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ABSTRACT

The thermocline variability caused by a sudden variation of the Ekman pumping is studied, using a 2.5-layer
geostrophic model that represents the ventilated and the shadow zones of a subtropical gyre and baroclinic
Rossby wave propagation. During spinup the propagation of the first baroclinic mode induces a large deepening
of the thermocline on a timescale ranging between 2 and 15 yr, depending on latitude. The propagation is similar
throughout the basin, and is not influenced by the geostrophic flow, save nonlinearly through the variation in
layer depth. South of the subduction line, the adjustment is completed by the second baroclinic mode. In the
ventilated zone, the latter is not very active, and there are only smaller (by a factor of 5) variations of the
thermocline depth primarily linked to a slight imbalance between Ekman pumping and vertically averaged
meridional advection. In the shadow zone, the second baroclinic mode plays a more important role since it
primarily balances the Ekman pumping, although the variations of the second layer depth remain smaller than
in the ventilated area. Spindown induces similarly a shoaling of the thermocline, but, because of nonlinearities,
lower Rossby wave speeds, and decreased advection, the adjustment is everywhere slower than during spinup.

1. Introduction

The observations show that the large-scale variability
of the thermocline is small at the annual period (Frank-
ignoul 1981) but substantial at low frequency. In the
North Atlantic, for example, Joyce and Robbins (1996)
described in-phase decadal changes of temperature and
salinity in the thermocline near Bermuda that could be
caused by vertical oscillations with a first baroclinic
mode structure and amplitudes of 650 m. Sturges and
Hong (1995) analyzed the Bermuda tide gauge record
and showed that the decadal variability was due to the
(first mode) baroclinic response to wind stress forcing
across the Atlantic, and Frankignoul et al. (1997, here-
after FMZ) suggested that it primarily reflected the ther-
mocline response to the stochastic atmospheric forcing.
Sturges et al. (1998) found that low frequency wind
forcing could explain the large decadal-scale thermo-
cline fluctuations observed in the central North Atlantic.
Experiments with coupled general circulation models
(e.g., Latif and Barnett 1994; Zorita and Frankignoul
1997) also suggest that the decadal variabilitity of the
midlatitude thermocline is largely wind driven.

Theoretical studies have shed some light onto the
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mechanisms of these decadal variations. Using a two-
layer model of the ventilated thermocline, Liu (1993,
hereafter Liu) suggested that the dynamics differ be-
tween the shadow zone, where Rossby waves balance
the Ekman pumping and the variability is large, and the
ventilated zone, where advection balances it and the
variability is very weak. In a numerical study based on
quasigeostrophic models, Liu (1996) suggested that the
thermocline variability in the Rhines–Young pool (Rhi-
nes and Young 1982) is, as in the ventilated zone, dom-
inated by advection and Ekman pumping, while Liu and
Pedlosky (1994) found that, in contrast to wind stress
forcing, buoyancy forcing causes a strong (weak) var-
iability in the ventilated (shadow) zone. Although of
much theoretical interest, these studies fail to explain
how the atmosphere can force the first-mode-like ther-
mocline variability, seen in the observations. On the
other hand, simpler models that a priori specify a first
baroclinic mode structure and assume a mean state at
rest are more successful (Sturges and Hong 1995; FMZ).
Thus, there is a need to link these studies and to establish
which oversimplifications lead to such discrepancies.

For analytical simplicity, Liu had used a planetary
geostrophic two-layer model with a rigid and flat bottom
taken at the base of the main thermocline. This model
allows fluid to subduct and so represents an essential
feature of the ventilated thermocline, but the assumption
of a flat thermocline is limiting. Moreover, with a zonal
outcrop line, the model produces a uniform potential
vorticity in the ventilated zone and thus prevents any
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FIG. 1. Geometry of the 2.5-layer model. The basin is bounded to the east at x 5 0 and to the north
at y 5 yN. The subduction line is at latitude y1(x). Left: Perspective view. Right: meridional plane
view.

planetary wave activity in this region. In the present
paper, we generalize Liu’s study of oceanic spinup and
spindown to a more realistic 2.5-layer model, which
does not impose a flat thermocline bottom and allows
for nonuniform potential vorticity in the ventilated zone.
It will be shown in particular that the largest part of the
oceanic response to wind forcing is due to the first bar-
oclinic mode, which was in effect filtered out by Liu
and, to a coarse approximation, is not affected by the
mean flow and thermocline stucture. This may explain
in part the success of the simpler model of Sturges and
Hong (1995), FMZ, and others.

The paper is arranged as follows. Section 2 describes
the 2.5-layer model. In section 3, we discuss the solution
north of the subduction line. In section 4 we solve the
problem south of the subduction line and present the
main results for the ventilated and shadow zones, em-
phasizing the role of the first baroclinic mode. In section
5, we define the second baroclinic mode and discuss its
role in the return to equilibrium. Conclusions are given
in section 6.

2. The model

We use a time-dependent version of a 2.5-layer ideal-
fluid model of the ventilated thermocline derived from
Luyten et al. (1983). Its geometry is shown in Fig. 1.
The eastern and western boundaries are at x 5 0 and x
5 xw , 0, and the geostrophic zonal flow vanishes at
the eastern boundary (h1 5 0 and H 5 h2 5 H0 5 500
m). A downward Ekman pumping we is imposed at the
surface and the subtropical gyre is limited by its van-
ishing at y 5 yN and y 5 yS. The warmest layer of
density r1 and thickness h1 is located south of y1, where
the second layer of density r2 and thickness h2 outcrops.

