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ABSTRACT

Properties of internal wave fronts or Kelvin fronts travelling eastward in the equatorial waveguide are studied,
motivated by recent studies on coastal Kelvin waves and jumps and new data on equatorial Kelvin waves. It
has been recognized for some time that nonlinear equatorial Kelvin waves can steepen and break, forming a
broken wave of depression, or front, propagating eastward. The three-dimensional structure of the wave field
associated with such a front is considered. As for linear Kelvin waves, the front is symmetrical with respect to
the equator. Sufficiently far away from the front, the wave profile is Gaussian in the meridional direction, with
the equatorial Rossby radius of deformation being its decay scale. Due to nonlinearity, the phase speed of the
front is greater than that of linear Kelvin waves, resulting in a supercritical flow. This leads to the resonant
generation of equatorially trapped gravity–inertial (or Poincaré) waves, analogous in principle to the resonant
mechanism for nonlinear coastal Kelvin waves. First-mode symmetrical Poincaré waves are generated, with their
wavelength determined by the amplitude of the front. Finally, the propagation of a Kelvin front gives rise to a
nonzero poleward mass transport above the thermocline, in consequence of which there is a poleward heat flux.

1. Introduction

The propagation of internal Kelvin waves on the equa-
torial thermocline plays an important role in equatorial
dynamics. Figure 1 [Tropical Atmosphere–Ocean (TAO)
array data] shows that the equatorial ocean can be well-
described within the framework of a two-layer model.
The Coriolis parameter vanishes at the equator so that
the interface between the shallow and the deep layer
serves as a waveguide for various trapped waves, in-
cluding eastward travelling Kelvin waves and westward
travelling Rossby waves. Trapped gravity–inertial waves
(or Poincaré waves) can propagate in both directions,
although the first gravity–inertial wave mode has prop-
erties of a Rossby wave when it travels westward [mixed
Rossby–gravity or Yanai wave, Gill (1982); see Fig. 6
below].

Boyd (1980) and Ripa (1982) considered nonlinear
equatorial Kelvin waves and showed that they could
steepen and overturn or break. A wave of depression
deepens the thermocline and breaks on the forward face
of the wave, while a wave of elevation raises the ther-
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mocline and tends to break on the rearward face. A
broken wave of depression can form a jump [also called
shocks or fronts: Lighthill (1978), Philander (1990)]. In
this paper we propose a model for such fronts (we call
them equatorial Kelvin fronts) and study the properties.
Earlier, Fedorov and Melville (1995, 1996) and Fedorov
(1997) studied properties of nonlinear Kelvin waves and
fronts trapped near coastal boundaries; this work con-
siders analogous phenomena in the equatorial ocean.
Whether Kelvin waves are linear waves or nonlinear
fronts determines their main characteristics, including
the speed of wave propagation, dissipation rates, and
the meridional structure of the flow.

Extensive data on Kelvin waves have been obtained
recently, motivated in part by possible connection be-
tween the initial stages of El Niño and equatorial Kelvin
waves which may precede this event: Any relaxation or
reversal of the steady trade winds (the easterlies) results
in the excitation of a Kelvin wave, which can affect El
Niño (e.g., Federov 2000, Manuscript in preparation).
The periods of equatorial Kelvin waves vary from two
weeks (Philander 1984) to two months (Kessler et al.
1995) and even to intraseasonal timescales [up to four
months: Johnson and McPhaden (1993)]. The motion is
characterized by zero flux across the equator. The typical
phase speed of the waves ranges from 2 to 3 m s21 and
depends upon the depth of the thermocline and nonlinear
effects.
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FIG. 1. Temperature distribution in the Pacific Ocean at the equator in Mar 1997. The thermocline cor-
responds to about 208C (from the TAO Web site). Note the almost vertical 278–288C isotherms around 1808
indicating the possibility of front formation.

Are nonlinear effects important for equatorial Kelvin
waves? Delcroix et al. (1991) studied equatorial Kelvin
waves in the Pacific ocean through Geosat measure-
ments of sea level and surface current anomalies. The
measured phase speed of the waves was 2.82 6 0.96
m s21, while theoretical predictions of the linear phase
speed were in the range 2.26 6 1.02 m s21. Kessler et
al. (1995) looked at the displacement of the thermocline
during passages of Kelvin waves and found amplitudes
a 5 620 m, with the depth of the thermocline varying
from 80 to 170 m. Eriksen et al. (1983) measured sea-
level fluctuations of about 10 cm, which they attributed
to signatures of internal waves. The sea level anomalies
in the study by Delcroix et al. 1991 were 10–15 cm.
Such strong anomalies can be associated with the pas-
sage of internal waves with amplitudes of some tens of
meters.

The above data suggest that the typical nonlinearity
(defined as the ratio of the wave amplitude to the ther-
mocline depth or, alternatively, as the ratio of the phase
speed correction to the linear phase speed) may range
from about 10% to 30%. For weaker waves, the non-
linearity may increase several-fold due to the shoaling
of the thermocline (Long and Chang 1990; Yang and
Yu 1992), as it decreases from 180 to 40 m, and some-
times even to 20 m, going from west to east.

One might assume that the phase speed corrections
can be attributed to the mean currents, and especially
to the effect of the equatorial undercurrent. However,
calculations by Johnson and McPhaden (1993) for linear
Kelvin waves show that adding the mean currents cor-
rects the phase speed by only 4%. Thus there is sufficient

evidence that nonlinearity may be important for equa-
torial Kelvin waves.

Since Kelvin waves are observed in the Pacific as
well as the Atlantic Ocean (Katz 1987), the present work
is applicable for both basins. However, as the Pacific
basin is of greater size, the waves there have longer time
for nonlinear evolution. The zonal extent of the Pacific
in the equatorial region is approximately 1458, or about
16 000 km. In the next sections we will show that this
may give the wave enough time to break and evolve
into a fully developed front. Our results may be appli-
cable also to the atmosphere where equatorially trapped
Kelvin waves are well documented. For a review see
Gill (1982).

