idealization of the ob-
served situation, and is the simplest that allows one to
address the evolution of the subducted water on its jour-
ney into the interior. Since the intrathermocline layer is
sandwiched between a turbulent warm layer and a qui-
escent cold layer, its only diabatic exchange with the
ambient water is assumed through an upward entrain-
ment across its top surface. If the intrathermocline layer
contains anticyclonic eddies (of extended center core),
entrainment would be enhanced, thus affecting mass and
property balances.

For simplicity, the model derivation will proceed in
nondimensional forms. With b* denoting the buoyancy
of the warm layer (above that of the cold layer), H the
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unperturbed thermocline depth, f the Coriolis parameter
(assumed constant in the frontal zone), and Fb the (con-
stant) poleward buoyancy flux, the scaling rules (indi-
cated by brackets) are defined as [b] 5 b*, [z] 5 H, [y]
5 RC [ f 21(b*H)1/2 (the Rossby deformation radius),
[u] 5 fRC, [y ] 5 Fb(b*H)21, [w] 5 [y]H , [k] (hor-21RC

izontal diffusivity) 5 [y ] RC, [q] (PV) 5 fH21, and
wind and frictional stresses by [t] 5 r0 fH[y]. In the
following, we shall first consider the problem of sub-
duction, and then its linkage to intrathermocline eddies.

3. Subduction

The aim here is to examine how the thermal and
dynamical balances in the frontal zone, together with
the far-field conditions, may constrain the subduction
flux.

a. Heat balance

To formulate the heat balance in the frontal zone, we
decompose the buoyancy flux into the advective flux
associated with a mean cross-frontal circulation and the
diffusive flux parameterized through a horizontal (eddy)
diffusivity. As this diffusivity embodies turbulent mo-
tions in the mixed layer, its value is inherently uncertain.
For simplicity, a constant value is nonetheless assigned,
which will be varied over a wide range to underscore
its uncertainty. As seen in Fig. 2, the advective flux (at
any y) is facilitated by a poleward transport V(y) of
lighter water of buoyancy b(y) in the mixed layer and
a return of denser water underneath of equal transport
(see section 2). If one neglects the horizontal diffusion
below the mixed layer, the buoyancy flux carried by the
return flow equals that exiting the base of the mixed
layer poleward of y, so that

V

advective buoyancy flux 5 Vb 2 b dVE
0

for 0 , y , l, (3.1)

where l marks the width of the frontal zone. One doesn’t
know how V varies in the frontal zone except, like buoy-
ancy, it decreases to zero at the poleward edge. For sim-
plicity, we assume the two to be spatially similar so that

V/V 5 b,0 (3.2)

where the subscript 0 is used henceforth to denote the
value at y 5 0, with V0 being the subduction flux to be
determined. The need to adopt a specific form, such as
(3.2), reflects the physics not considered in the model,
which however does not impact on its main findings.
With (3.2), it is trivial to see that the return flow carries
a (transport-weighted) mean buoyancy half that of the
overlying water so that (3.1) becomes

1
advective buoyancy flux 5 Vb for 0 , y , l. (3.3)

2

Combining advective and diffusive fluxes, the heat
balance thus states

1
Vb 2 Kb 5 1 for 0 , y , l, (3.4)y2

where the subscript y denotes a spatial derivative and

K 5 h km (3.5)

will be referred as the total diffusivity—being the prod-
uct of the horizontal diffusivity k and the mixed layer
depth hm. Since this depth is controlled mainly by ver-
tical mixing independent of the frontal processes, it is
assumed external to the model. Partly for this reason,
there is no physical basis to adopt a particular distri-
bution of the mixed layer depth across the (narrow)
frontal zone, which thus is taken to be a constant for
simplicity. Given the strong seasonal variation of this
depth, however, it will be varied over the full range
when the parameter dependence of the model solution
is examined. One notes that because of the scaling, the
poleward buoyancy flux on the rhs of (3.4) has a unit
magnitude. It is clear from this equation that horizontal
diffusion is required for resolving the frontal field and
hence essential for the model. But with its inclusion,
the heat balance no longer by itself implies a finite V—
or subduction—since the buoyancy flux can be wholly
accomplished by diffusion. As we shall see next, how-
ever, this is not the case for the vorticity balance, which
demands a subduction in the presence of horizontal dif-
fusion.

