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ABSTRACT

A homogenization technique is used to study the change in the frequency of planetary Rossby waves that
results from their interaction with a small-scale two-dimensional topography. The frequency change is computed
explicitly for a topography consisting of a random distribution of well-separated cylindrical seamounts; it cor-
responds to a phase-speed increase (decrease) when the flat-bottom Rossby wave frequency is larger (smaller)
than a typical topographic frequency. The topography is also shown to lead to a finite damping of the Rossby
waves, even in the limit of infinitesimally small Ekman friction.

1. Introduction

Recently, the widely studied effect of bottom topog-
raphy on oceanic Rossby waves has received a great
deal of attention. This renewed interest follows the ob-
servation of baroclinic Rossby waves by satellite altim-
eter, which indicated a significant influence of topo-
graphic features on wave propagation (Chelton and
Schlax 1996). In particular, it has been suggested that
topographic effects may cause the observed enhance-
ment of the phase speed of the waves compared with
that predicted by the simple, flat-bottom theory [al-
though mean-flow effects have a primary importance;
see Killworth et al. (1997)].

Recent studies have been devoted to slowly varying
topography (Killworth and Blundell 1999), ridges (Tail-
leux and McWilliams 2000), as well as to more general
situations (Reznik and Tsybaneva 1999; Bobrovich and
Tsybanev 1999), and focused primarily on one-dimen-
sional topographies. By contrast, two-dimensional to-
pographies are considered in Vanneste (2000). This pa-
per investigates (barotropic) quasigeostrophic motion
over small-scale, periodic topography: using a multiple-
scale (or homogenization) technique, the large-scale
motion is shown to evolve according to an averaged
quasigeostrophic equation in which the effect of topog-
raphy is represented by a time-convolution term. Al-
though Vanneste (2000) concentrates mainly on the en-
hancement of dissipation that is caused by the small-
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scale topography, it is clear from the averaged equation
that topography affects wave propagation in a more
complex way and, in particular, that it perturbs the fre-
quency of planetary Rossby waves. The aim of the pre-
sent note is to demonstrate this explicitly.

To this end, we investigate the impact of small-scale
topography on Rossby wave propagation using a highly
idealized model in which the topography consists of
cylindrical seamounts separated by distances large com-
pared to their radii. Admittedly, the model and asymp-
totic regime considered are not very realistic; however,
they allow the rigorous derivation of simple analytical
results in a problem whose general treatment is fairly
difficult. Since the purpose of this note is mainly illus-
trative, further assumptions are made in order to achieve
maximum simplicity: the model is barotropic and ne-
glects viscous dissipation and large-scale variations of
the topography. These assumptions can easily be re-
laxed; in particular, it would be straightforward to ex-
amine the effect of baroclinicity by applying our method
to a multilayer model.

In the plethoric literature on topographic effects, a
variety of asymptotic regimes have been investigated
[see Reznik and Tsybaneva (1999) for a discussion].
Here, we consider a small-scale topography that is steep,
that is, such that the associated potential-vorticity gra-
dient is much larger than potential-vorticity gradient
associated with the b effect. This assumption ensures
that the topography has an effect on the large-scale flow
of the same order as the b effect and thus modifies the
Rossby wave dispersion relation at leading order (Van-
neste 2000). In contrast, most earlier studies (Thomson
1975; Prahalad and Sengupta 1986) assume a much shal-
lower topography; this allows standard techniques for
the study of waves in random media to be employed
[see, e.g., Mysak (1978) and references therein] but only
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leads to small changes in the dispersion relation that
affect wave propagation only for distances and times
much longer than the wavelength and period. Notable
exceptions are the studies of localization (Sengupta et
al. 1992; Klyatskin 1996), as well as the recent papers
by Reznik and Tsybaneva (1999) and Bobrovich and
Tsybanev (1999). However, the high anisotropy of the
(one-dimensional) topography considered in these pa-
pers makes their theory and results markedly different
from those presented here.

