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ABSTRACT

The balances of momentum and second-order moments (potential enstrophy, energies, and potential vorticity
flux) of wind-driven zonal flow, using a suite of numerical eddy resolving experiments in a two-layer channel,
governed by quasigeostrophic dynamics, are investigated. The flow regime in these experiments does not satisfy
the usual scaling of quasigeostrophic large-scale dynamics: relative vorticity is a significant contribution to the
quasigeostrophic potential vorticity (QPV) in the deep layer and the lateral Reynolds stress divergence is com-
parable to the interfacial form stress in the top layer. The balances of second-order moments confirm that the
eddy-induced fluxes of QPV and layer thickness are downgradient but significant contributions of triple moments
occur. Existing parameterizations and scaling laws of the eddy fluxes of QPV and layer thickness are tested
against data from the numerical experiments and it is shown that the usual downgradient forms of parameterization
with diffusivities chosen from theories of baroclinic instability or homogeneous b-plane turbulence fail in the
present flow regime. The authors suggest that the discrepancy is a manifestation of the strong constraint of the
fluxes by the balance of momentum in the steady state.

A consistent parameterization for the eddy-induced flux of QPV is derived from the balance of this moment.
The flux is produced by a gradient term, whereas the ageostrophic pressure–QPV covariance is the major
destruction, with small but significant contributions from a triple moment divergence. The approximated balance
of the QPV flux,

y9q9 ]q ]
2 25 2y9 2 y9 q9,

T ]y ]y

shows that the QPV flux is not completely diffusive (i.e., downgradient the mean potential vorticity) but that
there is an additional transport that relates to the eddy flux of the flux of QPV itself. A parameterization of this
triple term by the mean relative vorticity is proposed and the resulting new parameterization of the QPV flux
is tested in a simple coarse model of the zonal flow.

1. Introduction

The importance of the mesoscale eddy field for the
large-scale circulation of the ocean has been revealed
by many observational and theoretical investigations.
There is still necessity to parameterize eddy-induced
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transports of passive and active tracers in the present
ocean models. Even in the high-resolution models of
basinwide circulations (Böning and Bryan 1996) and
World Ocean models (Semtner and Chervin 1992) ed-
dies are only marginally resolved. The oceanographic
community is bound to work with these ‘‘eddy allow-
ing’’ models for climate studies of decadal timescales
and with even much coarser models (e.g., Bryan and
Lewis 1979; Maier-Reimer et al. 1993; England 1993)
for long-term climate studies. With aim to improve the
performance of such models but also from an intellec-
tual point of view, the oceanographic research is facing
the task of devising practical and dynamically consistent
closure schemes.

The recent years have seen increased attention attri-
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buted to the dynamical role of the eddy fields in the
large-scale flow. After a long period of using primitive
closures with constant diffusivities, new concepts of pa-
rameterization of eddy-induced fluxes have been pro-
posed for the use in coarse ocean models. They are
mostly borrowed from the atmospheric counterpart of
eddy–mean flow interaction in midlatitudes where ed-
dies are generated by baroclinic instability and feed back
on the mean zonal circulation (Green 1970; Stone 1972;
see also the review by Held and Hoskins 1985). New
structural concepts have evolved (Gent and McWilliams
1990; Gent et al. 1995; McDougall and McIntosh 1996).
They are mostly guided by considerations of the trans-
formed Eulerian mean circulation (e.g., Andrews et al.
1987), where the eddy effects are separated into eddy-
induced mean advection and mixing properties, rather
than by investigations of dynamical processes of eddy
generation and eddy–mean flow adjustment. Some tests
in coarse (Danabasoglu et al. 1994) and high-resolution
general circulation models (Rix and Willebrand 1996;
Bryan et al. 1999) exist, but a systematic comparison
of coarse models with the new implemented closure
schemes and truly eddy resolving numerical models has
yet to come. A noteworthy exception is the work of
Visbeck et al. (1997) where the structural setting of the
transformed Eulerian mean circulation, as proposed by
Gent and McWilliams, is combined with the parame-
terizations of eddy transports of heat and salt due to
baroclinically unstable eddies, as proposed by Green
and Stone. Other practical schemes have been proposed
by Treguier et al. (1997) and Killworth (1997).

We pursue a different route of research: we focus on
a simpler class of wind and eddy driven circulations—
quasigeostrophic flow in a two-layer zonal channel—
and derive and test closure schemes by analysis of the
relations between the eddy-induced transports and the
mean circulation in the ‘‘data’’ from eddy resolving nu-
merical simulations. Quasigeostrophic flow has been ex-
tensively studied in atmospheric and oceanographic
conditions, both for the investigation of the dynamical
balance of zonal flows (e.g., McWilliams et al. 1978;
Wolff et al. 1991; Marshall et al. 1993) as well as for
the investigation of closure schemes (e.g., Marshall
1981; Ivchenko 1984, 1985a; Vallis 1988; Larichev and
Held 1995; Pavan and Held 1996; Held and Larichev
1996). The atmospheric applications are mainly realized
in a regime of homogeneous b-plane turbulence where
lateral gradients of eddy-induced fluxes do not exist,
and the mean flow is uniform. But also the specific
forcing implemented in these models—the flow is driv-
en by relaxation to a prescribed homogeneous baroclinic
shear flow—prevents a direct transfer of the results to
oceanic conditions. Here the flow is forced by a pre-
scribed stress in the surface layer, a narrow eddy-inten-
sified jet develops in both layers and the shear is es-
tablished by internal flow dynamics.

We study the balances of mean momentum, eddy po-

tential enstrophy, energies and quasigeostrophic poten-
tial vorticity (QPV) flux for a suite of 12 numerical
experiments, which differ by the parameters of the dy-
namical system: stratification, differential rotation rate,
and parameterization of bottom friction. After exploring
the importance and role of the Reynolds and interfacial
stresses in the dynamical balance of the mean flow and
finding a countergradient behavior of the flux of QPV
and layer thickness, we investigate the performance of
a diffusive form of these fluxes. In contrast to the ho-
mogeneous turbulence regime, where the use of diffu-
sive parameterizations of the eddy-induced QPV trans-
port works successfully (e.g., Pavan and Held 1996),
the wind-driven regime defies such a simple approach.
We show that experimentally determined diffusivities
of the mean QPV and layer thickness cannot be ap-
proximated by any of the recently proposed analytical
forms derived for infinitesimal perturbations arising
from baroclinic instability along the routes of Green
(1970) and Stone (1972), nor by relations resulting from
scaling theories for adjusted homogeneous turbulence,
as proposed by Larichev and Held (1995) or Held and
Larichev (1996).

We attribute the failure to the constraint by the bal-
ance of mean momentum. Finally, we investigate the
usefulness of these balances—in particular the balance
of the QPV flux itself—in deriving a parameterization
of the QPV flux. A parameterization of the eddy-induced
transport (triple moment) can be given, and a local re-
lation between the QPV flux and the gradient of mean
potential vorticity is derived that is not entirely diffusive
but includes a nongradient correction due to the triple
moment. The new parameterization is tested in a simple
coarse model and the momentum dynamics of the zonal
flow is analyzed.

2. Quasigeostrophic channel flow

Eddy resolving quasigeostrophic (QG) models in
channel geometry are, by now, a standard tool for study-
ing eddy–mean flow interaction in zonal jets (Mc-
Williams et al. 1978; McWilliams and Chow 1981;
Wolff and Olbers 1989; Wolff et al. 1991). The model
used for this study is described in detail in the latter
reference. We give a brief review of the model and
discuss the flow regime and dynamics of the experi-
ments.

a. The numerical model

The model describes the flow in a two-layer channel
of length Y 5 4000 km and width X 5 1500 km on a
b plane, and the layers have depths H 1 5 1000 m and
H 2 5 4000 m. The balance of potential vorticity (QPV)1,

1 The upper sign of 6 and 7 refers to the upper layer and the
lower sign to the lower layer.
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TABLE 1. Some integral quantities of the numerical experiments.
The first two columns give the transport in the layers: E and E potkin

i

are the kinetic and available potential energies of the mean flow, and
E kin and E 9pot are the energies of the eddy field.9i

Expt

Transport

Top
(106 m3

s21)

Bottom
(106 m3

s21)

Energies

E kin
1

(m3

s22)

E kin
2

(m3

s22)

E pot

(m3

s22)

E kin91
(m3

s22)

E kin92
(m3

s22)

E9pot

(m3

s22)