The depth of the second layer H 5 h1 1 h2 represents
the base of the thermocline. The abyss is represented
by a third layer of density r3 at rest. It has an infinite
depth to be consistent with the rigid lid, which is im-
posed at the surface. The b-plane approximation is used
with Coriolis parameter f 5 f 0 1 by. The model is
thus similar to that of Liu except that the base of the
thermocline is allowed to vary and the barotropic mode
is filtered out by the rigid-lid assumption. In each layer,
the fluid is geostrophic:

]p ]pn nr fu 5 2 and r fy 5 with n 5 1, 2. (1)n n n n]y ]x

Hydrostatic equilibrium yields

grad p 5 r g(g grad h 1 g grad H ) andh 1 0 1 h 1 2 h

grad p 5 r gg grad H, (2)h 2 0 2 h

where gradhp is the horizontal pressure gradient, r0 is
a reference density, and g1 5 (r2 2 r1)/r0 and g2 5
(r3 2 r2)/r0 are both much smaller than 1 (Boussinesq
approximation). The incompressibility condition is

]u ]y ]wn n n1 1 5 0. (3)
]x ]y ]z

Replacing un and y n by (1) leads to by n 5 f ]zwn, n 5
1, 2 and, after integration from the top of the motionless
layer to the surface, to the time-dependent Sverdrup
relation:

b ] ] ]
(h y 1 h y ) 5 w 1 1 u 1 y H. (4)1 1 2 2 e 2 21 2f ]t ]x ]y

Since advection by the geostrophic velocity vanishes
identically from (1) and (2), (4) can be simplified into
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FIG. 2. Thermocline depth H (in m) north of the subduction line
during spinup, at, from top to bottom, year 0, 5, 10, and the final
state. The lines of equal depth define the streamlines of the flow and
dotted line, the wave front.

b ]H
(h y 1 h y ) 5 w 1 (5)1 1 2 2 ef ]t

or, using the Boussinesq approximation,

]H bg ]h ]H12 g h 1 g H 5 2w . (6)1 1 2 e2 1 2]t f ]x ]x

This relation also holds north of the subduction line,
but with h1 5 0, h2 5 H.

Integrating by 2 5 f ]zw2 over the depth of the second
layer south of the subduction line leads to the conser-
vation of potential vorticity,

] ] ] f
1 u 1 y 5 0. (7)2 21 2]t ]x ]y h2

Using (1), (2), and, once more, |r2 2 r0| K r0 leads
to

] gg ]H ] gg ]H ] f2 22 1 5 0, (8)1 2]t f ]y ]x f ]x ]y h2

which, together with (6), describes the dynamics south
of the subduction line.

For convenience, we use both the Coriolis parameter
f and the latitude y as meridional coordinate. The Ek-
man pumping we is a parabolic function of latitude, we

5 a(t)( f N 2 f )( f 2 f S), which vanishes at f N 5 1024

s21 (458N) and f S 5 1.3 3 1025 s21 (58N), thereby
preventing a geostrophic transport at these latitudes. In
the spinup case, we assume that at t 5 0, a(t) instan-
taneously switches from 22 3 1026/( f N 2 f S)2 m s21

to 26 3 1026/( f N 2 f S)2 m s21 so that the maximum
value of |we | increases from 0.5 3 1026 m s21 to 1.5 3
1026 m s21. The reverse is assumed during spindown.
These wind stress changes are unrealistically large, but
allow for an easy comparison with Liu, who used similar
values. The outcrop line y1 (or f 1) neither depends on
x nor t and is located at f 1 5 8.9 3 1025 s21 (388N);
b 5 2.1 3 10211 m21 s21 corresponds to midbasin
(258N). Analytical computations are made with g1 ± g2

but in the numerical experiments we use g1 5 g2 5
1023.

3. Solution north of the subduction line

In the steady state, (6) with h1 5 0 can be integrated
into

bgg2( 2 ) 5 2 f 2wex,2 2h H2 0 (9)

where H0 is the thermocline depth at the eastern side
(x 5 0). We assume that H0 is known and choose for
numerical application H0 5 500 m. When we varies,
Rossby waves are generated, and (6) is solved by the
method of characteristics; that is, it is replaced by the
differential equations

2dt 5 ds dx 5 c ds with c 5 2bgg h / fR R 2 2

dh 5 2w ds, (10)2 e

where s denotes abscissa along the characteristic and cR

is the phase speed of the first-mode baroclinic Rossby
wave.

The condition at s 5 0, indicated by subscript s, is
defined by prescribing the thermocline depth at t 5 0
in the whole basin [h2 5 h2s(xs, f )] and at t . 0 along
the eastern boundary (h2 5 H0). Figure 2, analytically
computed from (10), shows the thermocline depth in its
initial state, after 5 and 10 yr, and in the new steady
state. The dashed line is the westward propagating wave
front generated at the eastern boundary at t 5 0. After
the wave front has passed, the ocean reaches a new state
of rest, and the subduction line is again at rest after 12
yr if the basin width is 6000 km. The spindown can be
treated in the same way but is slower than the spinup
because of the nonlinearities. The wave front moves
more slowly (except along y 5 yN where we vanishes)
and a new equilibrium is reached along the subduction
line only after 15 yr.

