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ABSTRACT. This article is concerned with the infimume1 of the spectrum of the Schrödinger
operatorτ = −∆ + q in RN , N ≥ 1. It is assumed thatq− = max(0,−q) ∈ Lp(RN ), where
p ≥ 1 if N = 1, p > N/2 if N ≥ 2. The infimume1 is estimated in terms of theLp-norm of
q− and the infimumλN,θ of a functionalΛN,θ(ν) = ‖∇v‖θ

2‖v‖1−θ
2 ‖v‖−1

r , with ν element of the
Sobolev spaceH1(RN ), whereθ = N/(2p) andr = 2N/(N − 2θ). The result is optimal. The
constantλN,θ is known explicitly forN = 1; for N ≥ 2, it is estimated by the optimal constant
CN,s in the Sobolev inequality, wheres = 2θ = N/p. A combination of these results gives an
explicit lower bound for the infimume1 of the spectrum. The results improve and generalize
those of Thirring [A Course in Mathematical Physics III. Quantum Mechanics of Atoms and
Molecules, Springer, New York 1981] and Rosen [Phys. Rev. Lett., 49 (1982), 1885-1887] who
considered the special caseN = 3. The infimumλN,θ of the functionalΛN,θ is calculated
numerically (forN = 2, 3, 4, 5, and10) and compared with the lower bounds as found in this
article. Also, the results are compared with these by Nasibov [Soviet. Math. Dokl., 40 (1990),
110-115].
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1. RESULTS

In this article we study the Schrödinger operatorτ = −∆ + q on RN . The real-valued
potentialq is such thatq = q+ + q−, where

(1.1) q+ = max(0, q) ∈ L2
loc(RN),
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2 E.J.M. VELING

(1.2) q− = max(0,−q) ∈ Lp(RN), N = 1: 1 ≤ p <∞, N ≥ 2: N/2 < p <∞.

Associated withq is the closed hermitian formh,

h(u, v) = (∇u,∇v) +

∫
RN

quv̄dx, u, v ∈ Q(h),(1.3)

Q(h) = H1(RN) ∩ {u | u ∈ L2(RN), q1/2
+

∈ L2(RN)}.(1.4)

As will be shown in the course of the proof of Theorem 1.1,h is semibounded below if the
condition (1.2) is satisfied. Hence, we can define a unique self-adjoint operatorH, such that
Q(h) is its quadratic form (see [22, Theorem VIII.15] or [26, Theorem 2.5.19]).

We remark thatτ restricted toC∞0 (RN) is essentially self-adjoint for the following values of
p :

(1.5)
p ≥ 2 if N = 1, 2, 3;
p > 2 if N = 4;
p ≥ N/2 if N ≥ 5;

see [21, Corollary,p. 199, withV1 = q+ , c = d = 0, V2 = q−]. ForN = 1, 2, 3 condition (1.5)
imposes a restriction on the values ofp allowed in (1.2). Furthermore,D(H) = H2

0 (RN) =
H2(RN) if q+ ∈ L∞(RN), p > N/2,N ≥ 4; see [6, pp. 123, 246 (vi)].

It is our purpose to give a lower bound for the infimum of the spectrum ofH by estimating
the Rayleigh quotiente1 = infu∈D(H) h(u, u)/‖u‖2

2. Sinceq+ enlargese1, it suffices to consider
the Rayleigh quotient for the caseq+ = 0.

Let ΛN,θ be the following functional onH1(RN) :

(1.6) ΛN,θ(v) =
‖∇v‖θ

2‖v‖1−θ
2

‖v‖r

, r = 2N/(N − 2θ), v ∈ H1(RN),

where

0 < θ ≤ 1/2 if N = 1, and 0 < θ < 1 if N ≥ 2.

Let λN,θ be its infimum

(1.7) λN,θ = inf
{
ΛN,θ(v)|v ∈ H1(RN), v 6= 0

}
.

It is possible to include the casesθ = 0, with λN,0 = ΛN,0(v) = 1, andθ = 1, providedN ≥ 2;
see below. The functionalΛN,θ(v) is invariant for dilations in the argument ofv and for scaling
of v.

We recall the following imbeddings

H1(R1) ↪→ C0,λ(R1), 0 < λ ≤ 1/2,(1.8)

H1(R2) ↪→ Ls(R2), 2 ≤ s <∞,(1.9)

H1(RN) ↪→ Ls(RN), 2 ≤ s ≤ 2N/(N − 2), N ≥ 3;(1.10)

see [1, pp. 97, 98]. Here,C0,λ(R1) is the space of bounded, uniformly continuous functionsv
onR1 with

sup
x,y∈R1, x 6=y

|v(x)− v(y)|/|x− y|λ <∞.
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LOWER BOUNDS SPECTRUMSCHRÖDINGEROPERATOR 3

Hence,u ∈ H1(R1) impliesu ∈ L2(R1) ∩ L∞(R1) and, therefore,u ∈ Ls(R1), 2 ≤ s ≤ ∞.
Thus, (1.8), (1.9), and (1.10) imply that there exist positive constantsK such that

(1.11)
2 ≤ s ≤ ∞ if N = 1,

[‖∇v‖2
2 + ‖v‖2

2]
1/2/‖v‖s ≥ K, 2 ≤ s <∞ if N = 2,

2 ≤ s ≤ 2N/(N − 2) if N ≥ 3.

