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ABSTRACT. This article is concerned with the infimue of the spectrum of the Schrédinger
operatorr = —A + ¢inRY, N > 1. Itis assumed that = max(0, —q) € LP(RY), where
p>1if N=1,p> N/2if N > 2. The infimume; is estimated in terms of the?-norm of

q_ and the infimum\ v » of a functionalA y ¢ (v) = || Vo|§]jv]|z~?||v]|;*, with  element of the
Sobolev spacé/! (RY), whered = N/(2p) andr = 2N/(N — 26). The result is optimal. The
constant\y ¢ is known explicitly for’V = 1; for V > 2, it is estimated by the optimal constant
Cn s in the Sobolev inequality, where= 20 = N/p. A combination of these results gives an
explicit lower bound for the infimune; of the spectrum. The results improve and generalize
those of Thirring A Course in Mathematical Physics Ill. Quantum Mechanics of Atoms and
Molecules Springer, New York 1981] and RoseRHys. Rev. Lett49(1982), 1885-1887] who
considered the special casé = 3. The infimum Ay ¢ of the functionalAy ¢ is calculated
numerically (forN = 2,3,4,5, and10) and compared with the lower bounds as found in this
article. Also, the results are compared with these by NasiBovigt. Math. Dok].40 (1990),
110-115].
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1. RESULTS

In this article we study the Schrodinger operator= —A + ¢ on RY. The real-valued
potentialg is such thay = ¢, + ¢_, where

— 2 N
(1.1) q, = max(0,q) € Lj,.(R™),
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2 E.J.M. VELING

(1.2) ¢ =max(0,—q) € LPRY), N=1. 1<p<oo, N>2. N/2<p<cc.

Associated withy is the closed hermitian forr,

(1.3) h(u,v) = (Vu, V) —|—/ quvdz, u,v € Q(h),

RN

(1.4) Q(h) = H'RY)n{u|ue L*RY), ¢*e LRV}

As will be shown in the course of the proof of Theorem| Jhlis semibounded below if the
condition [1.2) is satisfied. Hence, we can define a unique self-adjoint opéfatuch that
Q(h) is its quadratic form (seé [22, Theorem VII1.15] or [26, Theorem 2.5.19]).

We remark that restricted taC5°(RY) is essentially self-adjoint for the following values of

p:

p>2 if N=1,2,3;
(1.5) p>2 if N =4;
p>N/2 if N>5

see 21, Corollaryp. 199, withV; = ¢, ,c =d =0, V, = ¢_]. For N = 1,2, 3 condition (1.5)
imposes a restriction on the valuesyoéllowed in [1.2). FurthermoreD(H) = HZ(RY) =
H*(RN)if g, € L*(RY),p > N/2, N > 4; seel[6, pp. 123, 246 (vi)].

It is our purpose to give a lower bound for the infimum of the spectruif &y estimating
the Rayleigh quotient; = inf,cp(m) h(u, u)/[|ul|3. Sinceq, enlarges:;, it suffices to consider
the Rayleigh quotient for the cage = 0.

Let A ¢ be the following functional o} (RY) :

IVollgllvll™

[o]]

(1.6) Anp(v) = ., r=2N/(N —20), veHY(R"Y),

where
0<0<1/2if N=1, and 0<O0<1if N>2.

Let Ay be its infimum
(1.7) Avo = inf {Ayg(v)|lv € H'(RY), v #0}.

It is possible to include the casés= 0, with Ay o = Ayo(v) = 1, andf = 1, providedN > 2;
see below. The functionaly ¢ (v) is invariant for dilations in the argument ofand for scaling
of v.