EFB
EG4
EB5

377
460
325

949
949
951

41
65
31

80
89
72

672
960
290

21
49
15

13
27
10

28
56
23

DFB
DG4
DB5

248
351
206

473
476
475

16
34
11

19
21
17

620
1703

267

22
47
16

10
18

7

31
114

26

NFB
NG4
NB5

276
350
246

599
522
648

19
32
15

27
24
28

609
896
248

23
47
17

12
20

9

31
54
26

HFB
HG4
HB5

340
405
315

862
762
930

31
46
25

57
53
58

613
909
250

22
45
16

13
23
10

29
51
25

]qi 1 J (c , q ) 5 F , (1)i i i]t

f02q 5 ¹ c 6 h 1 f , (2)i i Hi

includes friction terms Fi 5 k · = 3 t i/Hi 2 Ah¹6c i

where t 1 is the wind stress vector, and t 2 is the bottom
stress. Subgrid-scale (SGS) effects are modeled by bi-
harmonic lateral friction with hyperviscosity Ah 5 1010

m4 s21. It reflects the parameterization of subgrid mo-
mentum transport and serves as energy and enstrophy
dissipation. The elevation of the interface is expressed
in terms of the geostrophic streamfunction by h 5
( f 0/g*)(c2 2 c1), with f 0 5 2 1.263 3 1024 s21 and
reduced gravity g*. Lateral boundary conditions ¹2ci

5 0, ¹4ci 5 0 on both walls (the latter establishes zero
momentum flux) and integral auxiliary conditions
(McWilliams 1977) are standard. A fourth-order accu-
rate formulation of the Jacobian (Arakawa 1966) turned
out to be necessary to compute the second-order eddy
balances correctly (Wolff et al. 1993). The wind stress
is zonal and zonally constant,

p (y 1 Y /2)
t 5 t sin (3)1 0 Y

with amplitude t 0 5 1024 m2 s22. The frictional stress
at the bottom is taken either as a linear or quadratic
functional of the bottom velocity, that is,

t2 5 2eH2u2 or t2 5 2mH2|u2|u2, (4)

where e and m are the corresponding coefficients of
linear or nonlinear bottom friction.

We have performed four suites of numerical experi-
ments to explore the sensitivities of the model to the
basic parameters e and m of friction, differential rotation
b, and stratification g*. The experiments (see Table 1)

are named by three letters; those starting with E and D
have linear bottom friction, those starting with N and
H have nonlinear bottom friction. The E cases have e
5 1027 s21; for the D cases this value is doubled. The
N cases have m 5 1026 m21; for the H cases this value
is halved. In each suite we have a standard case (*FB,
b 5 1.1465 3 10211 m21 s21, g* 5 0.02 m s22) and
for each such case there is an offspring with stronger
stratification (*G4, doubled g*) and one with half the
b value (*B5). Although the Rossby radius l 5
[g*H1H2/(H1 1 H2)]1/2/ f 0 exceeds the resolution Dx 5
Dy 5 20 km only by a factor of about 2, the model is
eddy resolving (we have made experiments with higher
resolution). We will use the notation li 5 [g*Hi]1/2/ f 0

for the Rossby radius scales of the individual layers.
The integration time of all experiments was 110 years,

including a spinup of approximately 20 years. The last
90 years of data were used to determine mean values
and eddy covariances. For all these experiments we have
evaluated the balance of mean momentum and potential
vorticity, and a package of second-, third-, and fourth-
order moments of turbulence. Table 1 summarizes the
transports and energies of the experiments.

b. The flow regime

Figure 1 shows instantaneous and eddy streamfunc-
tion fields of our standard experiment EFB at the end
of the integration. A narrow jet has developed with a
scale, which is much smaller than the channelwide scale
of the wind forcing but much larger than the Rossby
radius. It meanders significantly with stronger excur-
sions appearing in the upper layer. The eddy field is
defined here as deviation from the time and zonal mean
circulation. The instantaneous eddy streamfunction
fields show an irregular chain of vortices to the north
and to the south of the jet center (particularly in the
lower layer). The eddies have a tendency toward an
ellipsoidal form, leaning into the direction of the jet.
This pattern causes the Reynolds stress convergence
(see next section) and thus the concentration of the jet
(Holland and Haidvogel 1980). The eddy field is highly
correlated in the vertical (see section 3d) but not bar-
otropic, the eddies travel eastward relative to the mean
flow, as found by McWilliams et al. (1978) for the most
unstable mode of similar channel jets.

Figure 2 shows the profiles of the time and zonally
averaged zonal velocities of EFB, DFB, NFB, and HFB.
The jet is flanked by side lobes having a similar width
as the jet. It is unstable in all cases, the mean shear
U 5 u 1 2 u 2 is above the critical value of the Phillip’s
inviscid linear instability criterion, U . (it is not2bl2

exactly applicable here because the current profiles are
not meridionally uniform as in Phillips’ model). Bound-
ary layers are clearly identified at the walls, the scale
of these layers has the size of the internal Rossby radius.

The gradients of mean potential vorticity (Fig. 3 for
EFB) reveal the well-known property of the differing
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FIG. 1. Instantaneous (upper panels) and eddy streamfunctions (lower panels) for EFB; the upper layer is left and the
lower layer is right. Contour intervals are 2 3 104 m2 s21 for the upper panels and 5 3 103 m2 s21 for the lower-left
panel and 2.5 3 103 m2 s21 for the lower-right panel.

FIG. 2. Time and zonal mean profiles of the velocities u i (full), the barotropic velocity (H1u 1 1 H2u 2)/(H1 1 H2) (dash-dotted) and the
vertical shear U 5 u 1 2 u 2 (dotted) for EFB, DFB, NFB, and HFB as function of the scaled latitude y/Y. The critical phase speed is2bl2

included as a straight line. Units are meters per second.
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FIG. 3. The relative, stretching, and planetary part of the mean potential vorticity gradient for EFB as a function of the scaled latitude
y/Y. Total gradient of QPV (full), relative part (dash-dotted), stretching part (dotted), and planetary part (full straight line). Units are 10211

m21 s21.

signs in the upper and lower layer in all cases, thus the
necessary condition of baroclinic instability is satisfied.
The necessary condition for barotropic instability is not
satisfied: there is no sign change of the barotropic QPV
gradient (lower-left panel). We have separated the QPV
gradients into the contributions due to the relative,
stretching and planetary vorticity showing that stretch-
ing is the dominant contribution. This agrees with the
generally assumed scaling (l/L)2 K 1 of relative to
stretching vorticity for a large-scale flow with length
scale L. In the lower layer, however, the signs of the
relative and the stretching parts differ. In the center of
the jet their sizes are merely a factor of three different
so they add in a way to make the gradient of the total
QPV of the same size but different sign as the gradient
of relative vorticity. Relative vorticity may thus not be
neglected.

c. The balance of zonal momentum

For QG dynamics the zonally and time averaged
equations for the balances of zonal momentum and mass

can be written as a balance between the eddy QPV flux
and the frictional stresses,

y]
H u 7 f h dy9 5 H y9q9 1 t . (5)i i 0 E i i i i5 1 26]t

2Y /2

The overbar denotes time and zonal mean, t 1 is the zonal
wind stress, and t 2 is the zonal bottom stress. SGS
friction is omitted because it is negligible in the balance
of the mean flow. The time rate of change term is in-
cluded here for clarity, it is set in curly brackets to
indicate that it vanishes due to time averaging. The QPV
flux,

f ] f0 02y9q9 5 y9¹ c9 6 y9h9 5 2 u9y9 6 y9h9, (6)i i i i i i i iH ]y Hi i

is the two-dimensional divergence of the QG form of
the Eliassen–Palm flux. It consists of the Reynolds stress
divergence and the vertical divergence of the interfacial
form stress, the latter is responsible for the vertical ex-
change of momentum between the layers. The vertical
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FIG. 4. Divergence of the Reynolds stress (left and middle panels) and the interfacial form stress (right panels) as function of the scaled
latitude y/Y in units of 1027 m s22. The divergence of the interfacial stress is presented here for the bottom layer (the top one is derived by
multiplying with 2H2/H1). Cases *FB (full), *G4 (dash-dotted), and *B5 (dotted).

integral of the QPV flux equals the divergence of the
vertically integrated Reynolds stress,

]
H y9q9 1 H y9q9 5 2 (H u9y9 1 H u9y9 ), (7)1 1 1 2 2 2 1 1 1 2 2 2]y

and integrating further over the channel width, we find
the constraint (Bretherton 1966),

Y /2

(H y9q9 1 H y9q9 ) dy 5 0, (8)E 1 1 1 2 2 2

2Y /2

which is central to the conservation of total zonal mo-
mentum as a balance between wind stress and bottom
stress,