Returning to the functionalΛN,θ , we make for0 < θ < 1 (0 < θ ≤ 1/2 if N = 1) a dilation
x = εy, x, y ∈ RN , w(y) = v(x), such that

‖∇w‖2
2/‖w‖2

2 = θ/(1− θ).

The inequality

(1.12) ab ≤ aP/P + bQ/Q, a, b ≥ 0, 1 < P <∞, 1/P + 1/Q = 1,

with equality if and only ifaP = bQ, applied toΛ2
N,θ(w) gives (P = 1/θ, Q = 1/(1 − θ),

a = η‖∇w‖2θ
2 , b = ‖w‖2θ

2 /η)

(1.13) Λ2
N,θ(w) ≤ θη1/θ‖∇w‖2

2 + (1− θ)η−1/(1−θ)‖w‖2
2

‖w‖2
r

,

for some numberη > 0. Equality holds if and only if

η1/θ‖∇w‖2
2 = η−1/(1−θ)‖w‖2

2, i.e. η−1/(θ(1−θ)) = θ/(1− θ).

In this case,

(1.14) Λ2
N,θ(w) = θθ(1− θ)1−θ ‖∇w‖2

2 + ‖w‖2
2

‖w‖2
r

.

Since it is possible to perform this dilation for anyv ∈ H1(RN), and sinceθθ(1 − θ)1−θ > 0
we conclude thatλN,θ > 0 for 0 < θ < 1. The caseN = 1, θ = 1/2 (in that caser becomes
undefined) is covered by the values = ∞ in (1.11). The casesθ = 1, N ≥ 2 are covered by a
special form of the Sobolev inequality

(1.15) ‖∇w‖s ≥ CN,s‖w‖t, t = sN/(N − s), 1 ≤ s < N, w ∈ H1,s(RN),

whereCN,s are the optimal constants and

H1,s(RN) = completion of{w | w ∈ C1(RN), ‖u‖s
1,s = ‖u‖s

s + ‖∇u‖s
s <∞}(1.16)

with respect to the norm‖ · ‖1,s.

If we takes = 2 we haveλN,1 = CN,2, N ≥ 3. SinceH1(R2) 6↪→ L∞(R2), it follows that
λ2,1 = C2,2 = 0, i.e. K = 0 in (1.11). The numbersCN,s are known explicitly by the work of
[2] and [25], see also [14]

CN,s = N1/s

(
N − s

s− 1

)(s−1)/s [
NωNB

(
N

s
,N + 1− N

s

)]1/N

, 1 < s < N,(1.17)

CN,1 = Nω
1/N
N , N ≥ 2,(1.18)

whereωN is the volume of the unit ball inRN :

ωN = πN/2/Γ(1 +N/2),(1.19)

B(a, b) = Γ(a)Γ(b)/Γ(a+ b), a, b > 0,(1.20)

and there is equality in (1.15) for functions of the form

(1.21) wN,s(x1, ..., xN) =
{
a+ b|x|s/(s−1)

}1−N/s
, a, b > 0, 1 < s < N.
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4 E.J.M. VELING

Note thatwN,s /∈ Ls(RN) if s ≥ N1/2. For s = 1 there are no functions such that there
is equality, but by taking an approximating sequence{wi} ∈ H1,1(RN) of the characteristic
function of the unit ball, the boundCN,1 can be approximated arbitrarily close. See further
Lemma 2.1 for more information aboutΛN,θ and the explicit form forλ1,θ.

In Theorem 1.1 we give the lowest possible point of the spectrum of this Schrödinger equation
for all q− satisfying (1.2). Let us define the numberl(N, θ), whereθ = N/(2p), as follows

(1.22) l(N, θ) = inf
q−∈Lp(RN )

inf
u∈H1(RN )

‖∇u‖2
2 +

∫
RN q‖u‖2

2dx

‖u‖2
2

‖q−‖−1/(1−θ)
p .

Theorem 1.1. Let q− ∈ Lp(RN), 1 ≤ p < ∞ if N = 1, N/2 < p < ∞ if N ≥ 2 (i.e. (1.2)).
Then

(1.23) l(N, θ) = −(1− θ)θθ/(1−θ)λ
−2/(1−θ)
N,θ , 0 < θ < 1/2 if N = 1,

0 < θ < 1 if N ≥ 2,

and explicitly forN = 1

l(1, θ) = −

{
(2θ)2θ(1− 2θ)1−2θ

[
B

(
1

2
,

1

2θ

)]−2θ
}1/(1−θ)

, 0 < θ < 1/2,

= −

{
p−p(p− 1)p−1

[
B

(
1

2
, p

)]−1
}2/(2p−1)

, 1 < p <∞,(1.24)

l(1, 1/2) = −1/4.(1.25)

Remark 1.2. Of course, for any application of this method to find a lower bound fore1 (the
smallest eigenvalue) one can take the following infimum over the allowed setΘ of θ-values
(depending onq−).

(1.26) e1 ≥ − inf
θ∈Θ

(1− θ)θθ/(1−θ)λ
−2/(1−θ)
N,θ ‖q−‖

1/(1−θ)
N/(2θ) .