The plan of this note is as follows. In section 2, the
dispersion relation for large-scale Rossby waves in the
presence of topography is derived using a homogeni-
zation approach.1 The particular case of well-separated
cylindrical seamounts is examined in section 3 where a
dispersion relation valid for random distributions of sea-
mounts is obtained perturbatively. The cases of sea-
mounts with fixed height and with normally distributed
heights is analyzed in detail in section 4. A similar
qualitative conclusion is drawn in both cases: in addition
to enhancing the dissipation of the Rossby waves, the
topography induces a change in their frequency. In ab-
solute value this change is a decrease (increase) when
the flat-bottom, Rossby wave frequency is smaller (larg-
er) than a suitably defined topographic frequency. Some
remarks conclude the note in section 5.

2. Homogenization and dispersion relation

Under the quasigeostrophic scaling, the barotropic
wave dynamics is governed by the linearized potential
vorticity equation

f
2 2] (¹ c 2l c) 1 b] c 1 e ] c] ht x ij x x1 i jH

21 r¹ c 5 0 (2.1)

in which c is the streamfunction, l the inverse of the
radius of deformation, H the ocean’s average depth, h
the height of the bottom topography, and r the Ekman
friction coefficient. In this equation, x1 and x2 are the
usual zonal and meridional coordinates; the Jacobian
](c, h) describing the topographic effect is conveniently
written using the permutation symbol eij and an implicit
summation.

The essential assumption we make is that the topog-
raphy varies on a scale much smaller than the typical
scale of the waves; formally we write

h 5 h(«21x) 5 h(j), « K 1,

where j 5 «21x is a fast spatial variable. The topography
is taken as a periodic or random function of j with zero
average: ^h& 5 0, for some suitable spatial and ensemble

1 The dispersion relation could also be deduced from the more
general result of Vanneste (2000).

average ^ · &. We also suppose that h has no large-scale
variation, although this restriction is easily relaxed.

We seek a solution of (2.1) in the form of a normal
mode,

c 5 Re[ (x, j)e2ivt],ĉ

where v is the frequency. Following the homogenization
procedure (Bensoussan et al. 1989), we perform the sub-
stitution → 1 in (2.1) and expand ac-21] « ] ] ĉx j xi i i

cording to

5 1 1 1 · · · .(0) (1) 2 (2)ĉ ĉ «ĉ « ĉ

This leads to a sequence of differential equations for
the . The first one, obtained at O(«22), is given byĉi

f
2 (0) (0)u¹ ĉ 1 e ] ĉ ] h 5 0,j ij j ji jH

where u 5 2iv 1 r and 5 . A solution is simply2¹ ] ]j j ji i

5 ; that is, the leading-order streamfunction(0) (0)ĉ ĉ (x)
is independent of the fast spatial variable. At order
O(«21), one finds

f f
2 (1) (1) (0)u¹ ĉ 1 e ] ĉ ] h 5 2 e ] ĉ ] h.j ij j j ij x ji j i jH H

Since this equation is linear and is independent(0)] ĉxi

of j, its solution can be written

5 1 f (x)(1) (0)ĉ w (j)] ĉi xi
(2.2)

for some undetermined (and irrelevant) function f (x)
and for wi, i 5 1, 2, satisfying

f f
2u¹ w 1 e ] w ] h 5 2 e ] h (2.3)j i kj j i j ij jk j jH H

and ^wi& 5 0. At order O(1) a solvability condition must
be imposed for the determination of ; using (2.2),(2)ĉ
this condition is written as a function of only as(0)ĉ

2 (0) 2 (0) (0) 2 (0)2iv(¹ ĉ 2 l ĉ ) 1 b] ĉ 1 r¹ ĉx1

f
2 (0)1 ^e ] hw &] ĉ 5 0.ik x j x xk i jH

This equation is the eigenvalue problem from which the
frequency v of the Rossby waves can be determined.
It does not depend explicitly on the spatial coordinates,
so that in an infinite domain solutions of the form (0)ĉ
; exp(ik · x), for some wavevector k 5 (k1, k2), can be
introduced. This leads to the dispersion relation