We recall the following imbeddings

(1.8) H'(RY) — COMR1), 0 < A < 1/2,
(1.9) HY(R?) — L*(R?), 2 < s < o0,
(1.10) HY(RY) — L*(RY), 2 < s <2N/(N —2), N > 3;

see([1, pp. 97, 98]. Her&°*(R?) is the space of bounded, uniformly continuous functions
onR! with

sup  |v(z) —v(y)l/Jz —y|* < 0.
z,y€RL, x#y
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Henceu € H'(R') impliesu € L*(R') N L>°(R') and, thereforey € L*(R'), 2 < s < oo.
Thus, [1.8),[(1.9), andl (1.1L0) imply that there exist positive constargach that

2<s<if N =1,
(1.11) IVoll3 + llvl3]2/llvlls > K, 2<s<o0if N=2,
2 < s < 2N/(N—2)if N >3,

Returning to the functional v, , we make fol0 < § <1 (0 < § < 1/2if N = 1) a dilation
r=ey,z,y € RV, w(y) = v(z), such that

IVwll3/llwl)3 = 0/(1 - ).
The inequality
(1.12) ab<a”/P+b°/Q, a,b>0,1< P <00, 1/P+1/Q =1,

with equality if and only ifa” = b9, applied toA% 4(w) gives P = 1/6, Q = 1/(1 - 0),
a=n|Vw|3’, b= [lw|3’/n)

On*/°|[Vwl|3 + (1 — )~ Jwl]3
[[wl]?

Y

(1.13) A2 y(w) <

for some numben > 0. Equality holds if and only if
' Vwly =0 wll3, ey VO =6/(1 - 6).
In this case,

1o [Vwll3 + [lwl3
lw]]?

(1.14) Ay p(w) =6°(1 - 6)

Since it is possible to perform this dilation for anye H'(RY), and since?’(1 — 6)'=% > 0
we conclude thahyy > 0 for 0 < 6 < 1. The caseV = 1, § = 1/2 (in that case- becomes
undefined) is covered by the valse= oo in (1.11). The case&= 1, N > 2 are covered by a
special form of the Sobolev inequality

(1.15) Vwl||s > Crsllwlls, t = sN/(N —s), 1 <s< N, we H*(RY),

whereC'y ; are the optimal constants and

(1.16)  H“*(R") = completion of{w | w € C*(RY), [[ull5, = [lull? + |Vl < oo}
with respect to the norm- || .

If we takes = 2 we have\y; = Cya, N > 3. SinceH'(R?) < L>°(R?), it follows that
A1 = Cho =0,i.e. K =0in(1.11). The number€'y , are known explicitly by the work of
[2] and [25], see alsa [14]

N — (s—1)/s N N 1/N
Q1) Cw=N(T2E) 0 [vens (Sav -] <se
S

s—1 s
(1.18)  Cny=Nuwy¥, N>2,
wherewy is the volume of the unit ball iR :
(1.19) wy =72 /T(1 4+ N/2),
(1.20) B(a,b) =T'(a)l'(b)/T'(a +b), a,b >0,
and there is equality i (1.15) for functions of the form
(1.21) Wy s(T1, .., TN) = {a + b\x!s/(s’l)}lfN/s, a,b>0,1<s<N.

J. Inequal. Pure and Appl. Math3(4) Art. 63, 2002 http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

4 E.J.M. VELING

Note thatwy, ¢ L*(RY)if s > NY2. Fors = 1 there are no functions such that there
is equality, but by taking an approximating sequeteé} € H(RY) of the characteristic
function of the unit ball, the bound'y; can be approximated arbitrarily close. See further
Lemm@ for more information abotity y and the explicit form for\, .

In Theoren 1.]L we give the lowest possible point of the spectrum of this Schrédinger equation
for all ¢_ satisfying [(1.2). Let us define the numbeN, 0), whered = N/(2p), as follows

2 2
(1.22) [(N,0) = inf inf [Vulls + Jor q||u|\2de |Fva-o,

q-€LP(RN) ucHL(RN) [ ull3

Theorem 1.1.Letq. € LP(RY), 1 <p < oo if N =1,N/2 < p < o if N > 2 (i.e. {1.3)).
Then
I(N,0) = —(1—0)0?/0-ON 20D 0 <9 <1/2if N =1,

(1.23) 0<6<1if N>2,

and explicitly forV =1
L1 g 1/(1-0)
1(1,0) = — {(29)29(1 — 20)1% [B (5, %H } 0<0<1/2,

2/(2p-1)

(1.24) = — {p‘p(p — 17! {B (%p)} _1} 1< p< oo,

(1.25) 1(1,1/2) = —1/4.