Remark 1.3. Note that we do not includeθ = 1 in the allowedθ-range, although forN ≥
2 λN,1 is defined. It turns out that the method of the proof does not work in this case; it
gives however a criterion such thatσd(H) = ∅ (i.e. there are no isolated eigenvalues), see the
Remark 2.4 after the proof of Theorem 1.1.
Remark 1.4. It is possible to allow the casep = ∞, i.e. θ = 0, thenl(N, 0) = −1. If q =
−‖q−‖∞ this bound is achieved arbitrarily close by a sequence of functions{ui} ∈ H1(RN),
where eachui is a smooth approximation of the characteristic function of thei-ball in RN ,
because then the quotient

‖∇ui‖2
2/‖ui‖2

2 → NωN i
−1, i→∞, and

∫
RN q|ui|2 dx
‖ui‖2

2

‖q−‖−1
∞ = −1.

Remark 1.5. Already Lieb and Thirring [15] characterize the infimum of the spectrum with a
number−(L1

γ,N)1/γ (in their notation,γ = p−N/2), with γ > max(0, 1−N/2), andγ = 1/2,
N = 1. Therefore,

(1.27) (L1
γ,N)1/γ

∣∣
γ=(1−θ)N/(2θ)

= (1− θ)θθ/(1−θ)λ
−2/(1−θ)
N,θ .

They giveL1
γ,1 for γ > 1/2 explicitly. Here, we also include the caseN = 1, γ = 1/2 (i.e.

θ = 1/2, p = 1). However, the main reason of this article is to show how one can give an
explicit estimate fore1 by sharp estimates of the numbersλN,θ,N ≥ 2, in terms of the numbers
CN,s for somes = s(θ), see Theorems 1.7 and 1.8. For a survey for other integral inequalities
results related to the infimum of the spectrum see [9] and [16].
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Remark 1.6. The results for the ordinary differential case(N = 1, Ω = R) are related to those
for Ω = R+ with either a Dirichlet or a Neumann boundary condition atx = 0 (respectively the
operatorsT0 andTπ/2 in the work of [8], [27] and [10]). In those cases there holds1 ≤ p ≤ ∞

(1.28) inf
q−∈Lp(R+)

inf
u∈D(T0)

‖u′‖2
2 +

∫∞
0
q|u|22dx

‖u‖2
2

‖q−‖−2p/(2p−1)
p = l(1, 1/(2p)),

(1.29) inf
q−∈Lp(R+)

inf
u∈D(Tπ/2)

‖u′‖2
2 +

∫∞
0
q|u|22dx

‖u‖2
2

‖q−‖−2p/(2p−1)
p = 22/(2p−1)l(1, 1/(2p)).

See for related work [3].
Theorem 1.7.The following inequalities hold forN ≥ 2

i) λN,θ > (λN,θ′)
α(λN,θ

′′ )1−α, 0 < α < 1, θ = αθ′ + (1− α)θ
′′
, θ′ 6= θ

′′
,(1.30)

ii) λN,θ > (θCN,2θ)
θ, 1/2 ≤ θ < 1,(1.31)

iii) λN,θ > (θNCN,2θN
)θ, 0 < θ ≤ θN ,(1.32)

λN,θ > (θCN,2θ)
θ, θN ≤ θ < 1,

iv) λN,θ > (CN,2)
θ, 0 < θ < 1,(1.33)

whereCN,s is given by (1.17) and (1.18) andθN = θ(N) ∈ (1/2, 1) is the unique maximum of
θCN,2θ, 1/2 ≤ θ ≤ 1. θN is given byθN = N/(2pN) wherepN is the solution ofM(N, p) = 0,
with

M(N, p) = log

(
N − p

p− 1

)
+

N − p

p(p− 1)
+ ψ(p)− ψ(N + 1− p),(1.34)

ψ(x) =
d

dx
(log(Γ(x)) =

(
d

dx
Γ(x)

)
/Γ(x), x > 0.(1.35)

It is now easy to combine both theorems in
Theorem 1.8.Under the conditions of Theorem 1.1 there holds

(1.36) l(N, θ) >

{
−(1− θ)θθ/(1−θ)(θNCN,2θN

)−2θ/(1−θ), 0 < θ ≤ θN ,

−(1− θ)θ−θ/(1−θ)(CN,2θ)
−2θ/(1−θ), θN ≤ θ < 1,

and also (generally less than optimal)

l(N, θ) > −(1− θ)θθ/(1−θ)(θ′CN,2θ′)
−2θ/(1−θ), 0 < θ < 1,(1.37)

for any θ′ ≥ θ, 1/2 ≤ θ′ ≤ 1.

Proof. Equation (1.36) follows from (1.23) and (1.32); (1.37) follows from (1.23), (1.30) (with
θ
′′

= 0) and (1.31). �

Remark 1.9. ForN = 3, θ′ = 1 the result (1.37) reads explicitly

(1.38) l(3, θ) > −(1− θ)θθ/(1−θ)[31/22−2/3π2/3]−2θ/(1−θ), 0 < θ < 1,

and this is the same result as [23, (14)].
Remark 1.10. [26, (3.5.30), and private communication by H. Grosse] gives the following
result forN = 3

(1.39) l(3, 3/(2p)) > −((p− 1)/p)2(4π)−2/(2p−3)

[
Γ

(
2p− 3

p− 1

)](2p−2)/(2p−3)

,

3/2 < p <∞,
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6 E.J.M. VELING

or in terms ofθ,

(1.40) l(3, θ) > −(1− 2θ/3)2(4π)−2θ/(3−3θ)

[
Γ

(
6− 6θ

3− 2θ

)](3−2θ)/(3−3θ)

, 0 < θ < 1.