2bk irk1v 1 1
2 2 2 2k 1 l k 1 l

k ki j
1 is (v) 5 0, (2.4)ij 2 2k 1 l

where k 5 |k| and

f
:s (v) 5 ^e ] hw 1 e ] hw & (2.5)ij ik x j jk x ik k2H



1822 VOLUME 30J O U R N A L O F P H Y S I C A L O C E A N O G R A P H Y

is a symmetric 2 3 2 tensor. The first three terms of
(2.4) are usual, but the fourth term is new. It results
from the interaction between small-scale topography
and large-scale flow and depends on v through sij(v).
In principle, wi is first derived by solving (2.3), then
sij(v) is computed from (2.5) and substituted into (2.4)
to provide an implicit equation for the frequency v.

In general (2.3) needs to be solved numerically and
the dependence of wi on v cannot be expressed in closed
form; thus, the solution of (2.4) for v must rely on an
extensive iterative procedure that requires the solution
of the partial differential equation (2.3) at each iteration.
Analytical progress can nevertheless be made by con-
sidering topographies consisting of well-separated, iso-
lated features.

3. Random array of cylindrical seamounts

Difficulties in solving (2.3) for wi arise because the
coefficients in this equation depend on space through
h. The problem is significantly simplified for a piecewise
topography: in this case, wi is harmonic (i.e., 52¹ wj i

0) everywhere except on the boundaries of the topog-
raphy where it satisfies a jump condition. However, even
in the simplest settings, for example, a topography con-
sisting of a periodic array of seamounts, it is not possible
to derive exact analytical expressions for wi. [The
amount of calculation involved is best illustrated by
considering that involved in well-studied analogous
problems, namely the determination of an effective con-
ductivity in a periodic medium with cylindrical or spher-
ical inclusions (e.g., Perrins et al. 1979; Sang and Ac-
rivos 1983), or the study of potential flows past an array
of cylinders or spheres (Hasimoto 1959).]

Here, since our objective is mainly to gain qualitative
insight into the Rossby wave frequency change due to
topography, we concentrate on an asymptotic limit that
allows the derivation of simple analytical results. The
limit we consider is that of well-separated seamounts;
more precisely, we study cylindrical seamounts with
radius a whose centers are separated by a distance d
and we assume that a/d K 1. In this limit, studied by
Maxwell for the conductivity problem, the interaction
between seamounts is neglected so that (2.3) is solved
(analytically) for an isolated seamount in an infinite do-
main. Interestingly, the limit allows a simple treatment
of the random case in which the radius of the seamounts
a, their height Ht, and the position of their centers are
distributed randomly.

The height field associated with an isolated cylindri-
cal seamount centered at the origin is given in polar
coordinates (r, u) by

h 5 Ht[1 2 Q(r 2 a)], (3.1)

where Q( · ) is the Heavisde function. (Of course, Ht

can be negative in which case the topographic feature
is a valley rather than a mountain—the analysis below
encompasses this case, although for simplicity we sys-

tematically refer to the topographic features as sea-
mounts). Introducing this expression into the first com-
ponent of (2.3) and using polar coordinates leads to the
following equations for w1:

2¹ w 5 0 for r ± a (3.2)j 1

f H f Ht t1u[] w ] 1 ] w 2 sinu 5 0 for r 5 a, (3.3)r 1 2 u 1aH H

where denotes the jump across r 5 a. The second1[ · ]2

component of (2.3) leads to similar equations for w2;
however, w2 is most easily derived directly from w1 by
rotating u by p/2. A continuous solution of (3.2) is given
by

 r r
A cosu 1 B sinu for r # a a a

w 51
a aA cosu 1 B sinu for r $ a,
r r

where A and B are two arbitrary constants. Imposing
the jump condition (3.3) provides

2a 2au /vtA 5 and B 5 ,
2 21 1 (u /v ) 1 1 (u /v )t t

where v t 5 fHt/(2H) is the frequency of the first free
topographic mode supported by an isolated cylindrical
seamount (Jansons and Johnson 1988). On the boundary
of the topography r 5 a we therefore have