Y /2 ]
(H u 1 H u ) 2 (t 1 t ) dy 5 0. (9)E 1 1 2 2 1 25 61 2]t

2Y /2

The second-order eddy-induced covariances appear-
ing in the mean balance of momentum (and QPV) are

summarized for all experiments in Fig. 4 (see also Fig.
5). The Reynolds stress in the upper layer is character-
ized by a central convergence of eastward momentum—
establishing a countergradient transport of momen-
tum—and divergence on the flanks. The deep stress di-
vergence is considerably smaller (about a factor of 20)
and generally also shows a convergence of eastward
momentum in the center (a notable exception is the
bottom layer Reynolds stress in the E cases). Though
there are clear variations in the overall size, the shape
of the stress divergences is surprisingly similar (there
is almost no change of the zeroes). The overall balance
of the system requires that the magnitude of the inter-
facial stress must correspond to the wind stress. The
Reynolds stress is, however, in some sense a free mode
of the system. While the system chooses a small Reyn-
olds stress divergence in the deep layer, the significance
of Reynolds stress effects in the directly forced top layer
contradicts the scaling derived from linear baroclinic
instability theory where the ratio of the Reynolds stress
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FIG. 5. Some second order fields for EFB. Velocity variances (upper-left panel): (full), (dashed), (dash-dotted), and (dotted).2 2 2 2u9 u9 y9 y91 2 1 2

QPV and thickness variances (upper-right panel): (full), 100 3 (dashed), and ( f 0/H1)2h92 (dotted). Thickness fluxes (lower-left panel):2 2q9 q91 2

0.1 3 h9 (full), h9 (dashed), and h9 5 h9 (dash-dotted). QPV fluxes (lower-right panel): 0.1 3 (full), (dashed),u9 u9 y9 y9 u9q9 u9q9 y9q91 2 1 2 1 1 2 2 1 1

(dash-dotted), and (dotted) Units: velocity variances m2 s22, QPV variance 10210 s22, thickness fluxes m2 s21, and QPV fluxes 1027 my9q92 2

s22.

and the interfacial stress is to be of order O(l/L). It is
the failure of this scaling that discriminates our regime
from the conditions investigated in most recent param-
eterization schemes of broad scale ocean circulation
(e.g., Treguier et al. 1997) and homogeneous b-plane
turbulence (e.g., Held and Larichev 1996) where Reyn-
olds stresses are neglected or vanish identically, re-
spectively. Due to the balance of the QPV flux and the
applied stresses at the top and the bottom the QPV flux
has different signs in the layers, which are just contrary
to the signs of the mean gradient of QPV. The QPV flux
in thus down the gradient of mean QPV.

3. Second-order balances

A traditional way of investigating turbulence closure
schemes lies in the analysis of the balance of higher-
order moments, notably eddy energies, eddy potential
enstrophy, and second-order eddy fluxes. Provided that
parameterizations of the triple moments and dissipation

terms, appearing in these balances, are available a closed
set of equations for the second-order moments can pos-
sibly be derived and the eddy fluxes be determined in
terms of quantities resolved in a coarse model. This
strategy is followed by the research attributed to the
parameterization of the vertical heat transport in the
atmospheric boundary layer (see, e.g., Lykossov 1995)
and the ocean mixed layer (see, e.g., Large et al. 1994).
In this section we analyze the balances of eddy potential
enstrophy, eddy energies and the eddy induced flux of
QPV and layer thickness and, in the next section, in-
vestigate their use for finding parameterizations of the
eddy-induced fluxes.

Some important second-order scalar fields and fluxes
are displayed in Fig. 5 for EFB. The velocity variances
are concentrated in the jet and show a strong anisotropy
there: meridional velocity fluctuations are almost twice
as large as the zonal ones. Outside the jet we find a
more isotropic regime. There is a remarkable difference
of an order of magnitude in the level of the velocity
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FIG. 6. Zonal and time-mean eddy enstrophy balance for EFB
as a function of the scaled latitude y/Y, upper layer (upper-left
panel), and lower layer (upper-right panel). The curves give the
production (full), the eddy induced redistribution (dash-dotted),
and the sink term in the EPE balance. The lower left panelq9F9i i

displays the SGS part (dash-dotted) and resolved eddy part (dot-
ted) of the sink term (dashed). Units are 10214 m s23.q9F92 2

variances in the two layers. This is even more drastic
in the QPV variance where we have a factor of about
100 between the layers. This mismatch carries over to
the zonal fluxes of thickness and QPV, which are much
larger in the top layer. The zonal QPV fluxes, however,
do not reflect the much weaker eddy regime in the bot-
tom layer. They are of similar size, as constrained by
the balance of momentum.

a. Eddy potential enstrophy

The time and zonally averaged balance of eddy po-
tential enstrophy (EPE), defined as /2, is written in2q9i
the form

] H ] 1 ]qi i2 2q9 5 2H y9 q9 2 H y9q9i i i i i i i5 6]t 2 ]y 2 ]y

1 H q9F9. (10)i i i

The first term on the rhs—the divergence of a triple
moment—represents the eddy-induced flux of EPE. The
next term is the production or destruction due to the
gradient of mean QPV, it describes the exchange with
the enstrophy of the mean flow. The last term arises

from the friction terms in the QPV balance. In the upper
layer it is entirely caused by the parameterized SGS
motion, in the lower layer there is also a contribution
from the bottom friction of the resolved eddy flow. As
shown in the lower-left panel of Fig. 6, the SGS con-
tribution exceeds the resolved part. In some cases, the
latter is partly positive but then it is always compensated
by the negative SGS part. We refer to as ‘‘EPEq9F9i i

sink’’: it includes, besides the true dissipation of EPE
by the enstrophy cascade to small scales, also a diver-
gence of a frictionally induced flux of EPE as well as
a vertical flux exchanging EPE between the layers. Due
to the sixth-order derivatives of the streamfunction oc-
curring in the biharmonic friction the computational
burden, which is necessary to separate the above terms
in the numerical code, is very high so we have not
performed this step.

Figure 6 shows the zonally averaged EPE balance for
EFB. The balances for the upper and the lower layers
are similar in structure. The mean gradient term is pos-
itive everywhere, that is, the potential vorticity flux is
opposite to the gradient (downgradient) of the mean
potential vorticity, as found already by inspection of the
individual quantities. It is clear that the production and



JULY 2000 1653O L B E R S E T A L .

the sink terms must equate in the integrated balance,
the triple term is, however, free from such a constraint
of balance. The triple term turns out to be of the same
magnitude as the production and sink in the middle of
the channel (it even exceeds the sink in some cases) and
also gives substantial input to the balance in the jet
flanks. This disagrees with Shutts (1983), Treguier et
al. (1997), and others who have suggested that the triple
moment is negligible in large-scale flow. McWilliams
and Chow (1981) overestimated the triple moment due
to the failure of the Arakawa Jacobian in the enstrophy
balance of their model (see Wolff et al. 1993).

The terms in the bottom layer balance are an order
of magnitude smaller than those in the top layer but
even in this weak eddy regime the eddy-induced trans-
port is significant. We conclude that, at least for the top
layer, there cannot be any significant contribution from
the above mentioned frictionally induced exchange term
in the above separation of . Another outstandingq9F9i i

feature of the balance is the local minimum of the sink
term in the jet center, which is especially well-pro-
nounced in the lower layer. It mainly arises from the
resolved frictional part of but slight contributionsq9F92 2

are made by the SGS part as well (see Fig. 6, left lower
panel). Because these undulations in the sink terms are
in phase in the two layers they cannot represent an ex-
change between layers, and we must attribute them to
a frictionally induced transport divergence, which is part
of the sink term. This transport counteracts the transport
by the triple moment.

b. Eddy energies

The balances of EPE and eddy available potential
energy (EAPE), defined as , are very similar in2g*h9 /2
structure:

] g* ] 1 ]h
2 2h9 5 2g* y9 h9 2 g*y9h92 25 6]t 2 ]y 2 ]y

1 w9(p9 2 p9). (11)2 1

Here pi is the geostrophic pressure and w the vertical
velocity of the interface, which is determined by the
divergence of the ageostrophic flow in the bottom layer,

]h
agw 5 1 u · =h 5 2H = · u . (12)2 2 2]t

As in (10) we notice in (11) the divergence of a triple
moment and a production or destruction due to the gra-
dient of mean interface height (it describes the exchange
with the potential energy of the mean flow). There is,
however, no friction or dissipation term; instead we find
a covariance between the vertical velocity and the thick-
ness perturbation, describing the exchange of EAPE and
eddy kinetic energy by eddy induced lifting of the in-
terface.

The eddy kinetic energy (EKE) is balanced according
to

] Hi 2 2(u9 1 y9 )i i5 6]t 2

]
2 3 ag ag5 2H [u9 y9 1 y9 1 y9p9 2 p9y9 ]i i i i i i i i]y

]ui2 H u9y9 6 w9p9 1 H u9 · X9, (13)i i i i i i i]y

where X i 5 (Xi, Yi) are the frictional (resolved bottom
friction and SGS) terms in the ageostrophic momentum
equations. They correspond to the QPV friction term Fi

5 k · = 3 X i, as specified in section 2. The ageostrophic
fluxes appearing in (13) and the exchange terms between
kinetic and potential energy cannot be evaluated from
ordinary quasigeostrophic dynamics.2

The balances (11) and (13) are displayed in Fig. 7
with the ageostrophic and SGS terms combined as re-
sidual imbalance. Consistent with the dynamics of a
baroclinically unstable state the eddy system is driven
by the transfer to EAPE from the mean baroclinic energy
[by the gradient term in (11)] and further transfer to the
EKE [by the ageostrophic exchange term in (11)]. The
counterpart of the latter transfer is contained in the
ageostrophic imbalance in the balance of EKE in Fig.
7. The mean gradient term in the EKE balance is a loss
of EKE everywhere in both layers: the energy cycle is
closed—apart from the loss due to friction—by the
transfer from eddy to mean kinetic energy [by the gra-
dient term in (13)]. Notice that this property implies an
upgradient transport of momentum everywhere in the
channel. The eddy-induced transport by the geostrophic
terms leads to a loss of eddy energy in all three com-
partments in the jet center and affects a transfer to the
jet flanks.