It can be proved that (1.38) is better than (1.40) for all0 < θ < 1. For θ = 0 the right-hand
sides of both (1.38) and (1.40) give the correct valuel(3, 0) = −1.

Remark 1.11. To show the superiority of (1.37) withθ′ < 1 against (1.37) withθ′ = 1, i.e.
(1.38), we evaluate the bound forl(3, 3/4) of (1.37) withθ = θ′ = 3/4. We find

(1.41) l(3, 3/4) > −223−7π−2 ' −1.8510−4 ,

while (1.38) gives

l(3, 3/4) > −2−4π−4 ' −6.4210−4 ,

and (1.40) gives

l(3, 3/4) > −2−6π−2 ' −15.8310−4 .

Based on our numerical calculations (see Section 3) we findl(3, 3/4) = −1.75018010−4. So the
estimate (1.41) comes close to the actual value ofl(3, 3/4).

Remark 1.12. The results in Theorems 1.1, 1.7, and 1.8 were announced in [28] and [7, p.
337].

Remark 1.13. In the interesting paper [20] Nasibov has given a lower bound (in his notation
1/k0) for λN,θ:

λN,θ =
1

k0

>
1

k0

,(1.42)

with

k0 =
1√

θθ(1− θ)1−θ

(
NωNB

(
N

2
,
N(1− θ)

2θ

))θ/N

kB

(
2N

N + 2θ

)
,(1.43)

kB(p) =

[( p
2π

)1/p
(
p′

2π

)−1/p′
]N/2

,
1

p
+

1

p′
= 1.(1.44)

And, even better

λN,θ =
1

k0

>
1

k0

, with
1

k0

>
1

k0

, for θ > N/4,(1.45)

with

k0 =

{
1

θθ(1− θ)1−θ
kB

(
N

N − 2θ

)
k2

B

(
2N

N + 2θ

)
‖G(|x|)‖ N

N−2θ

}1/2

,(1.46)

G(|x|) = KN−2
2

(|x|)|x|−(N−2)/2,(1.47)

with Kα the modified Bessel function of the second kind and orderα. The inequality (1.45) is
only relevant forN = 2, 1/2 ≤ θ ≤ 1, andN = 3, 3/4 ≤ θ ≤ 1, sincek0 < k0, for N = 2,

0 < θ < 1/2, andN = 3, 0 < θ < 3/4, andk0 = k0, forN = 2, θ = 1/2, andN = 3, θ = 3/4.
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The reader is advised to consult also the original paper (Dokl. Akad. Nauk SSSR307, No.
3, 538-542 (1989)) of [20] since there are a number of misprints in the translated version. In
Section 3 this lower bound will be compared with (1.32). The functionG reads

N = 2, G(|x|) = K0(|x|),

N = 3, G(|x|) = K 1
2
(|x|)|x|−1/2 =

√
π

2
exp(−|x|)/|x|,

so, one has to calculate the integrals in (1.46)

N = 2 : ‖G(|x|)‖ 1
1−θ

=

[∫ ∞

0

K
1/(1−θ)
0 (r) 2πr dr

]1−θ

,(1.48)

N = 3 : ‖G(|x|)‖ 3
3−2θ

=

√
π

2

[∫ ∞

0

r(3−4θ)/(3−2θ) exp

(
− 3r

3− 2θ

)
4π dr

](3−2θ)/3

.(1.49)

ForN = 3 the integral in (1.49) can be evaluated explicitly, while forN = 2, i.e. (1.48), that is
only possible forθ = 1/2:

N = 2 : ‖G(|x|)‖2 =

[
2π

∫ ∞

0

K2
0(r) r dr

]1/2

=

(
2π

[
r2

2

(
K2

0(r)−K2
1(r)

)]∣∣∣∣∞
0

)1/2

=
√
π,

N = 3 : ‖G(|x|)‖ 3
3−2θ

=

√
π

2
(4π)(3−2θ)/3

(
3− 2θ

3

)2−2θ [
Γ

(
6− 6θ

3− 2θ

)](3−2θ)/3

.

2. PROOFS

Firstly, we give more information onΛN,θ in a lemma.

Lemma 2.1. The valueλN,θ = infv∈H1(RN ), v 6=0 ΛN,θ(v) for the functionalΛN,θ(v) defined in
(6) is attained by radial symmetric monotonely decreasing positive functionsvN,θ(|x|) which
satisfy, except forθ = 1/2,N = 1, the following ordinary differential equation for0 < θ < 1/2
if N = 1, and0 < θ < 1 if N ≥ 2,

− d2

dr2
v − (N − 1)

r

d

dr
v − v|v|(N+2θ)/(N−2θ)−1 + v = 0, r = |x| > 0,

d

dr
v(0) = 0, lim

r→∞
v(r) = 0,(2.1)

and the valueλN,θ is then given by
(2.2)

λN,θ = θθ/2(1− θ)(N(1−θ)−2θ)/(2N)

[
NωN

∫ ∞

0

v2
N,θ(r)r

N−1dr

]θ/N

for 0 < θ < 1, N ≥ 2.
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8 E.J.M. VELING