Our results differ from those of Liu who found that
the adjustment was only barotropic, hence instantaneous
and without influence on the thermocline. This is due
to Liu’s assumption of a rigid thermocline bottom,
which filters out the first baroclinic mode. A better ap-
proximation north of the subduction line would be to
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FIG. 3. Perspective view of the depth of the two active layers in
the initial (top) and final (bottom) states of the ocean in the spinup
experiment, south of the subduction line. The area where H is constant
corresponds to the shadow zone and the area inside the dashed line
to the recirculation zone.

use a basic state at rest (e.g., FMZ) since advection by
a geostrophic flow has no influence on the propagation
of the first mode in the case where only one layer is
active, save through the variation of layer depth. This
non-Doppler shift effect holds for 1.5-layer models as
shown by Anderson and Killworth (1979) (the two layer
model they used assumes that the bottom layer is much
deeper than the upper layer; thus its physics is the same
that of the 1.5-layer model), but not in more general

cases (e.g., Killworth et al. 1997). Note that we have
assumed that H0 was constant. However, a varying depth
at the eastern side (for example due to coastal Kelvin
waves) would lead to similar computations and results.

4. Solution south of the subduction line

South of the outcrop line ( f , f 1), in the initial (Fig.
3, top) and final (bottom) states, the ventilated zone is
easily distinguished from the shadow zone where the
second-layer depth is constant, but the recirculation
zone is not correctly represented since it obeys higher
order dynamics (area limited by a dotted line). With a
stronger Ekman pumping, the two upper layers are much
deeper (by more than 150 m for layer 2) and the shadow
zone narrower. In this section, we discuss the phenom-
ena involved in this change, emphasizing the role of the
first baroclinic mode and leaving that of the second to
section 5.

To define the modes, we first change variables in (6)
and (8). In a stationary state, integration of (6) yields

2g 2 f1 2 2 2h 1 H 5 w x 1 H , (11)1 e 0g bgg2 2

which suggests using the variable (effective depth)

g1 2 2H 5 h 1 H (12)1!g2

to characterize the overall response of the thermocline
to a variation in we. An increase of H corresponds to
an increase of h1 and/or h2. From geostrophy, the av-
eraged velocity (ua, y a) 5 va 5 (h1v1 1 h2v2)/H is given
by

gg2 2Hv 5 k 3 grad (H ) , (13)a h2 f

where k indicates a unit vertical vector. Consequently
H is linked to the averaged velocity and defines the
streamlines of the mean transport. It is shown below
that H easily allows to define the first baroclinic mode.

Using H, Eq. (6) can then be written

] bgg H ]H2H(H , z, f ) 2 5 2w (14)e2]t f ]x

or, since by (12) H is an implicit function of H, z 5
f/h2, and f, ]H/]t 5 (]H/]H)(]H/]t) 1 (]H/]z)(]z/]t),

2 2]H ]H
2 c 5 2lw 2 m (15)1 e]t ]x

with
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FIG. 4. Differences (in m) between H and H f at year 1, 3, 7, and
20 during spinup.

21
bgg H ]H bg2c 5 5 (g (H 2 f /z) 1 g H )1 1 22 21 2f ]H f

21
]H g1l 5 2H 5 2H 1 2 (H 2 f /z)1 2]H g2

21
]H ]H ]z g H 2 f /z ]z1m 5 2H 5 22 f , (16)

21 2]z ]H ]t g z ]t2

where we have used for convenience H 2 rather than H.
Similarly, the potential vorticity equation (8) is written

]z bgg ]H ]H ]H ]z ]H ]z21 2 1 11 1 2]t f ]H ] f ]z ] f ] f ]x

]H ]H ]H ]z ]z
1 1 5 0 (17)1 2 2]H ]x ]z ]x ] f

or equivalently

]z ]z ]z
1 c 1 c 5 0 (18)z m]t ]x ] f

with

bgg ]H ]H ]H2c 5 2 1z 1 2f ]H ] f ] f

bgg ]H H 2 f /z25 2 g H 1 g2 11 2f (g (H 2 f /z) 1 g H ) ] f z1 2

2bgg ]H ]H bgg H ]H2 2c 5 5 .m f ]H ]x f (g (H 2 f /z) 1 g H ) ]x1 2

(19)

The system (6) and (8) is thus replaced by the two
coupled nonlinear equations (15) and (18) with un-
knowns H 2 and z, which are integrated numerically us-
ing a method of successive linearizations (see appendix
A).

At first, H increases in all of the basin as was found
north of the subduction line, where H reduces to h2.
This is illustrated in Fig. 4, which represents different
stages of H 2 H f , where H f denotes H at the final
equilibrium state. The increase in H occurs rapidly in
the southern part of the basin (after 3 yr, H is in ap-
proximate steady state) but more slowly in the northern
part, so the variations of H only becomes negligible
throughout the basin after about 12 yr. The dynamics
of the system is then only driven by the advection of
potential vorticity, as discussed below.

To show that the adjustment of H is consistent with
the travel time of the first-mode baroclinic Rossby wave,
we consider a simplified version of (15), where ]z/]t is
neglected and

21
]H g H 1 g h2 1 151 2 2 2 2]H Ïg g h 1 g H1 2 1 2

replaced by its average (noted K) between the initial
and the final state, a very good approximation during
the first phase of the adjustment. Then, (15) becomes

]H ]H bgg22 c 5 2Kw with c 5 K H , (20)R e R 2]t ]x f

a nonlinear wave equation forced by Ekman pumping,
which can be solved as in section 3. Note that K is
always larger than 1, reaching its maximum where h1

is maximum (in Fig. 4, the maximum is K 5 1.33).
The solution computed from (20) is very similar to,

but smoother than that in Fig. 4, as illustrated at year
3 in Fig. 5. The wave front (dashed line) approximately
corresponds to the zero contour in Fig. 4. There are
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FIG. 5. Map of H 2 H f (in m) at year 3, neglecting the influence
of the temporal variations of the potential vorticity.