2a u
w 5 cosu 1 sinu , (3.4a)1 21 21 1 (u /v ) vt t

a u
w 5 cosu 2 sinu . (3.4b)2 21 21 1 (u /v ) vt t

We now compute the tensor sij(v) defined by (2.5),
which appears in the dispersion relation (2.4). In the
random context, the average is both a spatial and en-
semble average. Assuming that the distribution of sea-
mounts is homogeneous, for any field g the average is
written as

` ` 2p `

^g& 5 n gP(a, H )r dr du da dH ,E E E E t t

2` 0 0 0

where n is the density of seamounts, that is, the number
of seamounts per unit area, and P(a, Ht) is the proba-
bility density function for the seamount radius and
height. The field g in the right-hand side is that asso-
ciated with a single seamount centered at the origin.

Using this average, along with (3.1) and (3.4), we
find from (2.5),

` ` 2a
s (v) 5 d 2pnu P(a, H ) da dH .ij ij E E t t21 1 (u /v )t0 0

As is to be expected from the isotropy of the problem,
sij(v) is proportional to the identity tensor dij. Since vt
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FIG. 1. Leading-order Rossby wave frequency vr (dotted curve)
and frequency shift Re(v (1)) (solid curves) as functions of k1 for l
5 b 5 k2 5 1 and vt 5 0.25. The Ekman friction coefficient is r 5
0 (a) and 0.15 (b).

does not depend on a, the expression for sij(v) simplifies
according to

` Q(H )ts (v) 5 d 2au dH ,ij ij E t21 1 (u /v )t2`

where

`

21 2Q(H ) 5 C pa P(a, H ) da.t E t

0

In the above expression, C is a normalization constant,
interpreted as the average area of the seamounts; a 5
nC is the area fraction occupied by the seamounts; and
Q(Ht) is a probability density function such that Q(Ht)
dHt is the probability for the elevation of an arbitrary
point of the ocean floor to be between Ht and Ht 1 dHt.

The assumption of well-separated seamounts adopted
here implies that a K 1 and that sij(v) is valid to order
O(a) only. Correction terms of order O(a2) appear if
the interactions between seamounts are accounted for
(cf. Jeffrey 1973). The dispersion relation (2.4) is there-
fore

2bk irk1v 1 1
2 2 2 2k 1 l k 1 l

`22auk Q(H )t 21 i dH 5 O(a ). (3.5)E t2 2 2k 1 l 1 1 (u /v )t2`

It can be solved consistently by a regular perturbation
expansion: introducing

v 5 v (0) 1 av (1) 1 O(a2)

leads at leading order to

2 2bk irk irk1(0)v 5 2 2 5 v 2 ,r2 2 2 2 2 2k 1 l k 1 l k 1 l

where vr 5 Re(v (0)) is the familiar (flat-bottom) Rossby
wave frequency, and at order O(a) to

`22(v 1 id)k Q(H )r t(1)v 5 2 dH ,E t2 2 2k 1 l 1 2 [(v 1 id)/v ]r t2`

(3.6)

where d 5 l2r/(k2 1 l2) . 0. The real part of v (1)

represents the Rossby wave frequency shift induced by
the small-scale topography, whereas the imaginary part
of of v (1) represents an additional damping. In the next
section, we study these quantities for specific distribu-
tions of the seamount heights Q(Ht).

4. Rossby wave frequency change

a. Single-height seamounts

Consider first an ensemble of seamounts with the
same height Ht (but possibly various radii) so that (3.6)
becomes

22(v 1 id)kr(1)v 5 2 .
2 2 2(k 1 l ){1 2 [(v 1 id)/v ] }r t

We are most interested in the limit of weak dissipation
d K 1, in which case v (1) is real. The relative change
in the Rossby wave frequency is (a times)

(1) 2v 2k
5 2 . (4.1)