If (11) and (13) are combined to the balance of total
vertically integrated energy of the system, the exchange
terms between potential and kinetic energy cancel and
ageostrophic terms remain only in form of divergences.
The balance is displayed in the lower-right panel of Fig.
7. It is seen that the sum of all gradient terms drives
the eddy system and bottom friction acts as major sink.
There is a small net sink from SGS contained in the
imbalance, in EFB it is about 40% of the size of the
bottom friction term. The dominant role of the imbal-
ance term is, however, a redistribution by ageostrophic
eddy motion which counteracts the geostrophic eddy
induced transport.

c. QPV and thickness flux

Finally we consider the balances of the eddy induced
QPV flux and thickness flux, which read

2 The first relation in (12) is often used to evaluate w. Remember,
however, that (11) is based on this equation. Implementing (12) into
(11) just regains the triple and production terms. It is also customary
but not very meaningful to utilize the ageostrophic momentum bal-
ance again to diagnose the ageostrophic fluxes in (13).
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FIG. 7. Zonal and time-mean eddy kinetic and potential energy balances for EFB. The curves give the exchange with the mean flow energy
(full), the eddy induced geostrophic redistribution (dash-dotted), the ageostrophic terms (dashed), and bottom friction (dotted). The total
energy balance combines all gradient terms (full), all ageostrophic terms (dashed) and all geostrophic redistribution terms (dash-dotted) from
both layers, the bottom friction term is dotted. Units are 1025 m3 s23.

] ] ]qi2 2y9q9 5 2 y9 q9 2 y9 2 byu9q9 1 Vi i i i i i i i5 6]t ]y ]y

1 y9F9 1 q9Y9 (14)i i i i

] ] ]h
2 2y9h9 5 2 y9 h9 2 y9 2 byu9h9 1 Q2 2 2 25 6]t ]y ]y

1 h9Y9. (15)2

We have combined in the expression

ag]p9iagV 5 2 f u9 q9 2 q9i 0 i i i ]y

ag]p92agQ 5 2 f u9 h9 2 h9 1 y9w9 (16)0 2 2]y

the ageostrophic covariances. We can identify in (14)
the divergence of eddy-induced fluxes (by a triple mo-
ment) and the production/destruction term associated
with the gradient of mean QPV or interface height, re-

spectively. The latter terms describe the exchange of
flux with the corresponding transport of mean quantity
by the mean current. The meridional flux is coupled by
a Coriolis term to the zonal flux. Sink terms are certainly
contained in the frictional terms. Contributions in the
F9 and Y9 terms from the (resolved) bottom friction can
easily be extracted and evaluated. They are of order e
times the flux and found to be very small. The remaining
SGS contributions have not been evaluated separately
but are expected to be small as well. The role and mag-
nitude of the ageostrophic terms are not a priori evident.

The QPV flux balance is displayed in the upper panels
of Fig. 8 (in contrast to the scalar balances we have not
integrated the flux balances over the layer depths). The
contribution from the eddy triple flux, the gradient term,
and the Coriolis term are shown individually and the
ageostrophic terms are again combined in the remaining
imbalance. The balance is easily described: the gradient
term acts as a source of northward flux and the ageo-
strophic terms act as a sink. In the upper layer there is
a significant contribution from the triple divergence
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FIG. 8. Zonal and time-mean balance of the meridional QPV flux
(upper panels) and thickness flux (lower panel) for EFB. Mean gra-
dient term (full), Coriolis term (dotted), eddy induced redistribution
(dash-dotted) and imbalance (dashed). The bottom friction term col-
lapses with the zero line in the right panel. Units are 10211 m s23 for
the QPV flux, 1024 m2 s22 for the thickness flux.

TABLE 2. Parameters of the diffusivity scaling for all experiments:
Rossby radius l, Rhines scale LR, barotropic and baroclinic velocities
C and U, supercriticality j 5 U/(bl2), Eady and Phillips timescales
[see Eq. (18)]. All values are taken at the center latitude.

Expt
l

(km)
LR

(km)
C

(m s21)
U

(m s21) j
TEady

(days)
TPhillips

(days)

EFB
EG4
EB5

32
45
32

193
206
251

0.43
0.49
0.36

0.18
0.30
0.11

15.3
12.9
19.5

2.1
1.7
3.3

8.2
6.3

14.4

DFB
DG4
DB5

32
45
32

134
152
170

0.20
0.26
0.17

0.13
0.25
0.07

11.1
10.8
13.0

2.9
2.1
4.9

9.6
6.8

17.7

NFB
NG4
NB5

32
45
32

132
147
176

0.20
0.25
0.18

0.11
0.23
0.06

9.5
9.9

11.2

3.3
2.3
5.7

10.3
7.2

19.0

HFB
HG4
HB5

32
45
32

164
177
217

0.31
0.36
0.27

0.13
0.25
0.08

11.7
10.9
13.5

2.7
2.1
4.7

9.3
6.8

17.3

working as destruction in the jet center. The Coriolis
term is a small sink, mainly acting in the flank region.
It is obvious from (14) that the magnitudes of the bal-
ance terms in the two layers are roughly in proportion

to the velocity variance. The balance of thickness flux,
shown in the lower panel of Fig. 8, closely corresponds
to the balance pattern of the QPV flux. Coriolis and
triple terms are here negligible.

d. Timescales of second-order balances

Though we have a drastic difference in the overall
size of the balance rates of EPE in the two layers (see
Fig. 6), this is compensated by the size of EPE content
(see Fig. 5) so that the timescale of the balance terms
in the different layers is of the same magnitude, of order
100 days and thus comparable to timescales of frictional
processes: the timescale of the bottom friction is 1/e ø
100 days, the time of nonlinear bottom friction and the
timescale of the SGS parameterization, when taken for
the grid scale, are of the same size. The timescale of
the rates of energy conversion is clearly of the order of
the frictional processes.

The timescales associated with balance rates of the
QPV and thickness fluxes are in strong contrast to those
of the scalar quantities. In Fig. 10 we compare the time-
scales of the terms of the QPV flux and thickness flux
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FIG. 9. Autocorrelation functions (upper panels) of the meridional
velocity at five latitudes for EFB. Center y 5 0 (full), flanks y 5 1/6
(dash-dotted), and near boundaries y 5 1/3(dotted and dashed). The
crosscorrelation function in the lower panel refers to the center lat-
itude, top autocorrelation (full), bottom autocorrelation (dashed), and
cross correlation (dotted).

with some scaling laws explained below. More specif-
ically, the times shown there are associated with the
sink rate due to the ageostrophic terms in the flux bal-
ances,

y9q9 y9h9i i 2T 5 2 T 5 2 , (17)i hV Qi

evaluated at the channel center. The Ti differ by an order
of magnitude in the layers and Th is somewhat smaller
than T2. In the bottom QPV flux and the thickness flux
we find relaxation scales of the order of 10 days, and
in the top layer T1 ranges from a few hours to a max-
imum of 1.5 days.