For N = 1 we have explicitly forx ≥ 0

v1,θ(x) = v1,θ(−x), 0 < θ ≤ 1/2,(2.3)

v1,θ(x) =

{
(1− 2θ)1/2 cosh

(
2θ

1− 2θ
x

)}−(1−2θ)/(2θ)

, 0 < θ < 1/2,

v1,1/2(x) = e−x,(2.4)

λ1,θ = 2−θθ−θ/2(1− θ)(1−θ)/2(1− 2θ)−(1−2θ)/2

{
B

(
1

2
,

1

2θ

)}θ

, 0 < θ < 1/2,

λ1,N/(2p) = 2−1/2

{
(2p− 1)(2p−1)/2(p− 1)−(p−1)B

(
1

2
, p

)}1/(2p)

, 1 < p <∞,

λ1,1/2 = 1.(2.5)

Proof. The caseN = 1 was treated by [19] and the caseN ≥ 2 was given by [29] who used a
rearrangement and an inequality due to Strauss to prove the compactness of the imbedding of
radial symmetric functionsu ∈ H1(RN) into Ls(RN), 2 < s < ∞ if N = 2, and2 < s <
2N/(N − 2) if N ≥ 3 (see also (1.9), (1.10)). The Euler equation connected with the infimum
of ΛN,θ becomes

(2.6) −θ‖∇u‖−2
2 ∆u+ (1− θ)‖u‖−2

2 u− ‖u‖−r
r |u|r−2u = 0, r = 2N/(N − 2θ),

which can be scaled into the form (2.1) withλN,θ given by (2.2). The following relations
betweenλN,θ and the following norms of̄vN,θ(x1, ..., xN) = vN,θ(|x|) hold (cf. [24, p. 151],
where the factor“(n− 2)” has to be skipped in the last line on that page)

‖v̄N,θ‖2
2 = L(1− θ), ‖∇v̄N,θ‖2

2 = Lθ, ‖v̄N,θ‖r
r = L,(2.7)

L = θ−N/2(1− θ)−N(1−θ)/(2θ)λ
N/θ
N,θ .(2.8)

Since (2.1) is nonlinear the value ofv(0) has to be chosen properly to satisfylimr→∞ v(r)
= 0. �

Remark 2.2. We note that the existence of solutions of (2.1) has been proved by many authors:
it is just the range0 < θ < 1, see [17]. The uniqueness for the fullθ-range has been proved
by Kwong, see [11], after preliminary work by [17], and [18]. A proof based on geometrical
arguments has been given by [5]. See for related work also [12].

Remark 2.3. Numerical information forλN,θ for N = 2, 3 can be obtained from [15, Appen-
dix], where curves forL1

γ,N (see (1.27)) are given(0 ≤ γ ≤ 2.8, N = 2, 3). By (1.27) we have

(2.9) λN,θ = θθ/2(1− θ)(1−θ)/2(L1
γ,N)−θ/N , γ = N(1− θ)/(2θ).

Comparison with (2.8) learns thatL1
γ,N = 1/L. Besides, the following two values forλN,θ are

known based on numerical calculations

λ−1
2,1/2 '

(
1

π(1.86225 · · · )

)
' 0.642988, ([29], after (I.5))(2.10)

→ λ2,1/2 ' 1.55524,

λ3
2,2/3 ' 4.5981, ([13], p. 185)(2.11)

→ λ2,2/3 ' 1.66287.
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Proof of Theorem 1.1.We estimateh(u, u), see (1.3), as follows. All integrals are overRN .

h(u, u) = ‖∇u‖2
2 +

∫
q|u|2dx(2.12)

≥ ‖∇u‖2
2 −

∫
q−|u|2dx

≥ ‖∇u‖2
2 − ‖q−‖p‖u‖2

r [r = 2p/(p− 1) = 2N/(N − 2θ)](2.13)

≥ ‖∇u‖2
2 − ‖q−‖pλ

−2
N,θ‖∇u‖

2θ
2 ‖u‖

2(1−θ)
2 .(2.14)

Apply now (1.12) with
P = 1/θ, a = θ−θ‖∇u‖2θ

2 ,

and
ab = ‖q−‖pλ

−2
N,θ‖∇u‖

2θ
2 ‖u‖

2(1−θ)
2 .

Then
b = λ−2

N,θθ
θ‖q−‖p‖u‖2(1−θ)

2 ,

and finally we find

(2.15) h(u, u) = −bQ/Q = −(1− θ)θθ/(1−θ)λ
−2/(1−θ)
N,θ ‖q−‖1/(1−θ)

p ‖u‖2
2,

which is the bound of Theorem 1.1. To prove the optimality part we observe that in such a case
we need

q = q− by (2.12),(2.16)

q− = (const)|u|2/(p−1) by (2.13),(2.17)

u(x1, ..., xN) = (const)vN,θ(|x|) by (2.14),(2.18)

aP = bQ, by (2.15).(2.19)

that is

θ−1‖∇u‖2
2 = λ

−2/(1−θ)
N,θ θθ/(1−θ)‖q−‖1/(1−θ)

p ‖u‖2
2.