2 2 2v (k 1 l )[1 2 (v /v ) ]r r t

From this expression, we conclude that, in absolute val-
ue, the topography leads to an increase (decrease) in the
Rossby wave frequency if the flat-bottom frequency vr

is larger (smaller) than the topographic frequency v t.
Note that the change does not depend on the sign of v t

so that the sign of Ht is irrelevant.
Equation (4.1) becomes invalid for |vr| ø |v t| as a

result of a resonance between Rossby and topographic
waves. A nonzero damping d ± 0 smoothes this reso-
nance; it can easily be shown that the transition between
the increase and decrease of the Rossby wave frequency
then occurs for |vr| 5 2 d2. For nonzero but small2vÏ t

d [O(a1/2) or smaller], the expansion in powers of a for
the computation of wi breaks down near resonance: this
indicates that the interactions between the various sea-
mounts become crucial when the Rossby and topograph-
ic waves are resonant. However, resonance appears in
rather contrived situations and is absent when a distri-
bution of seamount heights is considered.

Figures 1 and 2 illustrate the discussion above: they
displays vr and Re(v (1)) as functions of the wavenumber
k1. Without loss of generality, we have taken l 5 b 5
1 (corresponding to a choice of space and time units);
we have also chosen k2 5 1. Figure 1 is obtained for a
height of the topography such that v t 5 0.25. The results
demonstrate the change in the sign of Re(v (1)) that oc-
curs for |vr| ø |vt| 5 0.25. They also show the resonance
phenomenon that appears in the absence of Ekman fric-
tion, that is, for r 5 0, and its smoothing for r ± 0,
here for r 5 0.15. Figure 2 is obtained for vt 5 0.5:
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FIG. 2. Same as Fig. 1 but with vt 5 0.5. The Ekman friction co-
efficient is r 5 0 (a) and 0.5 (b).

FIG. 3. Leading-order Rossby wave frequency vr (dotted curve),
frequency shift Re(v (1)) (solid curve a) and damping rate Im(v (1))
(solid curve b) as functions of k1 for l 5 b 5 k2 5 1. The seamount
heights are distributed according to a zero-mean Gaussian distribution
with vs 5 0.25, and the limit of vanishingly small Ekman friction
is considered.this is greater than the maximum Rossby wave fre-

quency, so there is no sign change for Re(v (1)), which
is always positive (corresponding to a slow down of the
Rossby waves), and there is no resonance phenomenon.
Note that the imaginary part of v (1) (not shown) is al-
ways negative, as is expected for an additional damping.
This can be established directly from (3.6) or more gen-
erally from (2.4)–(2.5) for arbitrary topographies (Van-
neste 2000).

b. Random height seamounts

When the seamount heights are distributed according
to a smooth probability density function Q(Ht), there is
no isolated resonance, and the frequency change v (1) is
well defined even in the limit of vanishing Ekman damp-
ing r → 01. We focus on this case and obtain an ex-
pression for v (1) by letting d → 01 in (3.6).2 It is given
by

`(1) 2v 22k Q(H )t5 P dHtE2 2 25v k 1 l 1 2 (v /v )r r t2`

pv Hr1 i [Q(2Hv / f ) 1 Q(22Hv / f )] ,r r 6f

(4.2)

where P denotes the Cauchy principal value. It is con-
cluded from this expression that Im(v (1)) , 0; that is,
the small-scale topography introduces a finite damping
of the Rossby waves even though the Ekman friction
for the large-scale flow is infinitesimal.

To illustrate formula (4.2), we consider a zero-mean
Gaussian distribution for the seamount height; that is,

21 H tQ(H ) 5 exp 2 ,t 21 22 2sÏ2ps

2 The limiting process implicitly assumes that a K d K 1.

where s . 0 is the root-mean-square of the height.
Substituting this expression in (4.2), we find after some
manipulations

(1) 2v 2k vr5
2 2v k 1 l vr s

2|v | vr r3 I 2 iÏp exp 2 , (4.3)1 2 1 2[ ]v vs s

where vs 5 2sf /(2H) . 0 is the frequency of to-Ï
pographic waves supported by seamounts with height