Solving the full nonlinear shallow-water equations
numerically we demonstrate that the wave steepens and
approaches breaking in a manner qualitatively similar
to that discussed by Boyd (1980) and Ripa (1982). How-
ever, after breaking and some adjustment, the Kelvin
front1 is formed with properties rather different from
classical two-dimensional hydraulic jumps. Note that
both Boyd and Ripa assumed geostrophic balance for
the zonal component of the velocity. This assumption
renders the nonlinear Kelvin waves straight-crested.
Further, it permits the reduction of the problem of the
wave evolution to a two-dimensional problem (with one
spatial coordinate along the equator, and time). Thus,

1 Sometimes any nonlinear Kelvin wave is referred to as a Kelvin
wave front. We choose to use the word front in the narrower sense:
a wave led by a hydraulic jump or shock.
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wave breaking and fronts in their formulations are es-
sentially two-dimensional.

In our work we show that, although the geostrophic
balance holds during the initial stages of the wave evo-
lution, a full three-dimensional model is needed to de-
scribe the developed front. In such a model, the temporal
derivative of the transverse or meridional velocity is
retained in the y-momentum equation, permitting curved
fronts.

The Kelvin front is convex to the east with the equator
as the axis of symmetry. A packet of gravity–inertial
(or Poincaré) waves is generated, which travels at the
same speed as the front. Although the cross-equatorial
flow measured at the equator remains zero, the propa-
gation of a Kelvin front leads to a nonzero net mass
transport that is directed away from the equator above
the thermocline. The maximum of this transport occurs
at approximately one Rossby radius off the equator.

We explain these and other properties of Kelvin fronts
within a semianalytical theory based on jump conditions
and the approximation of a gravity–inertial boundary
layer behind the jump. (For instance, the asymptotic
angle of the front is given by a simple function of the
front amplitude.) The major differences between the nu-
merics and the theory is that in the latter we postulate
the existence of the jump, and, thereby, obtain the wave
field behind the front, while in the former the jump
emerges after the evolution of the originally smooth
initial disturbance.

Finally, by introducing a sloping thermocline and
moderate asymmetry into the problem, we demonstrate
that the formation of the Kelvin front is a robust feature
of the model. (Although Long and Chang 1990 and Yang
and Yu 1992 have considered the propagation of Kelvin
waves on a slowly varying thermocline, neither of the
studies dealt with front formation.)

2. Formulation of the problem

Internal waves trapped on the equatorial thermocline
can be described by nonlinear shallow-water equations
for a single-layer fluid on the equatorial beta plane lying
on a deep motionless layer (the 1½-layer approxima-
tion):

u 1 uu 1 yu 1 g*h 2 fy 5 0, (2.1)t x y x

y 1 uy 1 yy 1 g*h 1 fu 5 0, (2.2)t x y y

h 1 (uh) 1 (yh) 5 0, (2.3)t x y

where

f 5 by. (2.4)

The notation is conventional (Pedlosky 1987, p. 61),
with positive h(x, y, t) denoting the entire local depth
of the thermocline, u(x, y, t) the eastward velocity com-
ponent, y(x, y, t) the cross-equatorial (transverse) ve-
locity, and g* the effective (reduced) gravity. Note that

rearward breaking is not allowed in such a single-layer
model unless we change the signs of the nonlinear terms.
Nor do mean currents enter the equations, although their
potential influence is briefly discussed in the introduc-
tion and in the discussion of section 4.

Following the standard approach, we introduce non-
dimensional variables

u 5 acu9, (2.5)

y 5 acy9, (2.6)

h 5 Dh9, and (2.7)

x 5 Rox9, (2.8)

y 5 Roy9, (2.9)

Ro
t 5 t9, (2.10)

c

where

a 5 a /D, (2.11)

c 5 Ïg*D, and (2.12)

Ro 5 Ïc/b. (2.13)

Here a is the characteristic wave amplitude, D is the
undisturbed depth of the thermocline, c is the linear
phase speed of internal gravity waves, and Ro is the
(internal) equatorial Rossby radius of deformation. (For
typical equatorial conditions Ro is approximately 300
km.)

Substituting (2.4)–(2.13) into (2.1)–(2.3) and drop-
ping the primes gives the nondimensionalized shallow-
water equations

u 1 a(uu 1 yu ) 1 h 2 yy 5 0, (2.14)t x y x

y 1 a(uy 1 yy ) 1 h 1 yu 5 0, (2.15)t x y y

h 1 a(uh) 1 a(yh) 5 0, (2.16)t x y

where

h 5 1 1 ah, (2.17)

and h is the dimensionless displacement of the ther-
mocline. Note that, unlike Boyd (1980) and Ripa (1982),
we do not use the geostrophic approximation in the
y-momentum equation (2.15) allowing for the possibil-
ity of curved fronts. In the flux-conserving form, the
equations become

2h
2(uh) 1 au h 1 1 a(uyh) 2 yyh 5 0, (2.18)t y1 22

x

2h
2(yh) 1 a(uyh) 1 ay h 1 1 yuh 5 0, (2.19)t x 1 22

y

h 1 a(uh) 1 a(yh) 5 0 (2.20)t x y

[cf. the f -plane case: Pratt (1983, 1987)]. The system
(2.18)–(2.20) can account for classical hydraulic jumps
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(Lighthill 1978; Whitham 1980) with rotation [see Fe-
dorov and Melville (1996); Kuo and Polvani (1997);
and Helfrich et al. (1999) for the f -plane case], that is,
discontinuities in the wave field, with mass and mo-
mentum fluxes conserved across the jumps.