If one takes

u(x1, ..., xN) = vN,θ(|x|),(2.20)

and

q(x1, ..., xN) = −q−(x1, ..., xN) = − [vN,θ(|x|)]2/(p−1) ,(2.21)

then (2.1) becomes−∆u + qu = −u; this means that the Schrödinger equation and the Euler
equation forΛN,θ are the same ife1 = −1. This is true because for these scalings the lower
bound becomes:

−(1− θ)θθ/(1−θ)λ
−2/(1−θ)
N,θ ‖q−‖1/(1−θ)

p

= −(1− θ)θθ/(1−θ)λ
−2/(1−θ)
N,θ [‖v̄N,θ‖r

r]
2θ/(N(1−θ)) by (2.21),

= −1 by (2.7), (2.8).

Finally, (2.19) is implied also by (2.7) and (2.8). It means that the infimum in (1.22) over
q− ∈ Lp(RN) is actually attained. In addition to (2.7) there holds that forq as chosen as in
(2.21)

(2.22) ‖q−‖p
p = L.
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10 E.J.M. VELING

Only the caseθ = 1/2, N = 1 deserves special attention sinced
dx
v1,1/2(x) is not continuous at

x = 0. We take the following sequences (see [27])

qj(x) = −(j + 1)[cosh(jx)]−2, ‖qj‖1 = 1 + 1/j,(2.23)

uj(x) = [cosh(jx)]−1/j,(2.24)

thenuj, qj satisfy

− d2

dx2
uj + qjuj = −uj,

so

(2.25)
‖u′j‖2

2 +
∫∞
−∞ q|uj|22dx

‖uj‖2
2

‖qj‖−2
1 = −(1 + 1/j)2/4 > −1/4 = l(1, 1/2).

For these sequences,j →∞, the bound can be approached arbitrarily close. �

Remark 2.4. As one can observe the proof does not work forθ = 1, i.e. p = N/2, however, in
that case we can estimate(N ≥ 3)

h(u, u) = ‖∇u‖2
2 +

∫
q|u|2dx

≥ ‖∇u‖2
2 −

∫
q−|u|2dx

≥ ‖∇u‖2
2 − ‖q−‖N/2‖u‖2

2N/(N−2)

≥ ‖∇u‖2
2

(
1− ‖q−‖N/2λ

−2
N,1

)
.

So, if

(2.26) ‖q−‖N/2 < λ2
N,1 = C2

N,2 = πN(N − 2)[Γ(N/2)/Γ(N)]2/N , N ≥ 3,

it follows thatσd(H) = ∅, i.e. there are no isolated eigenvalues. This is a well-known result,
see [15, (4.24)].

Proof of Theorem 1.7.i) By the Hölder inequality we have

(2.27) ‖v‖r < ‖v‖α
r′‖v‖1−α

r′′
, 0 < α < 1, 1/r = α/r′ + (1− α)/r

′′
, r′ 6= r

′′
,

which inequality is strict, sincer′ 6= r
′′
. Therefore, by the conditions specified under i)

ΛN,θ(v) =
‖∇v‖θ

2‖v‖1−θ
2

‖v‖r

>

(
‖∇v‖θ′

2 ‖v‖1−θ′

2

‖v‖r′

)α(
‖∇v‖θ

′′

2 ‖v‖1−θ
′′

2

‖v‖r′′

)1−α

= Λα
N,θ′(v)Λ

1−α

N,θ′′
(v),(2.28)

and we find (1.30), which is also strict, since both infima are attained.
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ii) This result is given by [13, (1.5)], by making the transformationw = v1/θ for v > 0 in
(1.15) as follows

CN,s ≤
‖∇w‖s

‖w‖t

=
‖∇v1/θ‖s

‖v1/θ‖t

=
1/θ‖v(1−θ)/θ∇v‖s

‖v1/θ‖t

[t = sN/(N − s)]

=
1

θ

(∫
(∇v)s vs(1−θ)/θdx

)1/s(∫
vt/θdx

)1/t

[apply Hölder inequality,
1/P + 1/Q = 1]

≤ 1

θ

(∫
(∇v)sP dx

)1/(sP ) (∫
vQs(1−θ)/θdx

)1/(sQ)(∫
vt/θdx

)1/t

[takeP = 2/s,
Q = 2/(2− s)]

=
1

θ

(∫
(∇v)2 dx

)1/2 (∫
vQs(1−θ)/θdx

)(2−s)/(2s)(∫
vt/θdx

)1/t

[takes = 2θ, and
r = t/θ = 2N/(N − 2θ)]

=
1

θ

‖∇v‖2‖v‖(1−θ)/θ
2

‖v‖1/θ
r

=
1

θ
(ΛN,θ(v))

1/θ ,

for the choices = 2θ. We have to restrictθ to the interval1/2 ≤ θ ≤ 1 to give the right-hand
side of (31) a meaning. Again, the inequality is strict sincew = vθ

N,θ does not equal a function
wN,s (see (1.21)), withs = 2θ.

iii) Combining i) with θ
′′

= 0 and ii) one finds

(2.29) ΛN,θ > (θ′CN,2θ′)
θ, 0 < θ < 1, θ ≤ θ′, 1/2 ≤ θ′ < 1.

This motivates the determination of the maximum ofθCN,2θ = (N/(2p))CN,N/p on1/2 ≤ θ <
1. There holds by (1.17), (1.18)

(2.30)

N

2p
CN,N/p =

N2

2p

(
p− 1

N − p

)(N−p)/N

[NωNB(p,N + 1− p)]1/N , 1 < p < N,

1
2
CN,1 = (N/2)ω

1/N
N , p = N , θ = 1/2.