b. Vorticity balance

To formulate the vorticity balance in the frontal zone,
let us first define the upper layer as consisting of the
warm layer above the thermocline (z . 2h for y , 0)
and the mixed layer within the frontal zone (z . 2hm

for 0 , y , l), as shaded in Fig. 2. Since the flow
contains no vertical shear in this layer (section 2), PV
may be defined as a local property of the layer and
governed by [from (A.8), in dimensional form]

21= · [h(vq 2 k=q)] 5 k · = 3 [h (t 2 F)]

for y , l, (3.6)

where t is the wind stress, and F the frictional stress
at the base of the layer. If one integrates this equation
from the far field (y ø 2`) to the frontal zone, and
nondimensionalizes the variables, one obtains an equa-
tion analogous to (3.4)

Vq 2 Kq 5 F for 0 , y , l, (3.7)y q

where

21q 5 h (1 2 u ) (3.8)m y

21 yF 5 [F ] 2 [h i · (t 2 F)] (3.9)q q 2` 2`

are respectively PV and PV flux in the frontal zone. As
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discussed in appendix A, (3.6) holds irrespective of en-
trainment or subduction through the base of the layer,
as encapsulated in the impermeability theorem of PV
(Haynes and McIntyre 1990). In other words, the PV
flux is more conservative than PV since a diabatic mass
flux would alter the horizontal transport in inverse pro-
portion to PV so that the PV flux remains unchanged.

Conceptually, one may set the far field at the equator
where the PV flux ideally vanishes (due to hemispheric
symmetry). Given also the shallowness of the mixed
layer (compared with the thermocline in the far field),
the sign of (3.9) is likely determined by the stresses in
the frontal zone. Since the alongfrontal flow is seen later
to be eastward, the frictional stress is positive, which
would favor subduction. The wind stress, on the other
hand, can be of either sign (or zero), and hence may or
may not drive subduction [in fact, the subpolar front is
typically situated under westerly—opposite of that re-
quired for subduction via (3.7)]. To underscore the fun-
damental nature of the subduction as inherent to the
frontal phenomenon, we shall therefore concentrate on
the case of zero PV flux and show that indeed the so-
lution is characterized by subduction. The effect of a
nonzero (but constant) PV flux—due to wind or fric-
tional stress—will be discussed later (section 3d) in the
context of how the basic solution is modified.

c. Solution

We now have Eqs. (3.2), (3.4), (3.7), and (3.8) gov-
erning the variables b, V, q, and u, which can be solved
subjected to the boundary conditions discussed below
(see section 2). Since buoyancy and PV are assumed
homogenized in the warm layer, they are of unit mag-
nitude by scaling definitions, or

b 5 q 5 1 at y 5 0. (3.10)

Assuming additionally that u in the warm layer satisfies
the Margules equation, it is seen in appendix B to have
the magnitude

u 5 1 2 h at y 5 0,m (3.11)

which is thus stronger when the mixed layer is shal-
lower. At the cold edge of the front, we have on the
other hand

b 5 u 5 0 at y 5 l, (3.12)

where the frontal width l is as yet unknown. As seen
in appendix C, the model is hereby closed, and an an-
alytical solution can be obtained given the external (di-
mensionless) parameters: the mixed layer depth hm, the
horizontal diffusivity k, and the PV flux Fq. It is noted
that no boundary condition is imposed on q at the cold
edge. This is because PV may be defined as (3.8)—and
hence governed by (3.7)—only where there is an upper
layer; and, with PV undefined beyond the cold edge, no
matching condition is required.

Before we present the solution, it is recalled that the

model is more applicable to the winter front (section
2), and as representative of such a front, one may take
a total temperature difference across the frontal zone to
be 10 K so that the buoyancy of the warm layer is b*
5 1 cm s22. Setting H 5 200 m and f 5 1024 s21, one
estimates RC ø 14 km, [u] ø 1.4 3 102 cm s21, and
[q] ø 5 3 1029 cm21 s21. Using a poleward heat flux
of 1.3 3 1011 W km21 (see, e.g., Voorhis et al. 1976),
one estimates additionally [y] ø 1.5 cm s21, [w] ø 2.1
3 1022 cm s21, [t] ø 3 dyn cm22, and [k] ø 2 3 106

cm2 s21. A typical mixed layer depth is 100 m, which
would yield hm 5 0.5. For the horizontal diffusivity, we
follow Taylor (1915) and use velocity and spatial scales
of 10 cm s21 and 10 km for eddies to yield a diffusivity
of 107 cm2 s21, or in dimensionless units, k 5 5.