To describe physical fronts with a finite width and an
internal structure, we add eddy viscosity n in a way that
is common to other tropical and equatorial problems
(Gent 1993):

2h
2(uh) 1 au h 1 1 a(uyh) 2 yyht y1 22

x

5 n((hu ) 1 (hu ) ), (2.21)x x y y

2h
2(yh) 1 a(uyh) 1 ay h 1 1 yuht x 1 22

y

5 n((hy ) 1 (hy ) ) (2.22)x x y y

h 1 a(uh) 1 a(yh) 5 0 (2.23)t x y

In this latter system, the fronts appear as regions with
large gradients of the relevant parameters (u, y , and h).
We will use both systems (2.14)–(2.17) and (2.21)–
(2.23) to analyze the evolution of equatorial Kelvin
waves and development of the Kelvin fronts.

We have also completed several numerical runs using
a different form of the mixing terms, namely

n[(uh)xx 1 (uh)yy] and n[(yh)xx 1 (yh)yy]. (2.24)

The results were almost identical for different mixing
parameterizations, as long as the eddy viscosity is small.
The use of (2.24) is more convenient for numerical pur-
poses, although not as general as the use of conventional
mixing terms in (2.21)–(2.23).

The initial conditions for Eqs. (2.21)–(2.23) are cho-
sen to correspond to a linear bell-shaped Kelvin wave
stretched in the direction of the equator:

2 2y x
h| 5 1 1 a exp 2 2 , (2.25)t50 21 22 2q

2 2y x
u| 5 a exp 2 2 , (2.26)t50 21 22 2q

y | 5 0, (2.27)t50

where q is the aspect ratio of the equatorial length of
the disturbance to its width. It is usually assumed that
for the equatorial Kelvin waves q is larger than unity.
Further, in section 4 we will investigate the effect of a
moderate displacement of such initial disturbance away
from the equator.

For initial conditions (2.25)–(2.27) we could use the
(slightly modified) result due to Boyd (1980) and Ripa
(1982) to estimate the nondimensional time to breaking:

q
1/2t ø (2e/3) . (2.28)breaking a

For example in our calculations, we will take D 5 100
m and g* 5 0.05 m s22, while q ø 3 and a 5 0.2,
yielding c 5 2.2 m s21 Ro 5 320 km and a 5 20 m,
and tbreaking ø 18. The full length of the disturbance given
in (2.25)–(2.27) is about 20Ro (see Fig. 2a), corre-
sponding to a wave period of approximately 33 days.
Such a wave would break at tbreaking ø 18 or, in dimen-
sional units, after about one month of evolution. Before
breaking, the wave would travel a distance of the order
of 7000 km, significantly less than the width of the
Pacific. Although in this particular example the wave
amplitude is relatively high, less stretched disturbances
of proportionately smaller amplitude would require the
same time to break. As long as the wave is broken, it
may form a Kelvin front.

Note that the typical breaking commonly associated
with wave overturning never happens in our model since
we have added eddy viscosity into the system. Instead,
strong velocity gradients emerge in front of the wave.
In the field this would lead to strong mixing and tur-
bulence in the transitional region. We still refer to this
phenomenon as wave breaking.

3. Nonlinear evolution of equatorial Kelvin waves
and the formation of a Kelvin front

Now we numerically solve the shallow-water equa-
tion with friction (2.21)–(2.27). We use a scheme similar
to that of MacCormac [an explicit scheme of the pre-
dictor–corrector type: see Fletcher (1991)]. The differ-
ence is that the nonlinear advective terms in (2.21)–
(2.23) are given by centered finite differences. The
scheme has second-order accuracy in both space and
time. The coefficient of eddy viscosity n, the longitu-
dinal resolution of the grid Dx, and latitudinal resolution
Dy are chosen to be linearly related to each other so
that

n 5 ADx, Dt 5 BDx, and Dy 5 CDx, (3.1)

where A, B, and C are numerical coefficients. With better
resolution (smaller Dx), the viscosity decreases. We in-
troduce A, B, and C to meet several objectives. First,
varying A and Dx we achieve the values of eddy vis-
cosity conventionally accepted for these types of oce-
anic motion. Second, by varying the coefficients we
change the properties of the scheme associated with
front properties. Thus, we can have dissipative rather
than dispersive jumps. (The former dissipates the energy
in the jump itself through turbulence, while the latter
looses energy by radiating waves that travel away from
the jump; e.g., Whitham 1974). Finally, changing A, B,
and C, we optimize the convergence of the scheme.

For the numerical runs presented in this section we
take Dx 5 0.008, and A 5 0.17, B 5 0.34, and C 5
0.58. Other choices of A, B, and C are possible, but
these were found to be optimal within the range of pa-
rameters considered. This particular choice of A and Dx
gives n 5 0.0014, which corresponds to a dimensional
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FIG. 2. The formation of a Kelvin front on a uniform thermocline
from an initial disturbance corresponding to a linear Kelvin wave,
which is Gaussian-shaped and stretched along the equator. The iso-
lines of the displacement of the thermocline ah are shown. The de-
pression of the thermocline is calculated by solving an initial value
problem for the full shallow-water Equations (2.21)–(2.23) and initial
conditions (2.25)–(2.27). The plots describe an approximately two-
month period during the evolution of the wave (a 5 0.2 and n 5
0.0014) (a) t 5 0, (b) t 5 20, and (c) t 5 40.