2s and where the function I is defined asÏ
` 21 y 2 22x yI(x) 5 P e dyE 2y 2 1Ïp 2`

x1 2 2y 2x5 2 2 e dy, for x . 0.Ex 0

The second expression for I(x) follows from the first
one through a series of manipulations. It is useful for
numerical purposes since the integral it contains is reg-
ular, and it can be used to write I(x) in terms of an error
function with imaginary argument. A numerical cal-
culation shows that I(x) has a unique zero at x0 5
0.924 · · · , with I(x) . 0 for x , x0 and I(x) , 0 for x
. x0. Therefore, in absolute value, the small-scale to-
pography decreases (increases) the Rossby wave fre-
quency if |vr| , x0vs(|vr| . x0vs). This conclusion is
analogous to that reached for a single-height topogra-
phy, but now the topographic frequency with which vr

should be compared is x0vs. An important point here
is that, for the Gaussian distribution, x0 is an order-one
quantity so that x0vs can genuinely be interpreted as a
typical topographic frequency.

Figures 3 and 4 show the real and imaginary parts of
v (1) calculated from (4.3) for l 5 b 5 k2 5 1. In Fig.
3 the topography is such that vs 5 0.25; it follows that
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FIG. 4. Same as Fig. 3 but with vs 5 0.5.

the transition in the sign of the (real) frequency change
occurs for vr 5 0.2355. The damping introduced by the
topography is seen to be significant since |Im(v (1))| .
|Re(v (1))| except for large values of k1. Note that the
frequency shift Re(v (1)) decreases rather slowly for
large k1 (it is then proportional to 1/vr). In Fig. 4, vs

5 0.5; since |vr| , x0|vs| for all k1, the frequency shift
is always positive, corresponding to a slowdown of the
Rossby wave.

5. Concluding remarks

In this note, a homogenization technique is used to
derive the dispersion relation for large-scale Rossby
waves in the presence of a steep small-scale topography.
The frequency change induced by topography is com-
puted explicitly for sparsely distributed cylindrical sea-
mounts. The assumption a K 1 of a low density of
seamounts allows the derivation of an analytical ex-
pression for the frequency change; it also implies that
this change is small [O(a)]. It should be emphasized,
however, that the homogenization procedure, and in par-
ticular the dispersion relation (2.4), can be employed
for dense topographies, although in this case numerical
computations similar to those used in different contexts
(e.g., Sang and Acrivos 1983) will be necessary to eval-
uate sij(v) from (2.5) and to compute the frequency.
Importantly, a dense topography will lead to a frequency
change of the same order as the flat-bottom Rossby wave
frequency itself.

Our approach relies on a spatial averaging procedure
and thus centers on large-scale waves. Consequently,
the topographic waves, whose (small) scale is fixed by
that of the topography, do not appear explicitly in the
dispersion relation (2.4)—only the coupling between to-
pography, b effect and Ekman friction has an impact
on the large scales. It is therefore not surprising that,
even for dense topography, the large-scale restoring
mechanism provided by the b effect (or equivalently by
a large-scale topography) is required for the existence

of waves.3 This contrasts our study with the work of
Jansons and Johnson (1988) who focused on small-scale
topographic modes supported by arrays of seamounts.

The main qualitative result of our work concerns the
sign of the Rossby wave frequency shift. A general rule
appears to be that topography ‘‘pushes away’’ the Ross-
by wave frequency from a typical topographic frequen-
cy; that is, the difference between the Rossby wave
frequency and the topographic wave frequency increases
as a consequence of the interaction between the two
types of waves. This result, which is consistent with the
general picture of linear wave interaction in stable sys-
tems (Craik 1985), is likely to hold in more general
situations, for example, for baroclinic flows. Of course,
the question of what the relevant topographic frequency
is precisely for realistic topographies remains open.
However, in realistic situations, it is likely that this to-
pographic frequency is larger than the Rossby wave
frequency and one may expect small-scale topography
to cause a slowdown of the waves’ phase speed, which
should be contrasted with the phase speed increase ob-
served by Chelton and Schlax (1996).