The solution using above dimensionless values and
zero PV flux (hm 5 0.5, k 5 5, Fq 5 0) is plotted in
Fig. 3. As expected, there is a poleward volume flux in
the mixed layer V, which is depleted by subduction in
the frontal zone. With the corresponding poleward de-
crease of the advective buoyancy flux, the diffusive flux
must increase to accommodate the same total flux (3.4),
causing a sharpening of the density gradient. As noted
in (3.11), there is an eastward flow (and negative current
shear) just outside the frontal zone. As this current de-
creases to zero at the cold edge, the negative shear gives
way to positive shear, resulting in a velocity maximum
in the frontal zone. The poleward increase of the cy-
clonic shear gives rise to an increase in PV—with the
relative vorticity attaining a magnitude comparable to
the Coriolis parameter. In other words, the dynamics in
the frontal zone may not be quasigeostrophic, and one
needs to be cautious in inferring the vertical velocity
based on such assumption.

For an observational validation, Pollard and Regier
(1992), for example, clearly shows the presence of a
frontal jet, which moreover would support a poleward
increase of PV. A direct comparison of the latter how-
ever cannot be made since most calculations of PV are
carried out for density intervals, rather than for the upper
layer. When converted to dimensional units, the solution
shown in Fig. 3 is quite sensible. The frontal jet has a
peak speed of 1 m s21, the frontal width is 40 km, and
the maximum poleward velocity is 3 cm s21.

Based on the above solution, we offer a simple expla-
nation of the subduction as inherent to the frontal phe-
nomenon: The shoaling of the thermocline to the mixed
layer depth and the increase of the cyclonic vorticity as
the frontal jet adjusts to zero cause a poleward increase
of PV and, hence, a diffusive flux toward the warm side.
In the absence of wind or frictional stress, this diffusive
flux must be balanced by poleward advection of the lower
PV water, which is then subducted via continuity. It is
noted that with zero PV flux, the vorticity equation (3.7)
is homogeneous, containing no forcing terms. Nor have
we considered the mechanics that drives the ageostrophic
cross-frontal flow. But to the extent that the solution is
uniquely determined, the subduction may be regarded as
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FIG. 3. Solutions in the frontal zone for the case of Fq 5 0, hm 5 0.5, and k 5 5. As the eastward velocity
u adjusts to zero at the cold edge, cyclonic vorticity is generated, which, together with shoaling of the
thermocline, cause a poleward increase of the potential vorticity q. The resulting diffusive flux toward the
warm side is balanced by the poleward flux V of the low PV warm water. As this flux is depleted by subduction,
gradient of the buoyancy b is sharpened to accommodate the poleward buoyancy flux.

FIG. 4. Subduction flux V0 and the frontal width l as functions of
the mixed layer depth hm and horizontal diffusivity k, for the case
of zero PV flux (Fq 5 0). The frontal zone narrows for decreasing
diffusivity or mixed layer depth, but the subduction flux is mainly a
function of the mixed layer depth over the normal range of diffusivity.
The solid circle marks the solution shown in Fig. 3. Properties along
the dotted line are plotted in Fig. 6.

forced by turbulence that gives rise to horizontal diffusion
in the frontal zone and the large-scale processes that set
up the far-field conditions.

While the above argument based on the vorticity bal-
ance offers a qualitative explanation of subduction, it
gives no indication as to the magnitude of the subduction
flux, which requires consideration of the buoyancy bal-
ance as well, as seen in the next section.

d. Parameter dependence

We plot in Fig. 4 the subduction flux (solid lines) and
the frontal width (dashed lines) as functions of the di-
mensionless parameters for the case of zero PV flux.
The solid circle marks the solution shown in Fig. 3. One
notes first of all that as diffusivity or mixed layer depth
(hence the total diffusivity) decreases, the frontal zone
narrows. This dependence can be surmised from the heat
balance (3.4) by noting that the diffusive flux is bounded
above by unity, so a smaller total diffusivity would be
accompanied by a sharper gradient and hence a narrower
frontal zone. Quantitatively, it is seen that for a diffu-
sivity of the order estimated earlier, the frontal zone
spans a few Rossby deformation radii.