FIG. 6. Wave celerity (in m s21) of the first baroclinic mode for the
final state.

FIG. 7. Potential vorticity in the second layer (in 107 m21 s21) for, from top to bottom, the initial state, year 1, 7, 20,
40, and the final state.

slight differences in the westernmost part of the basin,
but neither equation applies close to the recirculation
area. Note that the propagation is purely zonal and is
independent of the mean geostrophic flow; that is, the
non-Doppler shift effect still holds south of the sub-
duction line. Figure 6 shows for the final state the phase
velocity cR, which matches (10) at the subduction line
and compares well to those given for the first baroclinic

mode by Killworth et al. (1997, Fig. 7), reproducing in
particular the small tilt of the isocontours (from the
southeast to the northwest). This tilt increases with the
Ekman pumping, as seen from the expression of cR and
(11)–(12). The phase velocity in the 2.5-layer model is
larger than that in a 1.5-layer model of equal depth. The
differences are mainly due to our use of H as basic
variable, thereby taking into account the mean baro-
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FIG. 8. Differences between H and Hf for, from top to bottom, year
1, 7, 20, and 40 during spinup.

clinic flow as done in a more complex framework by
Killworth et al. (1997). Using H to define the wave
speed corresponds to replacing H by KH . (g2H 1
g1h1)/g2. The increase in cR is negligible at the eastern
boundary but increases westwards, reaching 50% in the
westernmost part of the basin where h1 . H/2. This
enhanced phase velocity is qualitatively consistent with
the faster speed of the observed Rossby waves (Chelton
and Schlax 1996). It is also worth noting that these
values differ notably from the Rossby wave celerity
introduced by Liu, who used

bgg h (H 2 h )1 1c 5R 2f H

[hereafter CLiu(h1)]. For H 5 600 m, and h1 5 H/4 (i.e.,
far from the eastern boundary where h1 5 0), CLiu(h1)
is equal to 0.6 cm s21 at 258N, seven times smaller than
in Fig. 6. It is shown in section 5 that CLiu(h1) is, in
fact, of the order of c2, the velocity of the second bar-
oclinic mode, the only mode that was represented by
Liu.

The evolution of the potential vorticity is more com-
plex as it varies everywhere and only reaches a steady
state after several decades (Fig. 7). During the first 12
years, the thermocline depth changes north of the sub-
duction line, altering the potential vorticity of the sub-
ducting water as seen in the northern part of the domain
at year 1 and 7. At the same time, H varies south of the
subduction line, and the shadow zone, which was at
rest, becomes active as found by Liu, but the velocity
remains small, resulting in a slight increase in potential
vorticity off the southeast corner. After about 12 yr, H
has reached an equilibrium along the subduction line,
and consequently the potential vorticity of subducting
water no longer varies. It is now advected by the second-
layer flow, and by year 20, the basin reaches a new
equilibrium north of f 5 8 3 1025 s21. Farther south,
however, more time is needed for equilibrium because
of the smallness of velocity in the second layer, and a
steady state is only reached after more than 40 years.
Note that we have somewhat arbitrarily chosen in the
recirculation area to set to zero the zonal gradient of
potential vorticity along the western boundary when an
eastward velocity is detected (between 288 and 388N).
This choice, together with a small smoothing by the
numerical scheme, causes the final state to differ from
the true one (compare year 40 to final state). This draw-
back will be remedied in section 5.

Figure 8 shows how the second-layer depth H reaches
its new equilibrium state Hf . In the ventilated area, the
main changes occur during the first decade (compare
years 1 and 7) and are due to the propagation of the
first baroclinic Rossby mode. However, H is also af-
fected by the second mode, and the comparison with
Fig. 4 shows that H is not as well suited as H to represent
the first baroclinic mode since H is in equilibrium after
12 yr, while H still varies, although its variations never

exceed 30 m in the ventilated area. In the shadow zone,
the variations of H do not exceed 40 m and have the
same order of magnitude after the propagation of the
first baroclinic mode, suggesting that the two baroclinic
modes play a comparable role.

The bulk of the adjustment is thus similar to that north
of the subduction line and is due to baroclinic processes,
not the barotropic ones as in Liu. The increase in Ekman
pumping generates a first-mode Rossby wave, which is
well described by H and propagates rapidly across the
basin, with large effects in the ventilated area, without
being significantly affected by the geostrophic flow and
the differences between the ventilated and the shadow
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FIG. 9. Wave celerity (in m s21) of the second baroclinic mode for
the final state.

zones, except through the variations in layer depth. Con-
sequently, the influence of wind stress changes on the
thermocline is again better represented with a one-mode
model with a basic state at rest than with a two-layer
model with a flat thermocline bottom, although the for-
mer only describes how H evolves and underestimates
the Rossby wave speed. On the other hand, z and the
individual layer depths show a more complex behavior
and their slower adjustment is also influenced by the
second baroclinic mode. To clarify its role, we inves-
tigate below the mechanisms of the adjustment after
passage of the first mode.