Remark 1.2. Of course, for any application of this method to find a lower bounckfathe
smallest eigenvalue) one can take the following infimum over the allowe® s¥tf-values
(depending org_).

(1.26) er > — nf (1= 0)6" PN lg_ o)

Remark 1.3. Note that we do not includé = 1 in the allowedf-range, although forv. >

2 An is defined. It turns out that the method of the proof does not work in this case; it
gives however a criterion such that(H) = 0 (i.e. there are no isolated eigenvalues), see the
RemarK 2.4 after the proof of Theoré¢m]1.1.

Remark 1.4. It is possible to allow the cage = oo, i.e. § = 0, thenl(N,0) = —1. If ¢ =
—|le_l= this bound is achieved arbitrarily close by a sequence of funcfiofse H!(RY),
where each:’ is a smooth approximation of the characteristic function of ithall in RY,
because then the quotient
fRN q,uiP dx -1
Sl 5 = 1

w3
Remark 1.5. Already Lieb and Thirring[[15] characterize the infimum of the spectrum with a
number— (L2 )/ (in their notation;y = p — N/2), with y > max(0,1— N/2), andy = 1/2,
N = 1. Therefore,

(1.27) (L} ) 1/71

Vu'||2/||u’]|? — Nwyi™', i — oo, and

_ 0\p0/(1—0) —2/(1 6)
(1-0)N/(20) =(1-0)0 )\ .

They giveLi’1 for v > 1/2 explicitly. Here, we also include the casdé = 1, v = 1/2 (i.e.

0 = 1/2, p = 1). However, the main reason of this article is to show how one can give an
explicit estimate foe; by sharp estimates of the numbegg,, N > 2, in terms of the numbers
Cy,s for somes = s(0), see Theorenis 1.7 ahd[1.8. For a survey for other integral inequalities
results related to the infimum of the spectrum $ée [9] and [16].
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Remark 1.6. The results for the ordinary differential cag€ = 1, {2 = R) are related to those
for Q@ = R* with either a Dirichlet or a Neumann boundary conditiom at 0 (respectively the
operatorsly andT7 ), in the work of [8], [27] and[[10]). In those cases there halds p < co

w13 + Jy~ alul3de

i i —ap/(2p-1) _
(1.28) q_elLIZI’ERJr)uean(fTo) Tl g1, 1(1,1/(2p)),
: . '3+ fy~ qlulzde o, _
1.29 f f 0 2p/(20-1) — 92/(20-1)](1 1/(9p)).
(1.29) W TIE lg_1l; (1,1/(2p))

See for related work [3].
Theorem 1.7. The following inequalities hold faN > 2

(1.30) ) Avo > Ave) Aygr) ™ 0<a<l,0=af +(1—a)0, 0 £0",
(1.31) i) Avg > (00n0)", 1/2<6 <1,
(1.32) i) Avo > (OnCrooy)?, 0<6 <6y,
Avg > (00n99)", Oy <0 <1,
(1.33) V) Ao > (Cn2)’, 0<6<1,

whereCly , is given by|[(1.17) and (1.18) artiy = 6(N) € (1/2,1) is the unique maximum of
0CnN29,1/2 <0 < 1.0y is given byy = N/(2pn) Wherepy is the solution of\/ (N, p) = 0,
with

(L34)  M(N,p) zlog(f_‘f) +p](;:ﬁ) ) — H(N+1-p),
(1.35) P(x) = %(log(F(x)) = (%F(m)) /T(x), x>0.

It is now easy to combine both theorems in
Theorem 1.8. Under the conditions of Theorgm [L.1 there holds
—(1— 9)90/(170)(QNCN,zeN)fze/(lfe), 0<6<dby,
—(1 — 9)079/(179)(CN729)726/(179), QN < 0 < 1,
and also (generally less than optimal)
(1.37)  U(N,0) > —(1 = 0)0” D0 Cpap) /0D 0< <1,
foranyd >0, 1/2<6 <1.
Proof. Equation[(1.36) follows fron{ (1.23) and (1]37); (1.37) follows fram (1.23), (1.30) (with
0" = 0) and (1.31). O
Remark 1.9. For N = 3, ¢’ = 1 the result[(1.37) reads explicitly
(1.38) 1(3,0) > —(1 — §)9%/ (=0 [31/2972/372/3)=20/01=0) () < 9 < 1,
and this is the same result as|[23, (14)].