FIG. 3. The nondimensional amplitude of the wave (defined as the
maximum displacement of the thermocline scaled by its depth) as a
function of time for the wave evolution presented in Fig. 2. The
oscillatory part of the graph (1) corresponds to the initial nonlinear
adjustment and the excitation of a Rossby wave. The middle part of
the graph (2) describes wave steepening leading to breaking. The
relatively steep slope on the right (3) follows the formation of a Kelvin
front, which strongly enhances dissipation.

value of the horizontal eddy diffusion of 103 m2 s21 if
we use c 5 2.2 m s21 for the linear phase speed of
Kelvin waves. Increasing Dx, while fixing A, B, and C,
changes the solutions only slightly, amplifying viscosity
and widening the region associated with the hydraulic
jump. For further details of the numerics see Fedorov
and Melville (1996).

In Fig. 2 we present an example of Kelvin wave evo-
lution. Starting from its initial Gaussian shape, the equa-
torially trapped disturbance steepens, which is revealed
in the higher concentration of contour lines on the front
(Figs. 2a,b). The wave approaches breaking, and a
curved front begins to form (Fig. 2b). Finally, the wave
evolves into a fully developed Kelvin front (Fig. 2c).
The front is convex to the east, and a complex crest
pattern has emerged behind it. In the next section we
will show that this pattern consists of Poincaré waves.

Figure 3 presents the amplitude of the wave as a
function of time. The amplitude is defined as the max-
imum displacement of the thermocline on the equator.
Although the values of the amplitude vary only slightly,

one can distinguish several important regions of the
graph. Clear oscillations of the amplitude on the left-
hand side of the plot are related to the initial nonlinear
adjustment of the wave. Since our initial conditions
(2.25)–(2.27) are not an exact solution of the shallow-
water equations, a relatively weak Rossby wave must
emerge and travel westward, carrying excess energy.
[This is analogous to the linear problem: see Gill (1982),
Philander (1981), and Philander et al. (1984).] The re-
gion where the amplitude varies very little corresponds
to wave steepening close to breaking. The right-hand
side of the graph, with a relatively steep slope, is related
to the formation of a Kelvin front. As soon as the front
is developed, it causes a higher dissipation rate of the
wave field.

4. Resonant generation of Poincaré waves

The detailed structure of the front and the wave field
behind it is shown in Fig. 4, while the structure of the
transverse (cross-equatorial) velocity field is given in
Fig. 5. One of the most striking features of the wave
development of the front (Figs. 2c, 4, and 5) is the
appearance of relatively short waves behind it. Identi-
fication of these waves is facilitated by considering their
cross-equatorial velocity field since the typical asym-
metric cell structure in Fig. 5 can correspond only to
the first Poincaré (gravity–inertial) mode. The group
speed of the very short Rossby waves is too small to
keep pace with a fast Kelvin wave (Fig. 6), while the
higher Poincaré modes would have more nodes in the
y direction. The remaining Yanai (mixed Rossby–grav-
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FIG. 4. The detailed structure of the Kelvin front and the wave
field behind it (a blowup of Fig. 2c). The depression of the ther-
mocline is shown. Notice the forced Poincaré (or trapped gravity–
inertial) waves and the characteristic curved shape of the Kelvin front.
The wavelength of Poincaré waves is determined by the speed of the
front (or its amplitude) and can be calculated from the resonant con-
dition (section 4).

FIG. 5. Details of the transverse velocity field behind the jump.
Isolines of the y component of the velocity y are shown. Note that
solid (dashed) contours correspond to the flow directed away from
(toward) the equator. There is no flow across the equator (at y 5 0).
The concentration of the isolines behind the jump is associated with
the frontal off-equatorial jet caused by large gradients of the longi-
tudinal velocity component. Notice the cell structure of Poincaré
waves (see section 4).

FIG. 6. Dispersion curves for equatorial waves. The curve labeled 0 corresponds to the mixed
Rossby–gravity wave, the curves labeled 1 and 2 correspond to the first two gravity–inertial (or
Poincaré) wave modes (from Gill 1982). The circle indicates the resonant condition for the gen-
eration of Poincaré waves by a nonlinear Kelvin wave.

ity) wave would have a nonzero transverse velocity at
the equator.

The Poincaré waves are forced by the Kelvin front
as a result of a direct resonance: The front is super-
critical and moves slightly faster than a linear Kelvin
wave so that it matches the phase speed of the Poincaré
waves of an appropriate frequency (or wavelength) as
shown in Fig. 6. This is similar to the case considered
by Melville et al. (1989) and Tomasson and Melville
(1992) in which a nonlinear coastal Kelvin wave gen-

erated secondary Poincaré waves in a strait. We em-
phasize, however, that in Melville et al. the Poincaré
wave generation was a time-dependent process, leading
the continual excitation of Poincaré waves and to decay
of the Kelvin wave. In the present study the Poincaré
wave pattern is attached to the front, travels with the
same speed as the front, and remains almost steady with
respect to the front after some initial development. This
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will be used in section 6 in constructing a semianalytical
theory of steady equatorial Kelvin fronts.

Nevertheless, in the initial value problem the Kelvin
front is only quasi-steady since in a finite time the effect
of the jump can be felt only at a finite distance away
from it. The Poincaré waves are slowly spreading behind
the front, which can happen because the group velocity
of Poincaré waves is slightly smaller than that of a non-
linear Kelvin wave (Fig. 6).