The same gross features are found during spindown,
except for the longer adjustment time. The basin is first
affected by a first-mode baroclinic Rossby wave that
lifts both layers, but with a slightly longer timescale,
because of the nonlinearity. It is then controlled by
smaller changes associated with the second baroclinic
mode, which remains active and expands the shadow
zone. In Liu, the appearence of two gyres was empha-
sized, an anticyclonic one to the north and a weak cy-
clonic one to the south. However, this phenomenon was
not seen in the 2.5-layer model.

5. Mechanisms linked to the second baroclinic
mode

To clarify the role of the second baroclinic mode and
facilitate the comparison with Liu, we now focus on the
potential vorticity adjustment. Since fk 3 (r1v1 2 r2v2)
5 2r0gg1 gradhh1, h1 is the the natural variable to in-
vestigate the second baroclinic mode. Using the defi-
nition of H to replace z in (8) by h1, the potential vor-
ticity equation can be written

]h g H g H ]h1 2 2 11 v grad h 1 ca h 1 r]t g h 1 g H g h 1 g H ]x1 1 2 1 1 2

g H ]H bgg h ]H2 2 25 2 (21)
21 2g h 1 g H ]t f ]x1 1 2

with

bgg h h1 1 2c 5 2 .r 2f H

This generalizes to the time dependent case the h1-equa-
tion given in the stationary case in Luyten and Stommel
(1986) or Cushman-Roisin (1987). Equation (21) shows
that h1 is advected in proportion to the averaged flow
va (which only depends on H and thus the first baroclinic
mode) and a westward velocity

g H2c 5 c ,2 rg h 1 g H1 1 2

which we associate with the phase speed of the second
baroclinic mode. Figure 9 shows that the velocity of the
front associated to the second baroclinic mode is ten
times smaller than that of c1 in Fig. 6. Note that, in this

interpretation, the propagation of the second baroclinic
mode is strongly affected by the vertically averaged
flow, contrasting with the non-Doppler shift of the first
mode. The terms on the right hand side represents the
local forcing by the Ekman pumping we and the effects
of the passage of the first baroclinic mode. An equation
for H can be obtained similarly:

]H g H g H ]H2 21 v grad H 1 ca h r]t g h 1 g H g h 1 g H ]x1 1 2 1 1 2

g H ]H25 . (22)
g h 1 g H ]t1 1 2

It is similar to (21) except for a simpler forcing term.
The characteristics and propagation of the front is thus
similar for h1 and H, hence for h2.

After H has reached its equilibrium value, that is,
after the first mode adjustment (year 12 in the numerical
experiment), we have ]H/]t 5 0 and

bgg H ]H2 5 w ,e2f ]x

so Eqs. (21) and (22) simplify. However, an analytical
solution cannot be obtained because of the complex
form of the coefficients, which do not separate the part
due to the first baroclinic mode H and that due to the
second one. This lack of analytical solution also holds
in the steady case, as was noted by Luyten and Stommel
(1986) and Cushman-Rosin (1987) who had to use nu-
merical methods.

To obtain an analytical solution, we introduce a func-
tion u(x, y, t) (with u ∈ ]0, p/2[) defined by

g h 1 g H1 1 2tanu 5 , (23)
Ïg g h1 2 2

which provides a measure of the ratio of the two active
layer thicknesses and allows one to clearly separate the
part due to the first mode from that due to the second
mode. Indeed, straightforward algebra shows that the
layer depths are related to H and u by
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FIG. 10. Isocontours of u (in radians) for (a) the initial state, (b)
year 12 of the spinup, (c) the final state, and (d) year 15 of the
spindown.

sinu cosu1h 5 2H sin(u 1 u ), h 5 H , and1 1 2cosu cosu1 1

H 5 H cos(u 1 u ),1 (24)

where u1 ∈ ]2p/2, 0[ is defined by

g g2 1sinu 5 2 , cosu 5 (25)1 1! !g 1 g g 1 g1 2 1 2

(in the numerical experiments g1 5 g2, and u1 5 2p/4).
Introducing these expressions in (8) leads to

]u ]u ]u
1 (c 1 c ) 1 c 5 p, (26)x 2 y]t ]x ]y

with

g H gg sinu ]H2 2 1c 5 u 5 1x ag h 1 g H f sinu ]y1 1 2

g H gg sinu ]H2 2 1c 5 y 5 2y ag h 1 g H f sinu ]x1 1 2

g H bgg cosu sin(u 1 u )2 2 1c 5 c 5 2 H2 r 2g h 1 g H f sinu1 1 2

cosu ]H bgg ]H2p 5 2 cos(u 1 u )H . (27)121 2sinuH ]t f ]x

If H is constant, one has

cosu sin(u 1 u )1p 5 2 w ,esinuH

sinu x ]w 2sinu f1 e 1c 5 2w 1 f ; and c 5 wx e y e1 2sinuH ] f sinuH b

in (27), which can then be written

dt 5 ds dx 5 (c 1 c )ds dy 5 c dsx 2 y

du 5 pds, (28)

where s defines again the abscissa along characteristics.
As shown in appendix B, (28) can be solved analytically,
thereby improving on the numerical results of section
4. The conditions at s 5 0 are given in three domains.
The initial state is specified in domain D1, defined by
t 5 0, x # 0, f # f j, which corresponds to the whole
basin south of the subduction line. The conditions im-
posed by the dynamics north of the subduction line are
prescribed at all times in domain D 2, defined by t $ 0,
x # 0, f 5 f j, and those along the eastern boundary
in D 3, defined by t $ 0, x 5 0, f # f j. Note that the
characteristics coming from the subduction line at t 5
0 and from its intersection with the eastern coast at t $
0 define the new ventilated zone, whereas those coming
from the eastern boundary at t 5 0 and from its inter-
section with subduction line at t $ 0 define the new
shadow zone (heavy line in Fig. 11 and 12 below).