Remark 1.10. [26, (3.5.30), and private communication by H. Grosse] gives the following
result forN =3

(1.36) I(N,0) > {

2]7 _ 3):| (2p—2)/(2p—3)

(1:39) 1(3,3/(20)) > =0~ /im0 |1 (2=

3/2 < p < o0,
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or in terms off,

6 — 60\ 1320/(3-30)

(1.40)  1(3,6) > —(1 — 26/3)*(4m)~20/(3-30) [F (3_—29” ,0<0<1.

It can be proved thaf (1.88) is better than (1.40) forak § < 1. Foré = 0 the right-hand
sides of both|(1.38) and (1.40) give the correct vdl3e0) = —

Remark 1.11. To show the superiority of (1.87) with < 1 against[(1.37) witl’ = 1, i.c.
(1.38), we evaluate the bound 8, 3/4) of (1.37) withd = ¢’ = 3/4. We find

(1.41) 1(3,3/4) > —2237 172 ~ —1.859-4,

while (1.38) gives

1(3,3/4) > —27*n7* ~ —6.421 4,
an Ives
d [1.40) gi
1(3,3/4) > —27 %772 ~ —15.83,-4.

Based on our numerical calculations (see Se¢fjon 3) we fhd/4) = —1.750180;o-4. So the
estimate[(1.41) comes close to the actual valugf3/4).

Remark 1.12. The results in Theorenjs 1[I, 1.7, gnd] 1.8 were announcedin [28]"and [7, p.
337].

Remark 1.13. In the interesting paper [20] Nasibov has given a lower bound (in his notation
1/]€0) for )\N,H:

11
1.42 Ang = — > —,
(1.42) =TT
with
— N N(1-60)\\"" 2N
143) - ( ( - )) b (s )

N A 1 1
(1.44) ke(p) = (2—> (2_> e

And, even better

(1.45) ANg = 1 > é, with é > ; for 6 > N/4,
k’() k() kO kO
with
= 1 N 2N 1/2
1.4 Y S T A N
wae) R { gt (vom) (e 160D, |
(1.47) Glal) = Ko (|2]) 2|~

with K, the modified Bessel function of the second kind and ordeThe inequality[(1.45) is
only relevant forN = 2,1/2 < 6 < 1,andN = 3,3/4 < 6 < 1, sincek, < ko, for N = 2,
0<6<1/2,andN = 3,0 < 0 < 3/4, andky = ko, for N = 2,0 = 1/2,andN = 3,60 = 3/4.
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The reader is advised to consult also the original papekl; Akad. Nauk SSSB0O7, No.
3, 538-542 (1989)) of [20] since there are a number of misprints in the translated version. In
Sectior] B this lower bound will be compared with (3.32). The funcioreads

N =2, G(|z]) = Ko(|z]),

N=3  Gz]) = K|z = \/gexp(—lwl)/lwla

so, one has to calculate the integralgin (JL.46)

(e’ 1-6
(1.48) N=2:||G<|x|>|rlz[/ Ké/“—”(r)zmr} |
1—6 0

m > (3—40)/(3—20) 3r (@=20/3
(1.49) N =3: HG’(|31:|)H33W =1\/3 [/0 r exp (—3 — 29> 47rdr} :

For N = 3 the integral in[(1.49) can be evaluated explicitly, while for= 2, i.e. (1.48), that is
only possible fo = 1/2:

V=2 [6(al)l, = |2n [ K30y rar "

ooy 1/2
) =V

0

T 3920 2—20 6 — 66 (3—260)/3

N=3: s =)= (4m) BB (222 ri—— .
316Dl 3, = 3 () ' e

2. PROOFs

= (o [ (30 - 130)

Firstly, we give more information oAy ¢ in a lemma.