For the subduction flux, it is a weak function of the
diffusivity, which can be explained as follows: At a
given mixed layer depth, PV attains the same maximum
at the cold edge if one neglects the relative vorticity for
a moment and, since a larger diffusivity is associated
with a wider front, the diffusive PV flux remains un-
changed, and so is the subduction flux needed for the
balance. If one now includes the relative vorticity, the
maximum PV would be slightly smaller with larger dif-
fusivity (since the front is wider), thus weakening the
diffusive flux. This implies a smaller subduction flux,
which can account for the slight tilt of the solid lines.

To explain the dependence of the subduction flux on

the mixed layer depth, one notes first of all that a deeper
mixed layer implies a weaker eastward jet outside the
frontal zone (3.11). Reinforced by a wider frontal zone,
the cyclonic vorticity at the cold edge, hence the PV
there, is smaller. This would weaken the vorticity dif-
fusion—hence the subduction flux—as the depth effects
on the total diffusivity (3.5) and PV (3.8) otherwise
cancel out. This variation of the subduction flux not-
withstanding, it is of O(1) over the medium range of
the mixed layer depth—in support of its scaling by the
poleward buoyancy flux.
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FIG. 5. Same as Fig. 3 but for the case of Fq 5 21. This PV flux can be achieved by a combination of
zero PV flux in the far field, an eastward wind stress of 1.5 dyne cm22, and zero frictional stress (see section
3c). It is seen that the subduction flux and the frontal width have decreased from that shown in Fig. 3.

To assess the effect of wind or frictional stress on the
subduction, we have plotted in Fig. 5 the solution cor-
responding to Fig. 3, but with Fq 5 21. As seen from
(3.9), for a mixed layer depth of 0.5, this PV flux can
be achieved by a combination of zero PV flux in the
far field, an eastward wind stress of 1.5 dyn cm22 and
zero frictional stress. Compared with Fig. 3, it is seen
that the subduction flux is reduced, the reason being that
the diffusive flux in (3.7) is now partially balanced by
the PV flux on the rhs, thus weakening the subduction.
The weakened advection in turn implies via (3.4) a
sharper density gradient and hence a narrower frontal
zone. It is interesting to see that instead of producing
a frontal convergence, an eastward wind actually curtails
the poleward flow in the frontal zone to weaken the
subduction. It should be pointed out that the Ekman
dynamics does not apply in the frontal zone, but is sup-
planted by the more general balance (3.7). Based on this
solution, effects of other processes can be inferred: The
frictional stress, for example, would generate a positive
PV flux, thus enhancing the subduction and widening
the frontal zone.

Given the noisy frontal environment, testing the
above dependence from observation is obviously dif-
ficult. Although the frontal width can be monitored, say,
by remote sensing of the surface temperature, its strong
dependence on the highly uncertain diffusivity has less-
ened the significance of its prediction. The subduction
flux, on the other hand, is more difficult to measure
observationally, but its insensitivity to diffusivity and
strong dependence on the mixed layer depth—which
varies seasonally—may offer a better prospect for an
observational assessment. One however is mindful of
the seasonal variation of the poleward buoyancy flux
that defines the scale of the subduction flux; the greater
buoyancy flux in winter, for example, may (or may not)
overcome the effect of a deepening mixed layer in weak-
ening the subduction.

With above discussion, we have concluded our ex-
amination of the frontal balances and how they may
constrain the subduction flux. We now proceed to ex-

amine the subsequent fate of the subducted water, and
its possible linkage to the intrathermocline eddies.

4. Intrathermocline eddy

As alluded to in section 2, the departure point of the
following discussion is the ‘‘upstream’’ intrathermocline
layer, which has been rendered vertically homogeneous
by internal mixing during subduction, but not yet mod-
ified by diabatic exchange with the ambient water.

a. Upstream condition

Since internal mixing does not change fluxes of buoy-
ancy or PV, one may set their upstream values to the
transport-weighted means of the subducted water exiting
the base of the mixed layer (hence labeled by the sub-
script m). These mean properties are derived in appendix
D, based on the frontal solution. For the buoyancy, it
turns out that

V0 1
21b [ V b dV 5 , (4.1)m 0 E 20

or the mean buoyancy of the subducted water is simply
half that of the warm layer.