These times are certainly not associated with friction
but must be internally established by the flow dynamics.
To gain a view of the temporal behavior of the eddy
field we have evaluated the covariance of the meridional
eddy velocity at various places in the channel. Figure
9 shows the correlation functions for case EFB. Six
years of data at five meridional positions (center, on the
flanks of the jet, and 500 km away from, near the bound-

aries) have been used and a zonal average has also been
performed by taking the mean over ten points on the
same latitude. In the jet the correlation is seen to de-
crease fairly rapidly after a few days. The microscale
of the correlation is roughly three days, the integral scale
ranges from about ten days in the center to 50 to 80
days outside the jet closer to the walls where the flow
is less disturbed by eddies. For larger lags we find a
quasiperiodic behavior at a very low correlation level,
expressing the subsequent passing of similar eddies. In
turbulence theory these correlation timescales are as-
sociated with advection and ‘‘overturning’’ of the eddies
(L/u i and L/ are, indeed, of the order of days but2y9Ï i

clearly not less than a day). The eddy flow is highly
correlated in the vertical, cross-correlations between

and look similar to the correlations with a max-y9 y91 2

imum of 0.8 to 0.9 at zero lag.
While T2 and Th may correspond to the micro- or

macroscale of the correlations this is certainly not true
for T1. This discrepancy is also found when relations to
dynamically defined time scales are sought. From the
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FIG. 10. Scaling of the Ti and Th by the Phillips timescale, plotted
vs the mean shear U. Values from the channel center are taken (*FB:
‘‘*,’’ *G4: ‘‘3,’’ *B5: ‘‘1’’). Power law dependence U2p is indicated
by the straight lines [p 5 22 (full), p 5 25/2 and p 5 23/2 (dotted),
centered on experiment EFB].

dynamical point of view the most important internal
timescales are associated with the baroclinic instability.
Following Eady (1949) and Phillips (1954) the growth
rates of baroclinically unstable disturbances are de-
scribed by the timescales

l 1
T 5 T 5 , (18)Eady PhillipsU ÏbU

written here for the two-layer channel geometry.3 The
first ignores the presence of the planetary vorticity gra-
dient and may therefore not be appropriate. Both apply
strictly, of course, to the linear phase of baroclinic in-
stability and, moreover, to horizontally constant shear.
Values for TEady and TPhillips are given in Table 2, with the
shear evaluated at the center of the channel. They are of

3 The growth rate of the most unstable mode for two-layer Phillips
model, expanded at the critical shear U 5 , is given by2bl2

2Ïb(U 2 bl )2

times a function of layer depths, which is of order unity.

the order of a few days, the Eady timesscale being gen-
erally smaller than the Phillips timescale. McWilliams et
al. (1978) have determined the linear stability of the mean
jet of their channel experiment and found a period of 9
days, which is in favor of the Phillips timescale.

The ratio of the timescales of the flux balances and
the Phillips timescale, shown in Fig. 10 versus shear,
exemplifies the fundamental problem of scaling. In gen-
eral T /TPhillips scatters about an average value by less than
one order of magnitude, but this is roughly the range of
the T or the Phillips timescale itself. Closer inspection,
moreover, reveals clearly that within each group *FB
(shown as *), *G4 (shown as 3) and *B5 (shown as 1)
of the experiments we see a decrease with shear, sug-
gesting that further scaling by b and l could possibly
achieve a power law behavior of the ratio. Any additional
scaling by b would affect only the level of the *B5
experiments and similarly, l-scaling only affects the *G4
experiments. A reasonable power law scaling T ; balbUc

can easily be found, none, however, in a universal form
with a nondimensional coefficient of proportionality, in-
dicating dependence on scales that have not been con-
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sidered in our experiments. We conclude that T2 and Th

are of the order of the baroclinic instability timescales
but none of the above scalings (18) is successful.

4. Diffusive models

The main support for a diffusive form as a represen-
tation of the eddy induced flux of QPV or layer thick-
ness, found in the EPE and EAPE balances, is the prop-
erty of these fluxes to be downgradient of the corre-
sponding mean quantities, despite the presence of sig-
nificant fluxes by eddy-induced triple moments. There
is a widespread agreement about a parameterization for
the eddy fluxes of scalars (heat and passive tracers) as
a diffusion of corresponding mean properties. The eddy
flux of the active tracer QPV is often presented in a
diffusive form as well (e.g., Welander 1973; Held 1975,
1978; Marshall 1981; Held and Hoskins 1985; Vallis
1988; Larichev and Held 1995; Pavan and Held 1996;
Held and Larichev 1996; Treguier et al. 1997):

]qiy9q9 5 2k . (19)i i i ]y

Another prominent example of diffusive parameteriza-
tion is the representation of the eddy-induced mass flux

h9 in isopycnal layers by a downgradient flux withy9i
respect to mean layer thickness,

]h
y9h9 5 y9h9 5 2k . (20)1 2 ]y

This eddy flux is the effective transport velocity in is-
opycnal formulations of mean transport equations for
tracers (see, e.g., Gent and McWilliams 1990; Gent et
al. 1995). In the momentum balance (5) the lateral eddy
mass transport is equivalent to a vertical momentum
transport, and the parameterization (20) then implies
vertical transport of horizontal momentum with a dif-
fusion coefficient k(Hi/li)2. In the layer framework this
appears as interfacial friction. Notice that in truly large-
scale flow where the respective contributions of relative
vorticity can be neglected in the QPV flux, as well as
the mean QPV gradient, the main difference between
QPV diffusion and thickness diffusion is found in the
presence of the eddy transport of planetary vorticity,
kib, in (19). As demonstrated in section 2b both these
conditions fail to apply to our experiments: in the upper
layer the Reynolds stress cannot be neglected, in the
lower layer the mean relative vorticity is significant.

a. QPV and thickness diffusivities

The values of the transfer coefficients ki for QPV and
k for layer thickness are displayed in Fig. 11. They have
been evaluated using zonal and time averages of the
eddy fluxes and the mean gradients. The profiles of the
QPV diffusivities are rather complex. A local minimum
is observed in the jet center, while highest values are

found on the flanks of the jet. The coefficients have
different shapes in the layers and have a clear ordering
of magnitude, k2 . k1. Relative to the maximum the
valley in k1 is deeper than in k2. The cases show sig-
nificant differences for different parameters of bottom
friction, stratification and b, for example, in the width
of the central valley and the height of the peaks above
the valley, but clear parametrical dependences cannot
be evaluated from such a limited suite of experiments.
For the low b cases both ki, and for the high friction
cases, the k2 diffusivity seem to settle on an almost
constant shape in the jet region. The diffusivity for layer
thickness has a simpler structure, which becomes more
evident in the cases with higher friction: the diffusivity
is more or less constant in the jet, starting to decrease
in the region of the flanks.

Similar shapes for numerically determined diffusiv-
ities in a three-layer QG channel flow are reported by
McWilliams and Chow (1981). Eddy-flux closure could
not, however, stop with the knowledge of the positivity
of coefficients. A physically motivated representation
of their complex structure must be given. We discuss a
few parameterizations and scaling theories that have
been suggested to explain the shape and/or the overall
size.

b. Parameterizations

All attempts known to us to parameterize the shape of
the diffusivities ki and k have been performed in terms
of algebraic functions of the local vertical shear U. We
would like to emphasize, however, that there is no evi-
dence for any single-valued relation between the diffu-
sivities and the shear U in any of our experiments. As
exemplified for EFB in Fig. 12, all cases yield multiple-
valued relations. Notice, however, that this occurs pre-
dominantly in the flank region and not in the central jet.

Marshall’s (1981) closure is written in the form ki ;
U. It is based on Green’s (1970) and Stone’s (1972)
form of the transfer coefficients for an infinitesimal
wave growing linearly on a baroclinically unstable mean
flow where the eddy transport coefficient of heat is pro-
portional to the lateral gradient of the mean temperature
or shear. Held (1978) has extended the Green–Stone
concept to disturbances that do not fill the entire height
of the fluid but are confined to a lower active portion.
This yields a dependence ki ; U 4. Held and Pavan
(1996) have recently suggested a parameterization for
a wide jet. On the basis of numerical experiments similar
to ours but driven by relaxation to a prescribed shear
they find for sufficiently broad jets a parameterization
ki ; U 3/2(U 2 Ucrit)3/2 where Ucrit ø is the shear2bl2

magnitude, which is critical for baroclinic instability.
Ivchenko (1985b) pointed out that the Green–Stone clo-
sure scheme ki ; U is inappropriate under strongly bar-
oclinic conditions. He noticed that the minimum in the
eddy diffusivities could be obtained in an expression
placing the QPV gradient (with its central maximum)
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FIG. 11. Numerically determined eddy diffusivities ki and k as function of the scaled latitude y/Y, in units of m2 s21. The curves are for
*FB cases (full), *G4 cases (dash-dotted), and *B5 cases (dotted), respectively. Values from boundary layers are omitted.

FIG. 12. Numerically determined eddy diffusivities ki and k vs the mean vertical shear U for EFB. Diffusivities are in units of m2 s21,
units for shear m s21. Values from boundary layers are omitted. Shown are the values on the y gridpoints, due to the approximate symmetry
of the flow the points occur in doublets. Values for the top layer are dotted, for bottom layer plotted as circles.
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in the denominator. A more or less concentrated jet4 can
indeed be obtained with a diffusive parameterization of
the form ki ; U/(U 2 1 ) with a free shape parameter2U 0

U0. This was tested by Wolff (1990), Sinha (1993), and
Ivchenko et al. (1997). A peculiar property of this pa-
rameterization should be noted: for small U0 that is,
strongly baroclinic conditions, the transport of QPV is
inversely proportional to the gradient of QPV, which
contrasts the general concept of a diffusive process:
though being downgradient, the transport of QPV is
large where the gradient is small and vice versa. In an
unforced initial value problem, such a flux leads to an
unstable situation.