The maximum of (2.30) is found by putting the logaritmic derivative of (2.30) with respect to
p equal to zero, which is equation (1.34). It can be proven that (1.34) has a unique solution
pN , 1 < pN < N , becaused

dp
M(N, p) ≤ 0. For this last inequality we use the fact that

ψ′(z) < 1/z + 1/(2z2) + 3/(4z3). So, withθN = N/(2pN) and for0 < θ ≤ θN , there holds
ΛN,θ > (θNCN,2θN

)θ, and for the remaining intervalθN ≤ θ < 1, λN,θ > (θCN,2θ)
θ.

iv) Sincelimp→N M(N, p) = −∞, it follows thatθCN,2θ > CN,2 for θ in a neighbourhood
of θ = 1. So (1.33) follows from (2.29). �

Remark 2.5. Application of Theorem 1.7 i) withθ
′′

= 0, α = θ/θ′, gives

(2.31) λ2
N,θ ≥ λ

2θ/θ′

N,θ′ , θ′ > θ.

[15, (2.21)] give the inequality

(2.32) L1
γ,N ≤ L1

γ−1,N(γ/(γ +N/2)), γ > 2−N/2.

By (1.27) this is equivalent with

λ2
N,θ ≥ λ

2θ/θ′

N,θ′ F (θ, θ′), θ = N/(2p), θ′ = N/(2(p− 1)),(2.33)
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12 E.J.M. VELING

with

F (θ, θ′) = [(1− θ)/(1− θ′)]
θ(1−θ′)/θ′

(θ/θ′)θ.

For θ′ > θ it will be proved thatF (θ, θ′) < 1, which means that i) of Theorem 1.7 (equation
(2.31)) is better than (2.32).F (θ, θ′) < 1 is equivalent with

(2.34) [θ(1− θ′)/(θ′(1− θ))]
θ′
< (1− θ′)/(1− θ),

and (2.34) is true by the inequality(1 − a)b < 1 − ab, 0 < a < 1, b < 1, wherea =
(θ′ − θ)/(θ′(1− θ)), b = θ′.

Remark 2.6. To show the merits Theorem 1.7 of ii) we compare two known values forλN,θ,
see (2.10), (2.11), by the estimate (1.31)

λ2,1/2 ' 1.55524 > 1.33134 · · · = π1/4 = (1/2 C2,1)
1/2,(2.35)

λ2,2/3 ' 1.66287 > 1.63696 · · · = (2π/3)2/3 = (2/3 C2,4/3)
2/3.(2.36)

Note that in the work of Levine [13, p. 183, third line] the lower bound (2.36) is not calculated
correctly. The lower boundC1 for his variableC (which isλ3

2,2/3) should beC1 = 4π2/9 '
4.38649, in stead ofC1 = 2π3/2/9 ' 1.237 ([13, p. 183, eighth line]). This corrected value for
C1 is a much better lower bound, since numerically we foundC = λ3

2,2/3 ' 1.662873 ' 4.5981.
See also Section 3 and Table 1.

Remark 2.7. Approximate solutionspN of (1.34) forN = 2, 3 andN →∞ are

p2 ' 1.647, θ2 ' 0.6070,(2.37)

p3 ' 2.304, θ3 ' 0.6509,(2.38)

pN = 2N/3 + 5/18 +O(1/N), θN = 3/4− 5/(16N) +O(1/N2), N →∞.(2.39)

The knowledge of (2.37) allows us to improve (2.35) as follows

(2.40) λ2,1/2 ' 1.55524 > 1.46436 · · · = (1/1.647 C2,1.2140)
1/2.

3. NUMERICAL EXPERIMENTS

In order to assess the quality of the estimates (1.31), (1.32), (1.36) and (1.37) we have calcu-
lated the numbersλN,θ for N = 2, 3 andθ = 0.1 + (i − 1)0.005, i = 1, 2, 3, · · · , 180, and for
N = 4, 5, 10, andθ = 0.0125 + (i− 1)0.025, i = 1, 2, 3, · · · , 40. ForN = 2 we had to exclude
θ ≥ 0.945 due to numerical overflow. The method to findλN,θ consists of a shooting technique
to find that valuev(0) = v0 such thatv(r) is a positive solution of (2.1) withlimr→∞ v(r) = 0.
Therefore, we transformed the intervalr ∈ (0,∞) into s = r/(1+r) ∈ (0, 1). The transformed
differential equation becomes, withv(r) = u(s), 0 < s < 1,

(1− s)4 d
2

ds2
u+

{(
(N − 1)

s
− 2

)
(1− s)3

}
d

ds
u− u|u|(N+2θ)/(N−2θ)−1 − u = 0,

u(0) = v0,
d

ds
u(0) = 0.(3.1)

We solved the transformed differential equation (3.1) by means of a numerical integration
method (Runge-Kutta of the fourth order) with a self-adapting stepsize routine such that a pre-
scribed maximal relative error (εrel) in each component (u(s), d

ds
u(s)) has been satisfied. We

made the choiceεrel = 10−15. For every value ofv0 the numerical integrator will find some
point s = s(v0) ∈ (0, 1) where eitheru(s) < 0, or d

ds
u(s) > 0. At that points the integra-

tion will be stopped. This integrator is coupled to a numerical zero-finding routine (see [4]),
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N θ p s ρ
λN,θ

numerical
λN,θ

lower bnd.
Comment

2 1/3 3 1/2 1 1.379427(6) numerical, this work
1.28953 see (1.32), this work
N.A. see (1.31), this work
1.37026 see (1.42), Nasibov
1.35157 see (1.45), Nasibov