The expression for the mean PV (D.2) is more com-
plicated, containing both the subduction flux V0 (via a
of [C.2]) and the PV flux Fq. For the case of zero PV
flux, it has however a simple expression

V0 1 2 V /6021q [ V q dV 5 . (4.2)m 0 E 1 2 V /200

Since, as seen in Fig. 4, the subduction flux is insensitive
to changing diffusivity, its value along the dotted line
(k 5 5) is redrawn in Fig. 6 along with the mean PV
(4.2). As expected from discussion in section 3d, the
mean PV is greater for a shallower mixed layer, but
unlike the subduction flux, which is bounded above by
the buoyancy balance, the mean PV can in principle
increase indefinitely as the mixed layer shallows.
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FIG. 6. The subduction flux V0, the excess flux DV, and the mean
PV of the subducted water qm, plotted as functions of the mixed layer
depth hm for Fq 5 0 and k 5 5 (i.e., along the dotted line in Fig. 4).
It is seen that the excess flux has a maximum at some intermediate
mixed layer depth due to the decreasing trends in both V0 and qm as
hm increases.

With the specification of the upstream condition of
the intrathermocline layer, one now proceeds to examine
its downstream evolution.

b. Excess subduction flux

As we have discussed in section 2, the diabatic ex-
change between the intrathermocline layer and its am-
bient is through an entrainment across its upper surface.
Since such entrainment does not change the density of
the source water, the latter retains its upstream value.
With the subscript i denoting the ‘‘interior’’ value (i.e.,
where the thermocline remains unperturbed), one has
then

b 5 b 5 1/2.i m (4.3)

For the PV, on the other hand, it is conserved only
if the entrainment is weak (relative to advection), which
will be assumed later to be the case. But as discussed
above, a more general conservation principle, as en-
tailed in the impermeability theorem, is that of the PV
flux, which holds regardless the strength of the entrain-
ment. For the present application, we follow the same
steps as those leading to (3.7), but with the end points
of integration being the upstream point of the intra-
thermocline layer and its downstream mergence with
the unperturbed thermocline. Recalling that we have
neglected the horizontal diffusion in the subsurface lay-

er and neglecting also the frictional stresses acting on
the layer, the vorticity balance then becomes

21V q 5 V « ,0 m i (4.4)

where Vi is the (unknown) volume flux into the interior
thermocline and « the thickness of the unperturbed ther-
mocline—an external parameter. Rearranging the above
equation, one has

V 5 «q V ;i m 0 (4.5)

the volume flux entering the interior thermocline thus
may differ from that of the subducted water if there is
a mismatch in PV. Let this difference be denoted by
DV, one has then

DV [ V 2 V 5 V (1 2 «q ). (4.6)0 i 0 m

It is seen in particular

DV . 0 if «q , 1;m (4.7)

that is, if the interior thermocline is sufficiently thin, it
would block out a portion of the subduction flux, an
excess that must be disposed of by entrainment into the
warm layer. It is important to distinguish therefore be-
tween the subduction flux that exits the base of the
mixed layer and the flux that actually enters the interior
thermocline and contributes to its ventilation—a dis-
tinction perhaps not sufficiently emphasized in the lit-
erature.

One also perceives the other possibility of «qm . 1
when (4.6) implies a transport deficit. How might this
reconcile with the one-way entrainment? Since in this
case, the interior thermocline poses no impediment to
the entry of the subducted water, one may argue that
the latter is simply embedded in the former, so there is
no deficit in the transport. One may also argue that the
excessive thickness of the thermocline, since not
propped up by the incoming water, would simply be
eroded away by local mixing. In any event, given the
observed thinness of the thermocline (when compared
with the winter mixed layer), such occurrences are likely
infrequent.

Since both V0 and qm in (4.6) are mainly functions
of the mixed layer depth (Fig. 6), so is the excess flux
DV, which is plotted in the same figure for « 5 0.1. As
expected, except for very shallow mixed layer not likely
realized in winter, DV is positive. Moreover, this excess
flux peaks at some intermediate depth, the reason for
which is as follows: As the mixed layer deepens, there
is a greater mismatch of PV of the subducted water to
that of the interior thermocline, which would dam out
a greater portion of the subduction flux; but, since the
subduction flux itself is smaller, the absolute excess flux
thus exhibits a local maximum.