With exception for this last form (which still is phys-
ically not very sound) all these parameterizations fail
to simulate the double peak structure of the coefficients
and do not yield any substantial concentration of mo-
mentum in a jet. A detailed discussion of the failure of
various similar forms of the Green–Stone parameteri-
zation for the thickness flux in a similar two-layer chan-
nel flow is found in McWilliams et al. (1978).

c. Scaling theories

The QPV diffusivity of the top layer is constrained in
its magnitude by the momentum balance (5). The steady-
state condition of this balance and the dominance of the
stretching part of the mean QPV gradient leads to k1 ø

/U. Thus k1 ; l2/U, which, however, is not a param-2tl1

eterization. In the lower layer, and particularly for the
thickness diffusion, the shape of the diffusivity could
possibly be decoupled from its overall magnitude and
thus, scaling could be successful. In particular the k val-
ues show a clear ordering of magnitudes in Fig. 11.

From dimensional reasoning the diffusivity (QPV or
thickness) can be represented in a mixing length form,
k ; L2/T ; VL ; TV 2, with appropriate length, time,
and velocity scales. The Green–Stone (GS) concept uses
the Rossby radius l supplemented by the Eady timescale
TEady. In our case the Phillips timescale TPhillips may be
more appropriate. The diffusivities of these models take
the form

2l
k ; 5 lUEady TEady

2l
2k ; 5 l ÏbU. (21)Phillips TPhillips

Because the diffusive process operates over a scale L,
which is certainly larger than l (see, e.g., Stammer
1998) and correlation properties of the eddy field are
not explicitly taken into account in the above expres-

4 See Fig. 13 in Ivchenko et al. (1997). Their solution, however,
looks very much like the solution of linear QPV diffusion with con-
stant diffusivity shown in the upper left panel of Fig. 16 of this paper.

sions, there are nondimensional coefficients in these re-
lations that generally are not of order unity (see, e.g.,
Visbeck et al. 1997). Larichev and Held (1995) and Held
and Larichev (1996) have recently suggested an alter-
native scaling model. Their scaling law (HL) is derived
for fully developed homogeneous b-plane turbulence in
the presence of a supercritical shear. They found that
the eddy field will be made more barotropic and the
inverse energy cascade will expand the eddy scales to-
ward the barotropic Rhines scale, LR 5 C/b whereÏ
C is the barotropic velocity (Rhines 1975). Then, with
the scaling C ; jU obtained from energy balance con-
siderations, where j 5 U/(bl2) is the supercriticality,5

and assuming a mixing length form with barotropic ve-
locity and length scales, Held and Larichev arrive at the
scaling law

2LR2k ; CL ; lUj 5 . (22)HL R TEady

As indicated in the last equality, the Rhines scale and
Eady timescale are apparently working together in the
HL scaling.

As an example of the diffusivity scaling we show in
Fig. 13 the ratio of the diffusivities and the Eady scaling.
All fields are evaluated at the channel center (for values
see Table 2). As seen in Fig. 13 neither of k2 or k satisfies
the GS scaling. Instead we find a decrease of the dif-
fusivities with increasing shear, which is not as strong
in case of k1. As in case of the timescales considered
above, a power law scaling k ; balbUc can be achieved,
but there is no universal form without involving addi-
tional scales.

It is evident that this scaling is not appropriate, and
similar negative results are obtained for the other scaling
laws discussed above. We must conclude that the strong
requirement of steady-state and zonal-mean condition
and the hard constraint on the eddy QPV flux in top-
layer momentum appears to make any scaling attempt
of k1 under these conditions meaningless. Because the
Reynolds stress is introduced as a ‘‘free’’ mode of dy-
namics—it is largely free in terms of shape and mag-
nitude—we have some freedom in the thickness flux
and the lower-layer QPV flux but this concerns only the
shape, not the overall (integrated) magnitude, which is
again set by the wind stress.

We conclude this discussion of diffusive models with
a negative statement: the conventional diffusive param-
eterizations and the scaling theories do not account for
the complex structure of the QPV and thickness dif-
fusivities. They fail to reproduce the double peak struc-
ture responsible for the concentration of zonal momen-
tum in the jet. They also fail to adjust their magnitudes
to any of the above presented scaling laws as conse-

5 With unequal layer depths the supercriticality of the Phillips mod-
el is U/( ), which differs by the factor H1/(H1 1 H2) from j.2bl2
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FIG. 13. Scaling of the diffusivities k2 and k by the Green–Stone scaling (21) with Eady timescale, plotted vs the mean shear U. Values
from the channel center are compared for all experiments (*FB: ‘‘*,’’ *G4: ‘‘3,’’ *B5: ‘‘1’’). Power law dependence U2p is indicated by
the straight lines [p 5 22 (full), p 5 25/2 and p 5 23/2 (dotted), centered on experiment EFB].

quence of the strong constraint imposed by the mo-
mentum balance of the system. We would like to note
that more complexity in the model by adding more lay-
ers would not lead to a basically different conclusion.
In a multilayer model as shown, for example, in Mar-
shall et al. (1993, and there even with topography, re-
alistic coast lines, and nonzonal wind stress) the mo-
mentum is constrained to be transferred essentially un-
changed through the interior frictionless layers because
Reynolds stress effects are negligible, as here in the
bottom layer, and—because in a zonal mean flow with
QG dynamics—there are no other transport mechanisms
than interfacial stresses. This property implies that in-
terfacial stresses in the interior would have to scale as
the top and bottom layer thickness fluxes.

5. A parameterization derived from the QPV flux
balance

The balances of the second-order moments are not
under direct control of the constraint imposed by the
balance of mean momentum. We investigate their use-
fulness for proving or disproving the existence of dif-
fusive behavior for QPV and thickness transport by the
eddies. We have identified dominant eddy induced flux-
es by triple moments in the balances of the scalar sec-
ond-order quantities and the eddy fluxes. Any consid-
eration of these equations for the purpose of parame-
terization, going beyond the ascertainment of the pos-
itiveness of coefficients, must certainly face the task of
handling the triple moments. We present a parameteri-
zation of the QPV flux derived from the balance of this
flux and a special closure of the corresponding triple
moment. This concept is easily transferred to a param-
eterization of the thickness flux.

Since the QPV flux is derived from a vector quantity,
any theory involving the second-order moments must

consider the flux balance. Our concept of using the QPV
flux balance for parameterization of this flux is based
upon the notion of a very simple and special form of
balance: there is source of flux by a gradient term, re-
distribution by a geostrophic triple moment, and sink
due the remaining imbalance representing the ageo-
strophic pressure-QPV covariance and the Coriolis term.
Replacing the ageostrophic sinks by a relaxation term
of the form (17) and ignoring the small Coriolis term
here for simplicity we arrive at

y9q9 ]q ]i i i2 25 2y9 2 y9 q9, (23)i i iT ]y ]yi

which allows a physically meaningful interpretation. We
can identify a partly diffusive form of the flux with a
diffusion coefficient Ki 5 Ti and a correction term,2y9i
which is not directly related to the mean gradient but
results from the triple moment in the flux balance. As
demonstrated in Fig. 8 the latter is actually a small con-
tribution in the bottom layer but contributes in the top
layer. The approach leading to (23) is similar to the
situation of turbulence closure in convective boundary
layers (see, e.g., the review by Lykossov 1995) where
attempts are made to diagnose the vertical turbulent flux
of heat from the heat flux balance. The turbulent pres-
sure gradient–temperature covariance in this balance
(corresponding basically to our ageostrophic terms) is
traditionally associated with a relaxation process (Rotta
1951), as done here with the ageostrophic pressure–QPV
covariance.

A similar approach can be applied to the balances of
EPE and EAPE, relating eddy enstrophy and thickness
variance to the gradients of QPV or layer thickness,
respectively, and the corresponding second order eddy
fluxes. As shown above, the timesscales involved in
these relations are much longer than the timescale on
which the QPV flux relaxes to the form given above.
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FIG. 14. The triple moment flux of the QPV flux balance for EFB, DFB, NFB, and HFB, together with the parameterized form (24) and
(25). Data from the numerical experiments (full), and advective parameterization (24) (dashed). Units are 1027 m2 s23. Values from boundary
layers are omitted.

a. Parameterization of the flux triple moment

The local relation between the flux and mean gradient
in (23) may be based on a false pretense: the divergence
of the triple moment may introduce nonlocal be-2y9 q9i i

havior. A more precise treatment should also consider
the weak coupling to the zonal flux explicitly. We pro-
ceed by searching for an advective closure of the triple
moment that turns the QPV flux–gradient relation into
a local form.