To check the validity of the resonant mechanism we
can estimate the wavelength lp of the Poincaré waves
seen in Fig. 4. From Gill (1982) the frequency of the
first Poincaré mode satisfies the nondimensionalized dis-
persion relation,

k
2 2v 2 k 2 5 3, (4.1)

v

where k 5 2p/lp is the wavenumber (shown in Fig. 6).
Equation (4.1) can be rewritten, using the nondimen-
sional phase speed cp 5 v/k of the Poincaré waves as

3 1 1/cp2k 5 . (4.2)
2c 2 1p

If resonance occurs, the phase speed in (4.2) coincides
with the speed of the front; that is,

2
Dc Dc

2c 5 1 1 ø 1 1 2 , (4.3)p 1 2c c

where Dc/c is the nondimensional nonlinear correction
to the phase speed of the linear Kelvin wave. Making
use of (4.3) in (4.2) yields

2c
2k ø , or (4.4)

Dc

Dc
l ø p 2 . (4.5)p ! c

We estimated Dc/c from our numerical solution (pre-
sented in Figs. 3–5) to be about 0.13 by the time the
front is formed. Substituting this value in (4.5) gives lp

ø 1.6, which agrees well with the figures.
The resonant approach gives some insight into the

possible influence of the mean currents. Their main ef-
fect will be to modify the resonant condition locally.
This would result in a change in the wave field, which
may possibly alter the local shape of the jump (see
section 6). However, the qualitative behavior and prop-
erties of the Kelvin front should not change.

5. Formation of Kelvin fronts: Sloping thermocline
and asymmetry

To show that the formation of the Kelvin fronts is a
robust feature of the model ocean in this parameter
range, we pursue two additional numerical experiments.
In the first experiment, we introduce a sloping ther-

mocline instead of the flat thermocline. While keeping
the initial conditions and momentum equations as in the
section 2 we change the continuity equation (2.23) to

ht 1 a{u[h 1 g(x 2 x0)]}x 1 a{y [h 1 g(x 2 x0)]}y

5 0, (5.1)

where the extra term g(x 2 x0) describes the effect of
a shoaling thermocline with a constant slope g and cen-
tered at x 5 x0, which is approximately the half-width
of the Pacific (about 30Ro). The typical value of g is
0.02. For a single-layer ocean the additional term g(x
2 x0) is equivalent to the introduction of sloping to-
pography (Pedlosky 1987; Long and Chang 1990). With
this change one can easily rewrite Eqs. (2.21) and (2.22)
as

2H
2(uH ) 1 au H 1 1 a(uyH ) 2 yyH 2 gHt y1 22

x

5 n((Hu ) 1 (Hu ) ) (5.2)x x y y

2H
2(yH ) 1 a(uyH ) 1 ay H 1 1 yuHt x 1 22

y

5 n((Hy ) 1 (Hy ) ) (5.3)x x y y

H 1 a(uH ) 1 a(yH ) 5 0, (5.4)t x y

where

H 5 h 1 g(x 2 x0) (5.5)

is the full local depth of the thermocline. Note that

d(x) 5 1 1 g(x 2 x0) (5.6)

is the undisturbed depth of the thermocline, while Eqs.
(5.2)–(5.4) are still written in the flux-conserving form,
with the extra term 2gH due to the linearly varying
depth of the thermocline.

These equations are solved numerically as in the pre-
vious case. Figure 7 shows the evolution of the initial
disturbance advancing on the sloping thermocline. The
concentration of the isolines in the frontal part of the
wave is now due to two factors: the reduction of the
local speed of the wave because of the decreasing depth
of the thermocline and, second, the effect of nonlinearity
itself. Both factors work to cause the wave to break.
Figure 8 gives the evolution of the absolute wave am-
plitude that grows until the wave is broken and the front
is formed. There are three distinct regions of behavior,
as in the previous case (cf. Fig. 3). However, the initial
relative amplitude is now smaller, as compared to the
case of the flat thermocline, but still sufficient for the
front to form. (The initial relative amplitude, defined as
the ratio of the wave amplitude to the local depth of
the thermocline, is now about 0.15.)

As we mentioned already, the propagation of the
Kelvin waves on a slowly varying thermocline has been
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FIG. 7. The formation of a Kelvin front from an initial disturbance
corresponding to a linear Kelvin wave on a thermocline of decreasing
depth. The isolines of the displacement of the thermocline ah are
shown. The depression of the thermocline is calculated by solving
an initial value problem for the full shallow-water equation (5.2)–
(5.4) with initial conditions (2.25)–(2.27). Here, a 5 0.2, n 5 0.0014,
and the thermocline has a slope g 5 0.02. The depth of the ther-
mocline varies from about 150 to 50 m. The wave slows down during
its eastward propagation because of the decreasing phase speed in
the shallower thermocline: (a) t 5 0, (b) t 5 20, and (c) t 5 40.

FIG. 8. The nondimensional amplitude of the wave (defined as the
maximum displacement of the thermocline scaled by its mean depth)
as a function of time for the wave evolution in Fig. 7. The oscillatory
part of the graph (1) corresponds to the initial nonlinear adjustment
and the excitation of a Rossby wave. The middle part of the graph
(2) describes wave steepening leading to breaking. The increase in
the amplitude is associated with the decreasing thermocline depth.
The steep decay on the right (3) follows the formation of a Kelvin
front, enhancing dissipation. Note that the relative amplitude of the
wave, defined as the ratio of the maximum displacement of the ther-
mocline to its local depth, increases from 0.15 to 0.45 during the
propagation interval.

studied before. Yang and Yu (1992) used a linear model
and apply the WKBJ method to obtain their solution.
Long and Chang (1990) derived a KdV–type equation
with varying coefficients for describing nonlinear
Kelvin waves. Neither of the studies dealt with the fronts
(hydraulic jumps). Importantly, in all previous studies
it has been assumed that all different types of the equa-
torial waves become well separated after some time due
to the differences in the phase speeds. As we have
shown, it is not the case for the Kelvin jump for which
Poincaré waves and the Kelvin wave do not separate.
This is similar to the nonlinear Rossby adjustment in a
channel (Tomasson and Melville 1992). The character-
istic time scale of the nonlinear evolution is comparable
to the time needed for the wave separation, in conse-
quence of which full separation does not occur.