Figure 10 shows the thickness ratio u. Note that in

the initial (panel a) and final (panel c) state, u depends
only on latitude in the ventilated zone, which would not
be the case for h1 since the latter depends on H, hence
on the longitude. However, in the two-layer model of
Liu, the first layer depth also depended only on latitude
in the ventilated zone since the thermocline bottom was
at a constant depth. The initial state for the integration
of (28) is taken from the numerical calculation at the
beginning of year 13 (panel b). The thermocline depth
has increased but the ocean is out of equilibrium. The
initial ventilated and shadow zones can still be recog-
nized (compare with panel a), although their boundaries
have been smoothed by the numerical scheme and u
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FIG. 11. Spinup of the ocean during the second part of the
adjustment. Perspective view of u at (a) year 17 and (b) year 22,
and (c) of the depth of the two layers at year 17.

depends slightly on longitude in the ventilated zone.
The evolution of u is shown in perspective view in Fig.
11 at year 18 and 23 (its evolution ceases after year 28).
Each grid element in these panels is the image along a
characteristic of an initial rectangle (defined at s 5 0),
hence its distortion reflects the mechanisms at play. The
time step chosen in D 2 and D 3 for the integration is
equal to 1 yr, so the zonally oriented lines in the new
ventilated zone and the meridonally oriented lines in the
new shadow zone correspond to years 0 to 5 (panel a)
or 0 to 10 (panel b). Since u depends only slightly on
longitude in the northern part of the basin, the term (cx

1 c2)]u/]x in Eq. (28) remains much smaller than
cy]u/]y (it vanishes when the equilibrium state is
reached since u then does not depend on the longitude,
as mentioned above). Consequently, zonal advection

and Rossby wave propagation remain small, and me-
ridional advection dominates. This is reflected by the
marked meridional propagation of the front (heavy line)
and the grid elements in the northern part of the old
ventilated zone, with only weak zonal changes. Note
that u has reached its steady state in the new ventilated
zone after the front has passed. The main balance in the
northern part of the basin is thus between meridional
advection and local Ekman pumping. This agrees with
Liu, but only holds after the first baroclinic mode ad-
justment. Equatorward the situation is more complex.
As the shadow zone is no longer at rest, advection occurs
everywhere. Moreover, since u strongly depends on x,
c2]u/]x dominates in (26) and the second baroclinic
mode is active. This is revealed by the strong zonal
displacement of the wave front (heavy line) and the grid
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FIG. 12. Spindown of the ocean during the second part of the
adjustment. Perspective view of u at (a) year 20 and (b) year 30.

elements, and by the stretching of the latter in the eastern
part of the old shadow zone. It reflects an approximate
balance between Ekman pumping and the second bar-
oclinic mode as well as the latitudinal dependence of
its wave speed. Behind the front originating from the
eastern boundary, a new shadow zone is created, which
is at rest since H remains constant. Figure 11c shows
the depth of the layers at year 17. The different dynam-
ical zones are separated by sharp boundaries since our
solution of (26) is not affected by numerical smoothing
as in section 4 nor by the recirculation area, which is
always delineated by characteristics.

Qualitatively, the thermocline evolution is similar
during spindown. The initial state of the integration of
(28), taken after 15 yr (Fig. 10d) as the first-mode ad-
justment, was a little slower (section 4). The thermocline
has been lifted by the first baroclinic mode and the
averaged velocity va has become smaller [see (13)]. The
state of u at year 20 (panel a) and 30 (panel b) is shown
in Fig. 12, suggesting the same dynamics during spinup:
weak Rossby waves in the northern part of the basin
and intense wave activity elsewhere. As before, the spin-
down is much slower than the spinup, as seen by the
smaller distance between the zonally oriented lines in
the new ventilated zone and between the meridionaly
oriented lines in the new shadow zone. The longer ad-
justment is due to the decrease of the averaged advection
in the ventilated zone, as well as that of the second-
mode phase velocity in the shadow zone. The evolution
of u only ceases after year 40 instead of 28.

A detailed comparison with Liu is not warranted, but
it is easily seen that his analysis remains coarsely valid
for the second phase of the adjustment if we associate
u to his first-layer depth and interpret his discussion of
the first baroclinic mode as really pertaining to the sec-
ond (note that c2 is slightly smaller but otherwise very
similar to CLiu and cr is similar to CLiu). Nonetheless,
Liu’s assumption of a flat thermocline bottom leads to
important differences in the results and interpretation:

1) Although (26) is close to the corresponding equation
for the first layer depth in Liu, density advection is
by a baroclinic flow and not a barotropic one, with
corresponding differences in the associated time-
scales: its adjustment takes a decade instead of being
instantaneous.

2) There is some wave activity in the north because the
first baroclinic mode has tilted the lines of constant
u (c2]u/]x ± 0).

3) The differences in adjustment time betwen spinup
and spindown are larger in the present study since
only the second baroclinic mode was represented in
Liu, and it had no linear dependence on the effective
layer depth, only an indirect one via the first-layer
depth.