Breaking down the triple moment in the QPV flux
balance, , into lower order moments the tensorial2y9 q9i i

character of the moment must be preserved. It is a mem-
ber of the tensor , so we try the formu9u9q9i i i

2 2y9 q9 5 y9 v . (24)i i i i

There are not very many possible candidates for the
pseudoscalar v i. In Fig. 14 we give examples of a re-
gression fit of (24) using the mean relative vorticity,

]ui2v 5 2g ¹ c 5 g , (25)i i i i ]y

with a dimensionless coefficient gi to the ‘‘data’’ of the
triple moment from the numerical experiments. The fit
with constant coefficient gi works quite well. The rms
between the triple moment ‘‘data’’ and the fitted func-
tionals indicates a misfit of roughly 10% to 30% and
the values for the gi have an overall consistent pattern
of size and sign within all cases. Other such simple
choices for the pseudoscalar factor v i can hardly be
given (the mean QPV, the planetary or stretching, vor-
ticities do not work). It should be noted that the other
components of the tensor can be represented byu9u9q9i i i

closures corresponding to (24) and (25).

b. Parameterization of the QPV flux

Using (24) and (25) the QPV flux balance appears in
the parameterized form
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FIG. 15. Comparison of the rhs and lhs of (27) for the experiments EFB, DFB, NFB, and HFB: ki (full), and Ki[1 1 g i(] 2u i /]y 2)/
(]q i /]y)] (dash-dotted). Values from boundary layers are omitted. Units are m2 s21 .

]q ]i 2 2y9q9 5 2K 1 g T [y9 ¹ c ]i i i i i i i]y ]y

] ]
2 2 25 2K [q 2 g ¹ c ] 1 g T ¹ c y9i i i i i i i i]y ]y

(26)

with It is determined by one free constant parameter g i,
a diffusivity Ki, and either the timescale Ti of the QPV
flux relaxation or the covariance . These latter quan-2y9i
tities must still be considered to be a function of po-
sition. Below we argue that the term involving the de-
rivative of the covariance is small in our experiments
and that Ki can be considered constant in the jet region.
A coarse model is then developed with two constant
parameters in each layer. A more general model based
on (26) in a complete second-order closure approach
would, however, require additional equations or recipes
to determine gi, Ki and either of Ti or .2y9i

Comparison of the two g i terms in (26) shows for all
experiments that ]¹2c i /]y is always smaller than2y9i
(] /]y)¹2c i (by a factor of roughly 0.2), indicating2y9i
that the meridional scale of the jet must be smaller than

the scale of the covariance. But also, the vanishing of
relative vorticity and the derivative of covariance in the
center of the jet helps to establish this result. In the
following we abandon the second gi term to describe a
simple shortcut of parameterization.

The concept to express all deviations from a homo-
geneous state (where gi 5 0) by the correction term
only makes sense if the resulting diffusivity has a sim-
ple, almost constant shape. Ignoring the last term in (26)
we use in Fig. 15 this relation in the form

2]q ] u ]qi i i2y9q9 5 k 5 K 1 1 g (27)i i i i i 2@ @[ ]]y ]y ]y

to compare the numerically determined QPV flux—in
the form of the ki—with the expression on the rhs. The
structure resulting from fitting the rhs of (27) with con-
stant g i and Ki is displayed by the dashdotted curve and
the values of these coefficients are given in Table 3. It
is clearly seen in Fig. 15 that the g i term compensates
for the double peak structure of ki. Notice that in the
top layer the fitted curve and the k1 lie almost on top
of each other; for the deep layer there is good agreement
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TABLE 3. Result of fitting the parameterization (27) with constant
gi and Ki (in units of m2 s21). For the fit of the two parameters special
weight is given to the jet region. The resulting gi differ from those
obtained from the triple moment fit (25) only slightly.

Expt g1 g2 K1 K2

EFB
EG4
EB5

2.85
3.2
3.98

20.225
20.11
20.328

1070
1220
1720

4340
7640
4510

DFB
DG4
DB5

3.45
3.11
2.71

20.26
20.84
20.239

1090
1290
1710

4190
7650
4380

NFB
NG4
NB5

2.85
2.86
2.9

20.157
20.152
20.127

1110
1240
1220

4460
7910
8520

HFB
HG4
HB5

3.54
1.12
3.5

20.226
20.241
20.311

1110
1810
1810

4770
4890
5170

in the entire ‘‘valley’’ region of k2. The coefficient Ki

can thus indeed be considered constant over the entire
jet region.

We have attempted a scaling of the diffusivity Ki by
the scaling laws discussed in section 4c but obtained
similar negative results as for the QPV diffusivities. In
the present state of this work the Ki as well as the gi

must be taken without a universal basis. The values of
the gi in Table 3 clearly show that the correction to
conventional QPV diffusion is most important in the top
layer where the contribution of the relative vorticity
gradient to the QPV gradient is even overcompensated:
the correction affects a change of sign of the contri-
bution from the relative vorticity. In the bottom layer
the correction is generally small.

c. A closed coarse model

Neglecting the last term in the parameterization (26)
the steady state momentum balance (5) becomes

2 2] u f t1 0 12K (g 2 1) 1 (u 2 u ) 1 b 1 5 01 1 1 22[ ]]y g*H H1 1

2 2] u f2 02K (g 2 1) 2 (u 2 u ) 1 b 2 eu 5 0.2 2 1 2 22[ ]]y g*H2

(28)

Though any parameterization of the complete QPV flux
cannot consider lateral transport and vertical exchange
of momentum in separation, the above equations suggest
a simple interpretation in terms of these processes. The
contribution arising from the relative vorticity describes
lateral transport and the stretching part contains the ver-
tical exchange of momentum between layers. The b
term is a source of eastward momentum due to the mere
presence of eddies (i.e., nonzero Ki). It appears similar
to the Neptune effect investigated by Holloway (1992);
a physical interpretation is, however, not easily found.

The considerations outlined below suggest to combine
the stretching part and the b term in a particular way
to enable an interpretation by eddy-induced interfacial
friction and a direct driving of the flow by eddies.

Because the diffusivities K1 and K2 differ, the stretch-
ing part of the QPV gradient in the two layers cannot
entirely be attributed to momentum exchange. This part
is split apart by rewriting (28) in the form

2] u K 1 K K 2 K1 1 2 2 1 crit2K (g 2 1) 2 U 1 [U 2 U ]1 1 12 2 2]y 2l 2l1 1

t11 5 0
H1

2] u K 1 K K 2 K2 1 2 2 1 crit2K (g 2 1) 1 U 1 [U 2 U ]2 2 22 2 2]y 2l 2l2 2

2 eu 5 0,2 (29)

where U 5 u 1 2 u 2 and 5 g*Hi/ as before, and2 2l fi 0

2Kicrit 2U 5 bl . (30)i i K 2 K2 1

The first part of the stretching term in (29) represents
momentum exchange between the layers; it has the form
of interfacial friction. Because K2 2 K1 . 0 in all our
experiments and thus . 0 as well, the second partcritU i

of the stretching term in (29) represents a source of
eastward momentum where the shear exceeds the cor-
responding critical value ; at other places the flowcritU i

is retarded.
In comparison to conventional QPV diffusion the

most important feature of the coarse model (29) is the
direction of the lateral momentum transport by the dif-
fusive term. It is controlled by the parameter gi. If gi

5 0, we are facing the conventional QPV diffusion pa-
rameterization where momentum is transferred down-
ward the lateral velocity gradient (pure QPV diffusion
with consideration of the relative vorticity implies dif-
fusion of momentum, i.e., downgradient diffusive trans-
fer). With g2 . 1 and g1 , 0, as found in our experi-
ments, the correction term in the parameterization (26)
causes a countergradient transfer of momentum in the
upper layer and a stronger downgradient transport in the
lower layer. Both these processes thus cause an increase
in shear. Remember that this property results from the
triple moment in the QPV flux balance.

The direct eddy driving causes as well an increase of
shear if . U . , as in our experiments. Thecrit critU U2 1

separation of the QPV gradient thus leads to a momen-
tum balance of the jet where interfacial friction is the
only sink of eastward momentum in the top layer and
the only source in the bottom layer.

The model has to consider the integral constraint (8).
Using the present parameterization of the QPV flux the
constraint becomes
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FIG. 16. Analytical solution of the coarse model (28) for the parameters of EFB (see Table 3). In the upper panels conventional QPV
diffusion is used (gi 5 0), in in the lower panels the correction term is implemented. We compare a b-plane flow (left panels) with a f -plane
flow (right panels). The velocities u i are full, the shear U is dash-dotted. Units are meters per second.

Y /21
(K 2 K )U dyE 2 12

2Y /2

Y /22 2] ui25 l K b 1 (g 2 1) dy. (31)O E i i i 2[ ]]yi51 2Y /2

It may be satisfied by reducing the number of coeffi-
cients. In the regime of our experiments the last term
on the rhs is small compared to the (positive) first.
Hence, in case of eastward flow where t 1 . 0 we have
U . 0, and thus K2 . K1 is required at least in part of
the domain. In a westward forced flow where t 1 , 0
and U , 0 we find the condition K2 , K1, as described
by Ivchenko et al. (1997) for an experiment of our chan-
nel model with westward forcing.