Lemma 2.1. The valueyy = inf,cp1@ny, 20 Ano(v) for the functionalA v (v) defined in
(6) is attained by radial symmetric monotonely decreasing positive functipp§x|) which
satisfy, exceptfa# = 1/2, N = 1, the following ordinary differential equation for< 6 < 1/2
ifN=1,and0<f < 1if N >2,

2  (N-1)d

VT T v || VW21 4y = 0, 7 = |2| > 0,
d
(2.1) d—v(()) =0, lim v(r)=0,
r r—00

and the value\y ¢ is then given by
(2.2)
0/N

Ang = 072(1 — )N (1-0)=26)/(2N) {NwN/ vjzv79(7")rN1dfr} for0<f<1, N >2.
0
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For N = 1 we have explicitly for: > 0
(23)  vig(e) = vie(—2), 0< 6 < 1/2,

o0 —(1-20)/(26)
Ulyg(ﬂf):{(1—29)1/2C08h(1_29$)} , 0<6<1/2,
(24) Ul’l/g([lf) = e_x,

0
Ao =2700702(1 — 9)170/2(1 — 2) (17202 {B (1 : )} ,0<60<1)2,

220

1 1/(2p)
Ay = 2712 {(219 —)EDRp —1)"¢Vp (5729) } epeee
(25) A171/2 = 1

Proof. The caseV = 1 was treated by [19] and the ca8e> 2 was given by([20] who used a
rearrangement and an inequality due to Strauss to prove the compactness of the imbedding of
radial symmetric functions € H'(R") into L*(RV),2 < s < oo if N = 2, and2 < s <

2N/(N —2)if N > 3 (see alsq[(1]9)[ (1.10)). The Euler equation connected with the infimum

of Ay g becomes

(2.6)  —OIVully*Au+ (1 = O)l|ully*u — [Jull,"|u""*u =0, r = 2N/(N — 20),

which can be scaled into the form (R.1) withy s given by [2.2). The following relations
between\y y and the following norms ofy ¢(z1, ...,2n) = vne(|x|) hold (cf. [24, p. 151],
where the factor(n — 2)” has to be skipped in the last line on that page)

(2.7) [onoll2 = L(1 = 6), ||[Vonel2 = L0, |onel = L,
(2.8) L=6""?1- 9)—1\/(1—9)/(29))\%7/90.

Since [2.1) is nonlinear the value of0) has to be chosen properly to satidfy, .. v(r)
=0. 0

Remark 2.2. We note that the existence of solutions|of [2.1) has been proved by many authors:
it is just the rang® < 6 < 1, seel[1¥]. The uniqueness for the falkange has been proved

by Kwong, seel[11], after preliminary work by [17], anid [18]. A proof based on geometrical
arguments has been given by [5]. See for related work also [12].

Remark 2.3. Numerical information for\y » for N = 2,3 can be obtained from [15, Appen-
dix], where curves foi , (see )) are givefd <y < 2.8, N = 2,3). By (1.27) we have
(2.9) Avg = 0721 = 0) =02 (L )~y = N(1—6)/(26).

Comparison With8) learns thaf% ~ = 1/L. Besides, the following two values fory 4 are
known based on numerical calculations

1
2.10 AL~ ~ 0.642 29], after (1.5
(2.10) 21/2 (7r(1.86225---)) 0.642985, ([29], after (1.5)
— )\271/2 ~ 155524,
(2.11) A3 /5 ~ 4.5981, ([13], p. 185)

— Apay3 ~ 1.66287.
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Proof of Theorerfi I]1We estimatei(u, u), see[(1.B), as follows. All integrals are ot
@12)  hlu) = [Valf + [ s