In the next example we introduce a mild asymmetry
into the problem. To maintain consistency with the real
ocean we retain the slope of the thermocline, but employ
asymmetric initial conditions:

2 2(y 2 D) x
h| 5 1 1 a exp 2 2 , (5.7)t50 21 22 2q

2 2(y 2 D) x
u| 5 a exp 2 2 , (5.8)t50 21 22 2q

where D is the meridional shift of the initial disturbance
with respect to the equator. For our calculations we
chose it to be 0.5Ro. Although initial conditions (5.7)–
(5.8) do not correspond to a pure Kelvin wave, they
simulate an asymmetry in the near-equatorial processes
due to various factors, for example, the effects of south-
erly winds.

There is only one major difference in the solutions
compared to the previous cases. An asymmetric Yanai
wave emerges from the initial disturbance and follows
the Kelvin front at a slower speed (Fig. 9). After some
time, the front and Yanai wave become completely sep-
arated. After the separation the front remains symmetric
and does not differ from the previous cases (Fig. 9c).

6. Three-dimensional fine structure of Kelvin
fronts

From the previous examples, we conclude that for a
range of the initial conditions and thermocline structure
an equatorial disturbance evolves into a Kelvin front,
provided the disturbance has a sufficient amplitude. The
front propagates with little change in shape or speed. It
is possible to construct a semi-analytical theory for such
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FIG. 9. The formation of a Kelvin front from an asymmetric initial
disturbance corresponding to a linear Kelvin wave shifted northward
with respect to the equator. The isolines of the displacement of the
thermocline ah are shown. The depression of the thermocline is
calculated by solving an initial value problem for the full shallow-
water equations (5.2)–(5.4) with initial conditions (5.7)–(5.8). Here
a 5 0.2, n 5 0.0014, the thermocline shoals with the slope g 5
0.02, and the initial disturbance is shifted by D 5 0.5 northward with
respect to the equator. Notice an antisymmetric Yanai wave emerging
from the disturbance that follows the Kelvin front. After a little time
the front and the Yanai wave become separated: (a) t 5 0, (b) t 5
20, and (c) t 5 40.

a steady front, based on the classical hydraulic theory
and a boundary layer approach. In this model the hy-
draulic jump is moving eastward with a constant speed
and is trailed by a wave wake. Mass and momentum
are conserved across the jump, which has negligible
width. The analysis below closely follows the deriva-
tions for the case of coastal hydraulic jumps with ro-
tation (Fedorov and Melville 1996) and is given here
only briefly.

We take the inviscid shallow-water equations (2.14)–
(2.17) and their flux-conserving counterparts (2.18)–
(2.20) as the basis for our analysis. We transform to a
frame of reference travelling eastward with the front.
The speed of the front is 1 1 s, where s 5 Dc/c 5
O(a). That is, the speed of the jump is the phase speed
of a linear Kelvin wave plus a nonlinear fractional cor-
rection s.

We assume that variables h, u, and y have a discon-
tinuity of finite amplitude at the jump, which occurs

along a line x 5 r(y) separating two regions in which
the variables are continuous. The function r(y) then de-
termines the shape of the jump. For simplicity, we as-
sume that there is no motion towards the jump from the
east; that is, h, u, and y are zero for x . r(y). Finally,
we impose an additional constraint on the scales of the
terms setting

y 5 O(a1/2), (6.1)

which means that the off-equatorial flow is relatively
weak. The small parameter in the following expansion
will be a1/2.

Integrating Eqs. (2.18)–(2.20) with respect to x from
r 2 « to r 1 «, taking the limit as « goes to zero, and
neglecting higher order terms with respect to a gives
us three jump conditions connecting the jump ampli-
tudes in h, u, and y and r(y):

a
2h 2 u 5 su 2 u , (6.2)C C C C2

y 5 2r h , (6.3)C y C

u 2 h 5 sh 1 r y 2 au h , (6.4)C C C y C C C

where hC, uC, and yC depend upon y and correspond to
the wave field immediately behind the jump (e.g., uC 5
u|x5r20). Equation (6.3) implies that the transverse ve-
locity is nonzero if the jump is curved, and vice versa.

From (6.1)–(6.4) we find that uC 5 hC 1 O(a). Adding
(6.2) and (6.4) with the use of (6.3) gives

3
2(r ) 5 2s 2 ah . (6.5)y C2

This is an equation describing the shape of the front.
For waves symmetrical with respect to the equator, y

is zero at the equator (at y 5 0), which implies that

ry 5 0 at y 5 0, (6.6)

and thus

3
s 5 ah | . (6.7)C y504

Without loss of generality, we assume that hC 5 1 so
that the nondimensional correction to the jump speed
becomes

3a
s 5 . (6.8)

4

Behind the front there should exist an inertial boundary
layer with a balance between rotation and nonlinearity.
The main role of the layer is to adjust the transverse
velocity to zero away from the front. [The off-equatorial
velocity near the front is nonzero because of the bending
of the front, which follows from Eq. (6.3).] Earlier, we
have accounted for the appearance of Poincaré waves
through direct resonance. In principle, the resonant and
the boundary layer approaches are equivalent since the
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FIG. 10. The detailed structure of the Kelvin front and the wave
field behind it from the approximate model of section 6 (cf. Fig. 4).
The depression of thermocline is presented. The position of the jump
is shown by the solid thick line. These results were obtained by
solving the reduced shallow-water Equations (6.11)–(6.12) with the
‘‘jump’’ boundary conditions (6.13)–(6.16) for a 5 0.185 and a flat
thermocline. Note the forced Poincaré waves.

FIG. 11. The detailed structure of the transverse velocity field be-
hind the Kelvin front from the approximate model of section 6 (cf.
Fig. 4). (top view, cf. Fig. 5). The position of the jump is shown by
the solid thick line. Note that solid (dashed) contours correspond to
the flow directed away from (toward) the equator. There is no flow
across the equator (at y 5 0). These results are obtained by solving
the reduced shallow-water equations (6.11)–(6.12) with the ‘‘jump’’
boundary conditions (6.13)–(6.16) for a 5 0.185 and a flat ther-
mocline. Notice the cell-like structure of the forced Poincaré waves.