Another result of this work is the finiteness of the
damping induced by topography in the presence of in-
finitesimal Ekman friction. This phenomenon, which is
associated with the possible resonance between topo-
graphic and Rossby waves, is analogous to the finite
damping that appears for infinitesimally damped har-
monic oscillators forced by a continuous spectrum of
frequencies (Landau and Lifschitz 1976, sec. 26): to-
pographic waves play the role of oscillators, while a
Rossby wave provides the external forcing. The analogy
has a twist, however, since in the Rossby wave case the
forcing has a single frequency whereas the continuous
frequency spectrum is associated with the oscillators
because of the continuous distribution of seamount
heights.

REFERENCES

Bensoussan, A., J. L. Lions, and G. C. Papanicolaou, 1989: Asymp-
totic Analysis of Periodic Structures. Kluwer, 700 pp.

Bobrovich, A. V., and T. B. Tsybanev, 1999: Planetary waves in a
stratified ocean of variable depth. Part 2: Continuously stratified
ocean. J. Fluid Mech., 388, 147–169.

Chelton, D. B., and M. G. Schlax, 1996: Global observation of oce-
anic Rossby waves. Science, 272, 234–238.

Craik, A. D. D., 1985: Wave Interactions and Fluid Flows. Cambridge
University Press, 322 pp.

Hasimoto, H., 1959: On the periodic fundamental solutions of the
Stokes equations and their application to viscous flow past a
cubic array of spheres. J. Fluid Mech., 5, 317–328.

Jansons, K. M., and E. R. Johnson, 1988: Topographic Rossby waves
above a random array of seamountains. J. Fluid Mech., 191,
373–388.

3 This appears clearly from the dispersion relation (2.4): if b is set
to zero, then the solutions will have Re(v) 5 0 since sij(v) becomes
real.



1826 VOLUME 30J O U R N A L O F P H Y S I C A L O C E A N O G R A P H Y

Jeffrey, D. J., 1973: Conduction through a random suspension of
spheres. Proc. Roy. Soc. London, 335A, 355–367.

Killworth, P. D., and J. R. Blundell, 1999: The effect of bottom
topography on the speed of long extratropical planetary waves.
J. Phys. Oceanogr, 29, 2689–2710.
, D. B. Chelton, and R. A. De Szoeke, 1997: The speed of
observed and theoretical long extratropical planetary waves. J.
Phys. Oceanogr., 27, 1946–1966.

Klyatskin, V. I., 1996: Localization of Rossby waves over a random
cylindrical topography of the ocean bottom. Izv. Atmos. Ocean.
Phys., 32, 757–765.

Landau, L. D., and E. M. Lifschitz, 1976: Mechanics. 3d ed. Per-
gamon, 224 pp.

Mysak, L. A., 1978: Wave propagation in random media, with oceanic
applications. Rev. Geophys. Space Phys., 16, 233–261.

Perrins, W. T., D. R. McKenzie, and R. C. McPhedran, 1979: Trans-
port properties of regular arrays of cylinders. Proc. Roy. Soc.
London, 369A, 207–225.

Prahalad, Y. S., and D. Sengupta, 1986: Barotropic planetary waves
on a random bottom. Wave Motion, 8, 407–414.

Reznik, G. M., and T. B. Tsybaneva, 1999: Planetary waves in a
stratified ocean of variable depth. Part 1: Two-layer model. J.
Fluid Mech., 388, 115–145.

Sang, A. S., and A. Acrivos, 1983: The effective conductivity of a
periodic array of spheres. Proc. Roy. Soc. London, 386A, 263–
275.

Sengupta, D., L. I. Piterbarg, and G. M. Reznik, 1992: Localization
of topographic Rossby waves over random relief. Dyn. Atmos.
Oceans, 17, 1–21.

Tailleux, R., and J. C. McWilliams, 2000: Acceleration, creation, and
depletion of wind-driven, baroclinic Rossby waves over an ocean
ridge. J. Phys. Oceanogr., in press.

Thomson, R. E., 1975: The propagation of planetary waves over
random topography. J. Fluid Mech., 70, 267–285.

Vanneste, J., 2000: Enhanced dissipation for quasi-geostrophic mo-
tion over small-scale topography. J. Fluid Mech., 407, 105–122.