This excess flux can be disposed of by entrainment
into the upper layer, and, since the entrainment rate is
higher across a shallower interface, one expects a part
of the excess flux to recirculate in the vicinity of the
frontal zone where thermocline shoals. But if, for some
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reason, the subduction route is punctuated by anticy-
clonic eddies with their domed surfaces, the recircula-
tion cell can extend farther into the interior. The gen-
eration of these eddies as an integral part of the sub-
duction process is the subject to be examined next.

c. Eddy generation

As discussed in the introduction, ITEs have been ob-
served near the front and they have been linked to the
subduction process through water-mass properties. Dy-
namically, as explored extensively in the literature
(Flierl 1979; Dugan et al. 1982; Spall 1995), conser-
vation of PV as the subducted water seeks to merge
with a thin thermocline induces a negative vorticity, and
hence intrathermocline eddies of an extended center
core. Common to the solutions cited above, the eddy
radius is a free parameter, whose selection obviously
requires other considerations. In Spall’s (1995) initial-
value problem, for example, eddies are the byproduct
of baroclinic instability, and hence their size is scaled
by the Rossby deformation radius.

Since the condition for the generation of anticyclonic
eddies is precisely that for the existence of the excess
subduction flux (4.7), we propose a different scenario
for the generation of ITEs based on steady-state bal-
ances: as the mixed layer water is subducted, only a
part of it may enter the interior thermocline because of
the vorticity constraint. The rest would be dammed up
in the form of anticyclonic eddies. These eddies would
grow in size until the entrainment loss through their
domed surfaces equals the excess flux that feeds the
eddies. This balance holds even if the eddy is moving
along the front (by advection or self-propagation),
which would set an upper bound on the eddy size. The
reason why it is an upper bound is because eddies need
not graze one another and, as mentioned earlier, some
of the excess flux may recirculate without going through
the eddies. For a crude scale derivation, let this maxi-
mum radius be denoted by R and the entrainment rate
by we (all are nondimensionalized as before), the above
mass balance states then

22RDV ø w dA 5 w pR , (4.8)EE e e

eddy

in which the overbar indicates an areal average. Rear-
ranging (4.8) yields

21 21R 5 2p (w ) DV. (4.9)e

The eddy radius thus is proportional to the excess flux
DV divided by the mean entrainment rate across the top
of the eddy.

Although the entrainment rate is highly uncertain,
some qualitative points can nevertheless be made from
(4.9). First of all, there is no lower bound on the eddy
size since the excessive flux can be zero; the model thus
can account for the submesoscale eddies discussed by

McWilliams (1985). Second, other than its dependence
on the mixed layer depth, the eddy size is limited above
only by the entrainment rate. An ITE anchored in a deep
thermocline thus can achieve great size, which may pos-
sibly explain the large eddy observed by Bane et al.
(1989) in the Sargasso Sea. Third, although the mixed
layer depth undergoes seasonal change, the observed
eddies should bias toward the maximum size since the
dissipative timescale is long compared with seasons.
That is, while one may observe eddies of different sizes
at various stages of growing and decaying, there is al-
ways the relic of the largest eddy allowed by the mixed
layer depth.

For a quantitative assessment of (4.9), we invoke Pol-
lard and Regier (1992, their Fig. 15a) to assign an en-
trainment rate of order 1022 cm s21, which has a di-
mensionless value of 0.5 (see section 3c). Based on Fig.
6, the maximum eddy radius thus is about twice the
Rossby deformation radius or 30 km, which is not in-
consistent with the observation shown in Fig. 1. One,
of course, recognizes that the entrainment rate may vary
over orders of magnitude, so the above comparison does
not validate the proposed balance (4.9), but merely sup-
ports its plausibility.

5. Summary and discussion

Although the model is highly idealized, some qual-
itative deductions seem robust, as summarized below:

• A poleward flow in the frontal zone—and hence sub-
duction—is necessitated by a backward diffusion of
PV toward the warm side as the frontal jet adjusts to
zero value at its cold edge.