Poincaré waves are necessary to resolve the nonzero
transverse velocity behind the front.

The scale analysis shows that the characteristic scale
of the boundary layer correction in the x direction should
be O( a) (see Fedorov and Melville 1996). Using thisÏ
scaling, we return to the shallow-water equations
(2.14)–(2.16) to find that for the eastward-propagating
waves,

u 5 h 1 O(a). (6.9)

Considering terms at the next order, we add Eqs. (2.14)
and (2.16) to obtain for the steady-wave solutions

y y 2 yy 2 sux 2 shx 1 auux 1 a(uh)x 5 0. (6.10)

Substituting (6.9) in (6.10) and in (2.15) and neglecting
higher-order terms gives

y 2 yy 5 2sh 2 3ahh , (6.11)y x x

2y 1 h 1 yh 5 0. (6.12)x y

This set now replaces the full shallow-water equations.
We emphasize that the set of equations (6.11) and (6.12)
expresses a balance between the effects of nonlinearity
and rotation in the boundary layer behind the jump.

The boundary conditions for the system (6.11)–(6.12)
should be defined at the equator (the no-flow condition),
at the jump itself, and far away from the jump. The
equation describing the shape of the front (6.5) then
becomes the first boundary condition, while the jump
condition (6.3) connecting hC and yC becomes the sec-
ond boundary condition at the jump line. We also require
that for large x the wave field structure in the y direction
be Gaussian so that the unified boundary conditions
become

y 5 0 at y 5 0, (6.13)

3
2ah 5 2s 2 (r ) at x 5 r(y), (6.14)y2

y 5 2r h at x 5 r(y), (6.15)y

2h ; K exp(2y /2) at x̂ → 2`, (6.16)

where s is given by (6.8), and (6.16) ensures that the
shape of the wave upstream is Gaussian. A constant K
is introduced to allow for adjustment of the wave height
away from the jump.2 It is needed because we have
already scaled the equations assuming that hC 5 1. As
shown in the next section, mass transport considerations
require that

3
K 5 . (6.17)!2

Thus, to find the wave field behind the jump and the
shape of the jump, we need to solve Eqs. (6.11)–(6.12)
with the boundary conditions (6.13)–(6.16). Although
the equations are relatively complex and the boundary
conditions are determined at an unknown boundary, the
set brings much more insight to the structure of the jump
and its characteristics. For example, we can determine
the angle w between the tangent to the jump for large
y on each side of the equator and the meridian. Using
(614) and (6.16) gives

2 See Fedorov and Melville (1996) for a discussion.
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FIG. 12. A perspective view of a Kelvin front steadily propagating
eastward along the equator. The depression of thermocline behind a
hydraulic jump is shown. The Poincaré waves are attached to the
jump. The direction of propagation is indicated by the arrow (a 5
0.185).

FIG. 14. The nondimensional transverse velocity field following
the Kelvin jump at different distances away from the equator, that
is, the cross sections of the velocity field that are parallel to the
equator. The velocity is zero across the equator (at y 5 0). There is
a clear jump in the transverse velocity leading the pattern. As in Fig.
13, Poincaré waves become significant at distances greater than one
Rossby radius.

FIG. 13. The nondimensional depression of the thermocline (2ah)
following the jump at different distances away from the equator, that
is, the cross sections of the wave field in Fig. 12 that are parallel to
the equator. The jump and the undulations of the wave field due to
Poincaré waves are clearly seen. Poincaré waves become significant
at distances greater than one Rossby radius off the equator.

ry 5 2 2s at y → 2`,Ï (6.18)

and for weak nonlinearity,

3
w ø Ï2s or w ø a. (6.19)!2

We solve the system (6.11)–(6.17) numerically by
introducing time-dependence in the equations and pur-
suing calculations until a steady limit is reached. The
details of the numerical approach are analogous to those
given in Fedorov and Melville (1996).

Figures 10 and 11 display a Kelvin front, the dis-
placement of the thermocline, and the transverse veloc-
ity field behind the jump, which is obtained by solving
Eqs. (6.11)–(6.16), while Fig. 12 shows a full view of
the Kelvin jump. Note that there is a difference between
the steady jump solution in this section and the solution
of an initial value problem in section 3 since the latter
is only quasi-steady and its wave field goes to zero for
large x. In spite of this, the two solutions in Fig. 10 (11)
and 4 (5) are very similar, especially in the vicinity of
the jump.

Figures 13 and 14 show the displacement of the ther-
mocline and the transverse velocity field as a function
of x at different latitudes. There is a striking difference
when compared with two-dimensional jumps. For in-
stance, one can clearly see Poincaré waves, slowly de-
caying with x. Note that, since the wave field decays
only slowly, the boundary layer extends far upstream
and, in fact, becomes a lengthy boundary region behind
the jump. In the boundary region, the characteristic scale
O( a) is the scale of the undulations of the wave field,Ï
rather than its typical decay scale. This is a common
feature of inertial boundary layers (Pedlosky 1987). The
decay of the undulations is determined by energy leak-
ing away from the equator, and friction if included.

Finally, Fig. 15 displays a cross section of the dis-
placement of the thermocline along a meridian at some
distance behind the most foremost point of the jump.
There are overshoots caused by Poincaré waves at dis-
tances of 3.5Ro (approximately 1000 km) away from
the equator, compared to a linear Kelvin wave solution.
The overshoots are a result of the nonlinear dynamics.
Delcroix et al. 1991 reported similar differences be-
tween the observed Kelvin waves and the linear theory
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FIG. 15. The nondimensional displacement of the thermocline as
a function of y at a distance of 1.35Ro along the equator behind the
leading edge of the front (solid line). The background dashed line
shows the corresponding Gaussian curve for a linear Kelvin wave.
Notice the overshoots of the nonlinear wave at distances of approx-
imately 3.5Ro away from the equator (cf. Delcroix et al. 1991).