Eﬂwﬁ—/mmww

(2.13) > [|Vaull2 — la_llllul? [r=2p/(p— 1) = 2N/(N — 26)]
(2.14) > [|Vull3 — lg_ A5 Vul 3 flul 3.
Apply now (1.12) with
P=1/0, a= Q’HHVuH%e
and
ab = [lq_ ||, 1Vl |3l 3.
Then

b= A% llg_[lpllull3" ",
and finally we find
(2.15) h(u,u) = =b2/Q = —(1 = 0)0°/ O  q_[1/ ull3,

which is the bound of Theorejn 1.1. To prove the optimality part we observe that in such a case
we need

(2.16) q=q_ by (2.12),
(2.17) g = (const)[ul¥#~V by 2:13),
(2.18) w(zy,...,xN5) = (const)uno(|z|) by (2.19),
(2.19) a” =19, by 215).
that is
0~ [Vull = A" 707 g 0wl 3.
If one takes
(220) u('rla”'va) :UN,9(|'T|)7
and
(2.21) q(x1, o ty) = —q (21, 7n) = — [on (|27 P,
then [2.1) becomes Au + qu = —u; this means that the Schrédinger equation and the Euler
equation forAy are the same i¢; = —1. This is true because for these scalings the lower

bound becomes:
—(1= )67 N gy

= (1= 00 ONG oo [P by @22,
=-1 by 2.7), [2.8).

Finally, (2.19) is implied also by (2.7) anfl (2.8). It means that the infimunj in(1.22) over
q_ € LP(RY) is actually attained. In addition t6 (2.7) there holds thatdas chosen as in

223)
(2.22) lg_1I; = L
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Only the cas® = 1/2, N = 1 deserves special attention Sirﬁ@171/2($) is not continuous at
x = 0. We take the following sequences (se€ [27])

(2.23) gj(x) = =(j + 1)[cosh(jz)] 72, [lg;[l = 1+ 1/5,
(2.24) uj(x) = [cosh(jz)] 7,

thenw;, ¢; satisfy

d2
—@uj -+ qjuj = —Uj,
SO
w2+ [T qluj)3dx
eas BT e s sz,
J 12
For these sequences;— oo, the bound can be approached arbitrarily close. O

Remark 2.4. As one can observe the proof does not workéfes 1, i.e. p = N/2, however, in
that case we can estimat® > 3)

) = [Vull+ [ aluds

> [Vul} - [ o lufds

> [[Vullz = lla_lInzzllwllzn v—2)
> ||Vl (1= lla_[lnpAn) -

So, If
(226) g llnjz < N3y = Clp = TN(N — 2)[L(N/2)/T(N)*Y, N >3,

it follows thato,(H) = 0, i.e. there are no isolated eigenvalues. This is a well-known result,
seel[15, (4.24)].

Proof of Theorern 1]7i) By the Holder inequality we have
@27) ol < Jollefol® 0 < a <1, 1fr=afr' + (1 —a)/r", ' #10,
which inequality is strict, since’ # r". Therefore, by the conditions specified under i)

IVollglvlly™

AN’@(’U) =
][
, o\ @ " w4 1—
o (Ivelg ol IVollg llvll™
[ o]} [[o]],
(228) == A?Vﬁ/(v)A}ngof/(v),

and we find[(1.30), which is also strict, since both infima are attained.
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i) This result is given by[[13, (1.5)], by making the transformation= v'/? for v > 0 in

(1.18) as follows
[Vwlls _ Vo]l 1/8]lv® Vo],

< = = t = sN/(N —

R PR T P T SR
([ (V) Us(l_e)/edl’)l/s [apply Holder inequality,
I (fvt/edx)l/t 1/P+1/Q=1]

sp o \MEP) s(1— 1/(sQ)
- l(f (Vo) d$> (Jv@ =0 0dz) takeP = 2/s,
=0 ([ vt/od) " Q=2/(2-5s)
1(f (Vo)*da) " (f 0@20-0/0) &/ [takes = 26, and
N (f vt/odz)"! r=t/0 =2N/(N — 20)]
_ L[ Voleflelly "1 10
S0 6 (Axaw))

for the choices = 20. We have to restriaf to the intervall /2 < 6 < 1 to give the right-hand
side of (31) a meaning. Again, the inequality is strict since- v?w does not equal a function

wy,s (see[(T1.2l1)), withy = 26.

iii) Combining i) with " = 0 and ii) one finds
(2.29) Ang > (0COnop)?, 0<0<1,0<6,1/2<6 <1.