• The subduction flux is insensitive to the horizontal
diffusivity, but mainly a function of the mixed layer
depth, being smaller (in dimensionless units) when
the mixed layer is deeper.

• Because of the mismatch in PV, only a portion of the
subducted flux may enter the interior thermocline,
with the excess flux peaking at some intermediate
mixed layer depth.

• The above mismatch of PV also causes the generation
of anticyclonic ITEs, which provide a pathway for
dispensing the excess flux through enhanced entrain-
ment across their domed surfaces.

• The mass balance may place a constraint on the eddy
radius, which contains no lower bound, and a maxi-
mum limited by the entrainment rate.

• Given the seasonal change of the mixed layer depth
and slow decay of the ITEs, the observed eddy radius
should bias toward this maximum.

Through this study, we have presented a view of sub-
duction as inherent to the frontal phenomenon, which
is generally accompanied by ITEs based on time-mean
balances. As such, the eddies may span a wide range
in size, which nonetheless are predominantly anticy-
clonic—both in contrast to eddies generated by baro-
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clinic instability. Also of interest, the deeper mixed lay-
er, in fact, would reduce the subduction rate, which may
still be greater in winter owing to the increased buoy-
ancy flux across the frontal zone. The reason that sub-
duction is more pronounced in winter is due paradox-
ically to its greater impediment to enter the interior,
resulting in ITEs of more extended center core.

With entrainment—hence cooling of the surface wa-
ter—enhanced over their domes, ITEs may leave im-
prints in the surface temperature, which seems to be the
case in Japan Sea (Gordon et al. 2002, comparing their
Figs. 2 and 6). It is suggested therefore that the observed
meandering of the subpolar front simply reflects the
presence of ITEs, and need not be indicative of frontal
instability. As the movement of these eddies are likely
impeded by topography, they may account for the sem-
istationary appearance of the meanders.
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APPENDIX A

Vorticity Equation of the Upper Layer

We are concerned with the vorticity equation in the
upper layer (shaded in Fig. 2), which consists of the
warm layer above the thermocline and the mixed layer
in the frontal zone. One assumes that vertical mixing
has rendered the flow vertically uniform so that a po-
tential vorticity q may be defined as

21q [ h ( f 1 z), (A.1)

where

z [ k · = 3 v (A.2)

is the relative vorticity. One begins with the momentum
equation of the form

dv
21 211 f k 3 v 5 2r =p 1 h (t 2 F), (A.3)0dt

where h is the layer depth, t the wind stress, and F the
frictional stress associated with the current shear at the
base of the layer. If one takes the curl of this equation,
its vertical component is

]z
211 = · (hvq) 5 k · = 3 [h (t 2 F)]. (A.4)

]t

The continuity equation for the layer is given by
]h

1 = · (hv) 5 w , (A.5)e]t

where we is the diabatic vertical velocity across the base
of the layer (positive for entrainment and negative for
subduction). For the turbulent fields (denoted by primes)
that are inviscid and adiabatic, (A.4) and (A.5) combine
to yield the conservation of PV

dq9
5 0 (A.6)

dt

so that the turbulent flux of PV may be parameterized
in terms of diffusivity k (Young 1987)

v9q9 5 2k=q, (A.7)

where overbars denote the time means. Now taking the
time mean of (A.4), neglecting terms involving h9, and
applying (A.7), one obtains the equation governing the
mean PV (dropping overbars hereafter)

21= · [h(vq 2 k=q)] 5 k · = 3 [h (t 2 F)], (A.8)

which states that divergence of the PV flux (by mean
and turbulent flows) is balanced by the torque exerted
by wind and frictional stresses. It is important to note
that this equation holds irrespective of the diabatic ver-
tical velocity we. This is because such velocity would
alter the volume transport in inverse proportion to PV
so that the mean advective flux remains unchanged. This
is the essence of the impermeability theorem of PV
(Haynes and McIntyre 1990).