6. Conclusions
Using a method of successive linearization, we have

numerically simulated the spinup of a 2.5-layer model

of the ventilated thermocline and interpreted it in terms
of baroclinic Rossby wave propagation. The first bar-
oclinic mode was defined in a forced wave equation for
an effective depth H, which determined the averaged
flow in the two active layers. The second baroclinic
mode was defined in an equation for h1 or for u, a
function of the ratio between the two-layer thickness,
which determined the differences in their behavior. Two
periods of different dynamics characterize the adjust-
ment. During the first decade, the Ekman pumping
change mainly creates a first-mode baroclinic Rossby
wave that deepens the thermocline both north and south
of the subduction line without being directly affected
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by the mean flow. However nonlinearities affect the
wave propagation and lead to faster phase speed in the
2.5-layer model than in a 1.5-layer one with the largest
differences in the western part of the basin where it can
reach 50%. Although our study gives some support to
the common use of simplified normal mode models
(FMZ; Sturges and Hong 1995) that prescribe the first
baroclinic mode and assume a basic state at rest, it con-
firms that more complex models are needed to match
the largest phase velocity computed from observed data
(Chelton and Schlax 1998).

After crossing of the first-mode wave front, H is in
approximate equilibrium, but not u south of the sub-
duction line. The dynamics can then be described to a
good approximation by the conservation of potential
vorticity. In the initial ventilated area, the Ekman pump-
ing is primarily balanced by meridional advection, but
zonal advection and the second baroclinic mode are also
active, resulting in fairly small depth variations and a
slow return to a stationary state. In the initial shadow
zone that was set in motion, the main balance is between
the second baroclinic mode and Ekman pumping, the
advection by the averaged flow having a smaller effect.
Although the resulting depth changes are much smaller
than during the first stage of the adjustment, these dy-
namics lead to the establishment of new ventilated and
shadow zones. The second phase of the adjustment is
thus more complex and involves a second baroclinic
mode whose propagation is strongly controlled by the
mean meridional advection. It is therefore inadequate
to use a baroclinic mode higher than the first one in
modal models with a basic state at rest. This explains
why Sturges and Hong (1995) found that adding the
second baroclinic mode brought no improvement to
their sea-level prediction.

The main difference between spinup and spindown
is that the latter takes longer. During the first stage of
the adjustment, the nonlinearities slow the propagation
of the first baroclinic mode. During the second, the ce-
lerity of the second mode and the averaged velocity of
the flow are decreased because the thermocline has be-
come shallower and we is weaker. Such a dissymmetry
between the two cases should affect the oceanic re-
sponse to harmonic and stochastic variations in the Ek-
man pumping.

Our results strongly differ from those of Liu who, by
assuming that the thermocline bottom remains flat, fil-
tered out the first baroclinic mode, which actually large-
ly dominates the adjustment. Nonetheless, much of Liu’s
analysis remains valid, albeit in a simplified setting, for
the second stage of the adjustment allowed one to in-
terpret his first baroclinic mode as the second one and
his initial barotropic adjustment as the 10-yr long bar-
oclinic one. On the other hand, the dominant role of the
first baroclinic mode and the strong influence of ad-
vection on the second mode that is demonstrated here
are consistent with the recent analysis of Huang and
Pedlosky (1999) (provided that what they call barotropic

response is understood as the first baroclinic mode) who
compared the steady-state response of a 2.5-layer model
to different forcing fields, with that of Liu (1999) who
used the WKB approximation to study a Rossby wave
in a 2.5-layer quasigeostrophic model, and with the nu-
merical simulations of Nakamura (1998). Finally, our
results are consistent with recent observational evi-
dence. Indeed, Deser et al. (1999) showed that the first
baroclinic mode response to changes in the Ekman
pumping largely explains the observed variability of the
Kuroshio. They also observed a midbasin temperature
anomaly that was slowly moving southward, then west-
ward, as predicted by the trajectories associated to our
second baroclinic mode.
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APPENDIX A

Numerical Technique

The system (14) and (17) with unknowns H 2 and z
is integrated numerically using a method of successive
linearizations. Between tn and tn11 where tn 5 ndt, n
integer, we linearize the two equations on a prescribed
spatial grid around the values reached at time tn. Then
we use the method of characteristics to predict the values
at tn11. As discussed below, the method is accurate to
first order in dt and converges for small enough dt,
although the spatial interpolations needed at each time
step introduce some smoothing near the frontal zones.

To linearize (14) at time tn around a grid point
(xs, f s), we replace c1, l, and m by their values c1(n, s),
l(n, s), and m(n, s), where (n, s) refer to (tn, xs, f s),
which depend on the value of H and z at the same time
and location, respectively H(n, s) and z(n, s). This
leads to the equation

2 2]H ]H
2 c (n, s) 5 2l(n, s)w 2 m(n, s), (A1)1 e]t ]x

whose characteristics are given by the system:

dt dx
5 1 5 2c (n, s)1ds ds

2dH
5 2l(n, s)w 2 b(n, s). (A2)eds

Integrating the ratio between the first two equations
leads to x 2 xs 5 2c1(n, s)dt. This last step neglects
the x dependence of c1(n, s) and so remains accurate
only if dt is small enough for x 2 xs to be smaller than



1788 VOLUME 30J O U R N A L O F P H Y S I C A L O C E A N O G R A P H Y

the grid size. The characteristics associated with (14)
are thus straight lines given by

x 5 2c1(n, s)dt 1 xs and f 5 f s. (A3)