FIG. 16. The antisymmetric off-equatorial net volume transport as
a function of y (a 5 0.185). The transport is maximum at distances
O(Ro) away from the equator. The solid line is obtained by using
formula (7.8). The dashed line corresponds to the numerically cal-
culated transport, obtained by integrating the transverse velocity with
respect to y. The differences are due to the finite resolution of the
grid and the limited size of the basin in the numerical calculations.

occurring at the same distance, although the overshoots
they detected were about two to three times as strong.

7. Off-equatorial mass transport

Using the formulations of the previous section we
can calculate the net mass transport away form the equa-
tor as a function of y (or latitude). Introducing the vol-
ume transport T, where

r

T 5 T(y) 5 y dx, (7.1)E
2`

we integrate Eqs. (6.11) with the use of (6.14) and (6.15)
to obtain

dT 22y /22 yT 5 2s(h 2 Ke )Cdy

3a 22 2 2y2 (h 2 K e ) 1 r y . (7.2)C y C2

Further, using the boundary conditions (6.15) and (6.16)
gives

dT 3a 2 22 2y 2y /22 yT 5 K e 2 2sKe , (7.3)
dy 2

and after integration

Ïp 3 32y /2 2T 5 e 2sK erfc(y) 2 aK erfc y ,5 1 26! !2 2 2

(7.4)

where erfc(z) is the complementary error function; that
is,

`2 22werfc(z) 5 e dw. (7.5)EÏp z

Clearly,

T |y50 5 0, (7.6)

which requires that

2s 2 3
K 5 5 (7.7)! !a 3 2

so that

3a 3p 32y /2T 5 e erfc(y) 2 erfc y . (7.8)5 1 26! !4 2 2

That is, the net meridional flow is nonzero and is
proportional to the jump amplitude. The plot of T(y) in
Fig. 16 shows two extrema in the net off-equatorial
transport at distances approximately equal to the Rossby
radius. In these internal waves, any mass transport is
associated with a heat flux. In the waves of depression
we have considered, warmer water masses are replacing
colder waters. This implies that the off-equatorial mass
transport (as in the Fig. 16) leads a proportional positive
heat flux directed away from the equator.

8. Conclusions

We have demonstrated the possibility of Kelvin fronts
on the equatorial thermocline. Whether or not the fronts
appear depends upon the wavelength and amplitude of
the initial disturbance, as well as the width of the basin.
The shoaling of the thermocline facilitates the formation
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of the front. The front can emerge only from a wave of
depression. Waves of elevation break on the rearward
face, and are not considered here.

The properties of the Kelvin front derived from both
the numerical model and semianalytical approach can
be summarize as follows.

1) In the lee of the jump the wave field decays away
from the equator in a quasi-Gaussian manner, which
is similar to a regular Kelvin wave. Nevertheless, at
some distance away from the jump there can be over-
shoots that distinguish the shape from pure Gaussian.

2) In the absence of dissipation the jump travels with
a constant speed and maintains a permanent shape,
which depends only on the jump strength. The dis-
sipation and the limited extent of the initial condi-
tions render the jump quasi-steady.

3) The jump curves back from the normal to the equator
to straight oblique lines on each side of the equator.
The angle included between these two lines and the
meridian is a simple function of the jump amplitude
at the equator.

4) As a result of resonant interactions Poincaré (i.e.,
trapped gravity–inertial) waves are generated behind
the front and move with the same phase speed as
the front. The resonance is possible because the
speed of the front is slightly greater than that of a
linear Kelvin wave. Together, the front and the Poin-
caré waves constitute a unified wave pattern. In con-
trast to the previous studies of the equatorial wave
dynamics (e.g., Boyd 1980; Ripa 1982), in our model
the nonlinear Kelvin and Poincaré waves do not sep-
arate.

5) Asymmetry of the initial conditions results in the
generation of a Yanai (i.e., mixed Rossby–gravity)
wave, which follows the front. However, after a short
time the front and the Yanai wave become com-
pletely separated.

6) The Kelvin jump gives rise to a moderate net off-
equatorial flow. Consequently, there is a contribution
to the poleward heat flux. This feature is different
from that of linear Kelvin waves, which have zero
transverse flow.

There is indirect observational evidence that Kelvin
fronts may exist. The amplitude of the observed Kelvin
waves may be sufficient for the waves to break and for
the fronts to emerge (e.g., Kessler et al. 1995). The
observed meridional structure of the Kelvin waves is
more complicated than a simple Gaussian distribution
(Delcroix et al. 1991), analogous to the case considered
here. There is some evidence of rapid temperature
changes at the mooring sites of the TAO array (see,
TAO Web site)3 and in the TOPEX/Poseidon data (J.
Picaut 1998, personal communication), which show that

3 Online at http://www.pmel.noaa.gov/toga-tao.

the wind-forced Kelvin waves, sometimes associated
with the El Niño signal in the eastern Pacific, are clearly
fronts rather than linear Kelvin waves. This may ne-
cessitate some corrections of the Kelvin wave speed and
dissipation rates used in current models of the ENSO.
Another important consequence of the study is that non-
linear Kelvin waves may be a source for gravity–inertial
waves on the equatorial thermocline. Also, the effect of
Kelvin fronts on the mixing processes should be con-
sidered.

Finally, Kelvin fronts may also exist in the equatorial
regions of the atmosphere where they would be unim-
peded by coastal boundaries. This is a subject for further
study.
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