2 1/2 2 1 2 1.55524 numerical (2.10),
based on Weinstein [29]

1.555239(5) numerical, this work
1.46436 see (1.32), this work
1.33134 see (1.31), this work
1.51739 see (1.42), Nasibov
1.51739 see (1.45), Nasibov

2 2/3 3/2 2 4 1.66287 numerical (2.11),
based on Levine [13]

1.663066(0) numerical, this work
1.63696 see (1.32), this work
1.63696 see (1.31), this work
1.55436 see (1.42), Nasibov
1.61962 see (1.45), Nasibov

3 3/4 2 1 2 2.2258(9) numerical, this work
2.21005 see (1.32), this work
2.21005 see (1.31), this work
2.05668 see (1.42), Nasibov
2.05668 see (1.45), Nasibov

Table 1: Comparison of some cases forλN,θ; p = N/(2θ); s = 2θ/(N − 2θ) (notation Weinstein);ρ = 4θ/(N −
2θ) (notation Nasibov).

which can also be applied for finding a discontinuity. The functionf for which such a dis-
continuity has to been found is specified by ifu(s(v0)) < 0, f(v0) = −(1 − s(v0)) else (that
means thusd

ds
u(s(v0)) > 0) f(v0) = (1 − s(v0)). The sought valuev0 has been found if this

numerical routine has come up with two valuesv0 andv1
0 such that|v0 − v1

0| < rp|v0| + ap,
(with rp = ap = 10−15 relative and absolute precisions, respectively) and|f(v0)| ≤ |f(v1

0)|,
while sign(f(v0) = −sign(f(v1

0)). During the integration processes the norms in (2.7) will be
calculated. As a check upon this procedure the following expressions

(3.2) ‖v̄N,θ‖2
2/(1− θ), ‖∇v̄N,θ‖2

2/θ, ‖v̄N,θ‖r
r,

are compared. They should be all equal, see (2.7). In the Table 1 the value forλN,θ are given
with one digit less than the number of equal digits in this comparison; between brackets the
next digit is given.

The results of the calculations are shown in the Figures 1, 3, 5, 6, 7. ForN = 2, 3 part of the
θ-range has been enlarged to show better the approximations and the infimum of the functional,
see Figures 2, 4. (All figures appear in Appendix A at the end of this paper.)

In Fig. 13 the valuev(0) of the minimizerv(r) of the functionalΛN,θ as function ofθ for
N = 2, 3, 4, 5, 10 has been shown. Note the logarithmic ordinate axis forv(0).
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14 E.J.M. VELING

4. DISCUSSION

In this article the infimum of the spectrum of the Schrödinger operatorτ = −∆ + q in RN

has been expressed in the infimumλN,θ of the functionalΛN,θ, and known estimates forλN,θ

have been optimized and applied to supply estimates of the infimum of the spectrum. Moreover,
numerical experiments have been done to calculateλN,θ as function ofθ for N = 2, 3, 4, 5, and
10. These results have been used to compare the estimates found in this article with these found
by Nasibov [20].

Except forN = 2, in general, the estimate of Nasibov is better for the lower half of the
θ-interval, while the estimate in this article is better for the upper half. ForN = 2 there is an
interval (θ−,θ+) (with θ− ∈ (0.615, 0.620), andθ+ ∈ (0.745, 0.750)) where the bound in this
article is better, while the opposite is true outside that interval, see Fig. 8. For0 < θ ≤ θ0

(whereθ0 ∈ (0.55, 0.65) is depending on the value ofN , N = 3, 4, 5, 10), the lower bound by
Nasibov is better, but the bounds are of the same order of magnitude and very close to the actual
value ofλN,θ; for θ0 < θ < 1, the bound of Nasibov is worse, see Figs. 9, 10, 11, and 12.

The ratio of the estimate in this article withλN,θ, for θ → 1, N ≥ 3, approaches the value1,
sinceλN,1 = CN,2,N ≥ 3 (see just after (1.16) and the Figs. 9, 10, 11, and 12).
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APPENDIX A. FIGURES
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Figure 1: N = 2: λ2,θ with four approximations; Approximation-1 corresponds with Theorem 1.7-(ii),
Approximation-2 with Theorem 1.7-(iii), Nasibov-1 with (1.43), Nasibov-2 with (1.46).
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Figure 2: N = 2: λ2,θ with four approximations; Approximation-1 corresponds with Theorem 1.7-(ii),
Approximation-2 with Theorem 1.7-(iii), Nasibov-1 with (1.43), Nasibov-2 with (1.46).
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Figure 3: N = 3: λ3,θ with four approximations; Approximation-1 corresponds with Theorem 1.7-(ii),
Approximation-2 with Theorem 1.7-(iii), Nasibov-1 with (1.43), Nasibov-2 with (1.46).
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Figure 11: N = 5: Ratio of two approximations withλ5,θ: Approximation-2 (Theorem 1.7-(iii)) and Nasibov-1
(1.43).
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Figure 13: The valuev(0) of the minimizerv(r) of the functionalΛN,θ as function ofθ for N = 2, 3, 4, 5, 10.
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