Similarly, the ratio between the last two equations in
(A2) leads to

2 2dH 2 f m(n, s)
5 w 1 , (A4)edx g bg c (n, s)2 1

where we have used (15), which is integrated into

22 f we2 2H 5 H (n, s) 1 (x 2 x )sg bg2

m(n, s)
1 (x 2 x ). (A5)sc (n, s)1

This defines H along the characteristics (A3), leading
after interpolation along f 5 f s to H(n 1 1, s). Note
that when ]z/]t becomes negligible, m tends to 0 and
the computation of H becomes exact [compare (A5) with
(11)–(12)], insuring convergence to the true value of H.
The potential vorticity equation 17 is integrated simi-
larly except that f acts as a variable, and no forcing is
applied. The characteristic originating at tn from (xs, f s)
is the straight line defined by

x 5 cz(n, s)dt 1 xs and f 5 cm(n, s)dt 1 f s, (A6)

and the potential vorticity is conserved along it:

z(x, y) 5 z(n, s). (A7)

An interpolation (inverse distance method) provides
z(n 1 1, s). For the characteristics originating from the
eastern boundary, one has h 5 H0 5 H, while for those
originating at subduction line y 5 y1, section 3 yields
H 5 H 5 h2. Note however that the recirculation zone
on the western side is not correctly represented by the
model dynamics.

The potential vorticity gradient in the area that sep-
arates shadow and ventilated zones is very sharp and
can only be well represented on a grid with high zonal
and meridional resolution. Since our algorithm is only
accurate to first order in dx, we improved it by using
the technique of ‘‘extrapolation à la limite’’ (Euvrard
1985), where a second integration is done on a grid
twice finer than the first one. If V1 denotes a variable
computed on the original grid and V2 the same variable
computed on the finer grid, we use V 5 2 3 V2 2 V1,
accurate to second order in dx. For each integration, the
time step dt must be chosen such as ydt , dl, where y
is the largest velocity involved in the problem and dl
the distance between two grid points (CFL condition).
The spatial grid is thus a compromise between prohib-
itive computational cost and coarse resolution. We chose
for the finest grid a meridional resolution of 50 km and
a zonal one of 150 km. A typical meridional velocity
is 0.5 cm s21, requiring a time step of at most four
months. The largest zonal velocity is that associated

with a Rossby wave in the southern part of the basin,
14 cm s21, requiring a time step of at most 10 days,
which was chosen. Nonetheless, the new stationary state
reached after integration is not identical to the true one
because of the interpolation errors in the potential vor-
ticity field.

APPENDIX B

Analytical Solution of (28)

The ratio between dy and du in (28) leads to sinu1f
du 5 b cosu cos(u 1 u1) dy, which can be written f
du 5 cos2u cotu1 df 2 cosu sinu df and integrated into

f tanu 5 f s tanus 2 ( f s 2 f ) cotu1, (B1)

where f s 5 f 0 1 bys and s refers to conditions at s
5 0 as previously. The ratio between dx and dy in (28)
leads to

d b
2( f xw ) 5 [sinu 1 sin(2u 1 u )]e 1 1dy f sinu1

2 23 ( f xw 1 g bgH /2) (B2)e 2 0

or equivalently

d
2 2ln(D 1 H )0dy

b
5 [sinu 1 sin(2u 1 u )] (B3)1 1f sinu1

with D2 5 2 f 2xwe/(g2bg). The right-hand side only
depends on y and can be easily integrated, leading to

2H
2 2( f 1 ( f tanu 1 ( f 2 f ) cotu ) )s s s 1

2Hs5 , (B4)
2 2( f 1 ( f tanu ) )s s s

or using (A8) and (23)

h2/ f 5 h2,s/ f s. (B5)

Potential vorticity in the second layer is thus conserved
along the streamlines in the (x, y) space (Lagrangian
conservation). There is another interpretation: multiply-
ing (A12) by f (1 2 tanu1 tanu) 5 f s(1 2 tanu1 tanus)
and using (23), we obtain H 5 Hs. Thus, (A8) and (A11)
define the lines of constant H, that is, the direction of
the second-layer flow.

From (28), the ratio dt/dy is equal to

b sinuH
dt 5 2 dy (B6)

sinu fw1 e

or, using (A8) and (A11),
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b
dt 5 2 [ f tanu 1 ( f 2 f )Ïg /g ]s s s 1 2sinu1

2 2ÏD 1 Hs 0
3 dy. (B7)

2 2fw (y)Ï f 1 ( f tanu )e s s s

Replacing we(y) by its value we 5 a( f 2 f S)( f N 2 f ),
and integrating the function

[ f tanu 1 ( f 2 f )Ïg /g ]/ fw (y)s s s 1 2 e

with the condition at s 5 0 leads to

1 H cosus st 2 t 5 2i a sinu f1 s

f f 2 f f 2 fS N3 A ln 1 B ln 2 C ln1 2f f 2 f f 2 fs s S N s

(B8)

with

f tanu 1 f Ïg /gs s s 2 1
A 5 ,

2 f fS N

f tanu 1 ( f 2 f )Ïg /gs s s S 2 1
B 5 ,

f ( f 2 f )S N S

f tanu 1 ( f 2 f )Ïg /gs i s N 2 1
C 5 .

f ( f 2 f )N N S

The characteristics of (28) are computed from (B1),
(B4), and (B8).
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