APPENDIX B

Solution in the Warm Layer

In the warm layer, PV is homogenized to unity by
scaling definition so that

21q 5 h (1 2 u ) 5 1. (B.1)y

Given that the warm layer has unit buoyancy and that
the alongfrontal velocity satisfies the Margules equation,
one has

u 5 2h .y (B.2)

The two equations (B.1) and (B.2) can be combined to
yield an ordinary differential equation governing the
thermocline depth

h 2 h 5 21.yy (B.3)

Subjected to the boundary conditions that

h → 1 as y → 2` (B.4)

h 5 h at y 5 0, (B.5)m

the solution is
yh 5 1 2 (1 2 h ) e .m (B.6)

Substituting this solution into (B.2), one derives that

u 5 1 2 h ,0 m (B.7)

which links the alongfrontal velocity at the warm edge
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of the frontal zone (hence the subscript 0) to the mixed
layer depth.

APPENDIX C

Solution in the Frontal Zone

Substituting (3.2) into (3.4) and rearranging, one ob-
tains

2 2 21K (a b 2 1) db 5 dy, (C.1)

in which we have defined
1/2a [ (V /2) ,0 (C.2)

with the subduction flux V0 yet to be determined. In-
tegrating (C.1), one obtains

211 1 a 1 1 ab
21y 5 2K(2a) ln , (C.3)1 2 1 2[ ]1 2 a 1 2 ab

which can be inverted (graphically) to render b(y). Sub-
stituting (3.2) into (3.7) and using (C.1), one obtains

dq
2 2 2(1 2 a b ) 1 2a bq 5 F . (C.4)qdb

Dividing this equation by (1 2 a2b2)2 leads to

d
2 2 21 2 2 22[(1 2 a b ) q] 5 (1 2 a b ) F , (C.5)qdb

which can be integrated to yield
2 2q 5 (1 2 a b )

F1 ab aq
3 1 2

2 2 2 27 51 2 a 2a 1 2 a b 1 2 a

211 1 1 a 1 1 ab
1 ln .1 2 1 2 68[ ]2 1 2 a 1 2 ab

(C.6)

Integrating (3.8), one has
y

u 5 u 1 (1 2 h q) dy. (C.7)0 E m

0

Substituting from (C.6) and performing the integration,
one obtains

u 5 u 1 y0

F1 a 1 1 1 aq
2 h K 2 1 lnm 2 275 1 2 6[ ]1 2 a 2a 1 2 a 2 1 2 a

3 (1 2 b)

F 1 1 ab 1 1 aq
2 b ln 2 ln .1 2 1 2 8[ ]4a 1 2 ab 1 2 a

(C.8)

To determine the subduction flux V0, we apply the

boundary conditions (3.12) to (C.3) and (C.8) to yield
two equations governing the frontal width l,

K 1 1 a
l 5 ln , and (C.9)1 22a 1 2 a

21
1 2 F /2q

h 5 1 1 K (1 1 l). (C.10)m 21 2[ ]1 2 a

Eliminating l from (C.9) and (C.10), one obtains an
equation linking the subduction flux V0 to the external
parameters hm, k, and Fq. For practical calculations of
the solution, we select particular values of V0 and K,
then calculate successively l [from (C.9)], hm [from
(C.10)], and k [from (3.5)], which then allow the graph-
ing of V0 and l as functions of hm and k, as depicted in
Fig. 3. Once V0 is calculated, one may then calculate
b, V, q, and u as functions of y from (C.3), (3.2), (C.6),
and (C.8) successively.

APPENDIX D

Mean Properties of the Subducted Water

Let bm be the (transport weighted) mean buoyancy of
the subducted water, one derives

V 10

21b 5 V b dV 5 b db [using (3.2)]m 0 E E
0 0

1
5 , (D.1)

2

which sets the ‘‘upstream’’ buoyancy of the intrather-
mocline layer. Similarly, using (C.6), a straightforward
integration yields

V0

21q 5 V q dVm 0 E
0

1 2 F /2 F 1 1 a Vq q 05 2 ln 1 2
2 1 2 1 2[ ]1 2 a 4a 1 2 a 6

F 1q 31 1 1 a 2 (1 1 a ) ln(1 1 a)5[ ]2V 30

1
31 1 2 a 2 (1 2 a ) ln(1 2 a)[ ]3

7 V02 1 ,69 3
(D.2)

which links the ‘‘upstream’’ PV of the intrathermocline
layer to the subduction flux and the PV flux in the frontal
zone. It is noted, in particular, that

1 2 V /60q 5 if F 5 0, (D.3)m q1 2 V /20

which is the value plotted in Fig. 6.
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