With constant coefficients (28) can be solved analyt-
ically.6 The relative vorticity term introduces two lateral

6 We ignore here that Ki does not satisfy the proper boundary con-
dition Ki(y 5 6Y/2) 5 0.

scales that are independent of the forcing scale. In case
of conventional QPV diffusion (i.e., gi 5 0) these scales
are the Rossby radius L1 5 l and a scale L2 5
[(K2/e)(H1 1 H2)/H2]1/2, which results from the balance
of diffusion and friction in the bottom layer. Modifi-
cations of the sinusoidal behavior of the forcing only
occurs in boundary layers at the walls. As shown in Fig.
16 (upper left panel) the exponential boundary layer
penetrates quite far into the interior (in this example we
have L2 ø 200 km k l) and mimics a sharpening of
the jet. In a broader channel this would not occur but
the central jet would still be sinusoidal as the forcing.
The countergradient transport arising from the triple cor-
rection switches the boundary layer behavior to a ra-
diating behavior [both eigenvalues of the linear operator
on the lhs of (28) change sign]. Figure 16 (lower-left
panel) shows the effect of the correction term: the cen-
tral jet is concentrated and intensified flanks occur as
in the numerical experiments (compare with Fig. 2). The
left panels of the figure consider the resulting profiles
for an f plane where the solution with constant diffu-
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sivity and homogeneous boundary condition on u i is
purely sinusoidal.

6. Summary and conclusions

In a b-plane channel the wind stress drives an un-
stable eastward flow in which eddies in the top layer
generate a Reynolds stress, which is convergent over
the central region. It causes a narrow supercritical jet
with a meridional scale much smaller than the scale of
the wind stress but larger than the baroclinic Rossby
radius. The downward transfer of momentum by the
eddy-induced interfacial form stress feeds on the Reyn-
olds stress convergence and drives a deep jet against
the bottom friction.

The two-layer model of wind-driven quasigeostrophic
flow in a zonal channel has long been in use for studying
the dynamics of large-scale oceanic currents, in partic-
ular when eddy effects have been addressed. The first
eddy-resolving numerical models of the Antarctic Cir-
cumpolar Current were based on this model (e.g.,
McWilliams et al. 1978), and conventional diffusive pa-
rameterizations derived from the theory of baroclini-
cally unstable waves (e.g., Green 1970; Stone 1972)
were tested (e.g., Marshall 1981) to motivate closed
coarse models of the eddy-effected mean flow. A second
line of research on two-layer QG dynamics stems from
the atmospheric community studying homogeneous tur-
bulence on a b plane in the presence of a vertical shear
and advocating a diffusive form for the eddy-induced
transport of QPV. However, the conditions of the ho-
mogeneous model (e.g., Vallis 1988; Held and Larichev
1996), where Reynolds stresses and the mean currents
are laterally uniform, are not realized in the regime of
our wind-driven flows. In the flow of the present study
there is a significant Reynolds stress divergence in the
top layer and the relative vorticity of the mean flow is
not negligible.

We have extended the analysis of the wind-driven
flow regime to include the balances of second-order
moments, namely eddy potential enstrophy, eddy en-
ergies, and the QPV flux, in order to test proposed pa-
rameterizations of eddy fluxes of QPV and layer thick-
ness. The second-order balances confirm the well-
known properties of the direction of the eddy fluxes in
relation to the relevant mean gradients: the Reynolds
stress is upgradient and the fluxes of QPV and layer
thickness are downgradient. These properties corre-
spond to the Lorenz cycle of a baroclinically unstable
regime but what is clearly revealed here—and lost in
the integrated form as shown, for example, in Mc-
Williams et al. (1978)—is that all second-order balances
contain significant contributions from eddy transfer by
triple moments. A second important property of the bal-
ances is found in the magnitude of the timescales of the
balance rates. While the scalar moment enstrophy and
energies relax on time scales O(100) days, as dictated
by frictional effects, the balance of the fluxes reveals a

very strong relaxation within a few days, even less than
a day in top layer. These time scales can roughly be
associated with the linear growth rates of baroclinic in-
stability but convincing regressions between the times
scales of flux production and destruction could not be
found. The difference of top and bottom layer timescales
in the flux balances has a correspondence in the level
of eddy activity seen in the eddy energies and enstro-
phies. The deep layer is in a much weaker eddy state
than the top layer.

Diffusivities for QPV and layer thickness, determined
from the numerical experiments, cannot be reproduced
by any of the known parameterizations of eddy fluxes,
as those derived for infinitesimal growing unstable
waves (Green 1970; Stone 1972) or those derived from
the homogeneous model (e.g., Pavan and Held 1996).
The double peak shape of the QPV diffusivities cannot,
at all, be parameterized by a single-valued functional
of the vertical shear. Layer thickness diffusivities have
a simpler form, more or less constant in the jet range.
Neither of them, however, follows the magnitude scaling
derived from Green–Stone or Held–Larichev scaling
laws. Conventional diffusive transport of QPV or thick-
ness thus fails in the wind-driven regime. This failure
is explained, in the first place, by the necessity that the
fluxes have to satisfy the balance of zonal momentum,
which dictates their level and to a large degree also their
form. The existence of significant triple moment diver-
gences in the second-order balances also contributes to
this failure.

Eddy flux closure for quasigeostrophic flows has been
conceived on the basis of the balance of eddy potential
enstrophy. Under the assumption that the eddy-induced
transport of enstrophy is negligible, support of diffusive
downgradient parameterizations has been taken (e.g.,
Shutts 1983; Treguier et al. 1997) and it was also sug-
gested—as a consequence of this balance—that the eddy
QPV flux must be intimately related to the enstrophy
dissipation (e.g., Held and Hoskins 1985). We propose,
on the contrary, that the scalar balances—eddy enstro-
phy and potential energy—only reflect the flux direction
in terms of mean gradients but that parameterizations
are more severely constrained by the balances of fluxes
themselves which, as pointed out above, are subject to
a very fast adjustment.

The balances of QPV flux and of thickness flux have
a very simple form. Flux is created by a gradient term
proportional to either mean QPV or thickness gradient,
and destruction of flux is achieved by the covariance
between the ageostrophic pressure and the eddy QPV
or interface displacement, respectively. Other terms in
the flux balances are small with the exception of the
triple moment divergence in the top layer. We suggest
replacing the ageostrophic pressure covariance by a flux
damping term, as in Rotta’s (1951) approach to turbu-
lence closure. The resulting flux balance allows ex-
pressing the flux as a sum of downgradient diffusion
plus corrections from triple moments and possibly other
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small terms in the flux balance. The diffusivity takes a
mixing length form; it is the product of the damping
timescale and the eddy velocity covariance. In this
framework the eddy fluxes are not directly related to
any dissipation terms but result in a fast adjustment
process between gradient production and pressure cor-
relations.

The QPV and thickness flux balances clearly show
that fluxes are not only caused by the mean gradients
but also by other terms in the flux balances. According
to our experiments the triple moment is by far the largest
contribution after the mean gradient term. For practical
utilization of the new form of parameterization of sec-
ond-order fluxes it is necessary to break down the triple
moments into lower order moments. We have found a
simple and effective parameterization in terms of ve-
locity variance and mean vorticity that explains the
shape of the triple moments in the flux balances of all
experiments (with one free coefficient per layer, varying
for the different experiments). Combining the damping
form of the flux balance with the parameterized triple
moment yields, as final result of this paper, a parame-
terization of the QPV or thickness flux. The parame-
terized QPV flux is finally used in a simple steady coarse
model of momentum transfer with constant diffusivities.
It reproduces the jet structure in a consistent way.

There are many issues to be clarified in this new
approach. The parameterization of the eddy flux of QPV
contains two coefficients for each layer. It is not clear
how these should be determined without a high reso-
lution experiment as support and without any satisfying
scaling theory. One of these—the coefficient of the triple
moment correction term—can quite safely be considered
constant. In our simple model we have taken the dif-
fusivity as constant. The fitted diffusivities, however,
still show a weak dependence on the lateral coordinate
outside the jet region, which might be important and
must then be replaced by a parameterized form in terms
of lower order quantities. A refined theory is still needed
to determine the diffusivities and other parameters of
the present model from a more complete second-order
closure approach.

Another issue is the applicability of the coarse model
to conditions more general than the quite constrained
QG channel flow in two layers considered here. Even
more important is the implementation in circulation
models that are not governed by QG equations. Con-
sidering a higher vertical resolution but still retaining
QG dynamics, we propose as an extrapolation of our
findings that the triple moment correction of the QPV
flux is only important in the top ‘‘boundary’’ layer and
that the deeper layers are governed by conventional
QPV diffusion. The role of the correction terms is then
seen in the ‘‘extra’’ convergence of momentum, which
structures the jet in the upper layer and feeds this struc-
ture into the lower layers by the vertical transport of
momentum via the interfacial friction mechanism dis-
cussed in section 5c.
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