This motivates the determination of the maximun®6fy »» = (N/(2p))Cn o/ ONnl/2 <6 <

1. There holds by (1.17)[ (1.18)

N N2 -1 (N-p)/N

7 OnNp = o (ﬁ—_) [NoyB(p, N +1=p)"™, 1<p<N,
(2.30) <P p p

1Cn, = (N2w{N, p=N, 6=1/2.

The maximum of[(2.30) is found by putting the logaritmic derivative] of (2.30) with respect to
p equal to zero, which is equation (I}34). It can be proven {hat](1.34) has a unique solution
pN, 1 < py < N, because%M(N,p) < 0. For this last inequality we use the fact that

P (z) < 1/2 4 1/(22%) + 3/(423). So, withdy = N/(2py) and for0 < 6 < 6y, there holds

Ang > (OnCya, )Y, and for the remaining intervély < 0 < 1, Ay > (0Cn.20)°.

iv) Sincelim, .y M(N,p) = —o0, it follows thatdCy 2» > Cy for 6 in a neighbourhood
of = 1. So [1.3B) follows from[(2.29). O
Remark 2.5. Application of Theorem 1]7 i) witl” = 0, o = /¢, gives
(2.31) Mg = Nuh, 0 >0.

[15, (2.21)] give the inequality
(2.32) Loy < Loy n(Y/ (v + N/2)), v > 2 = N/2.

By (1.27) this is equivalent with
(2.33) o> N F(60.6)), 0= N/(2p), 6 =N/(2(p—1)),
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with
P(0.6) = [(1—0)/(1 =" (0/6)".
For¢’ > 6 it will be proved thatF'(6,¢") < 1, which means that i) of Theorem 1.7 (equation
(2.31)) is better thar) (2.82)7(6, ¢') < 1 is equivalent with
(2.34) 61 —0)/(0'(1—6))" < (1-6)/(1-0).
and [2.3#) is true by the inequaliff — a)® < 1 —ab, 0 < a < 1, b < 1, wherea =
@ —0)/(0(1—-0),b=0.
Remark 2.6. To show the merits Theorem 1.7 of ii) we compare two known values fgy,
see[(2.10),[(2.11), by the estimdte (1.31)
(2.35) Aojp ~ 155524 > 1.33134 - = 7'/ = (1/2 Cy) /2,
(2.36) Naoy3 o 1.66287 > 1.63696 - - - = (27/3)%/% = (2/3 Cuu/3)**.
Note that in the work of Levine [13, p. 183, third line] the lower bound (R.36) is not calculated
correctly. The lower bound’; for his variableC' (which is \J , ;) should beC; = 472/9 ~

4.38649, in stead ofC; = 27%/2/9 ~ 1.237 ([13, p. 183, eighth line]). This corrected value for
C) is amuch better lower bound, since numerically we foGhd A3, , ~ 1.66287° ~ 4.5981.
See also Sectidd 3 and Table 1.

Remark 2.7. Approximate solutiongy of (1.34) forN = 2,3 andN — oo are

(2.37)  ps ~ 1.647, 6 ~ 0.6070,

(2.38)  p3 ~ 2.304, 5 ~ 0.6509,

(2.39)  py =2N/3+5/18 + O(1/N), Oy = 3/4 —5/(16N) + O(1/N?), N — oo.
The knowledge of[ (2.37) allows us to improye (2.35) as follows

(2.40) X122 1.55524 > 1.46436 - - - = (1/1.647 Cy1.9140) "%

3. NUMERICAL EXPERIMENTS

In order to assess the quality of the estimdtes {1.81),](1[32)] (1.36) and (1.37) we have calcu-
lated the numbersy, for N = 2,3 andd = 0.1 + (¢ — 1)0.005,¢ = 1,2,3,--- , 180, and for
N =4,5,10,andd = 0.0125+ (1 — 1)0.025,¢ = 1,2,3, - - - ,40. For N = 2 we had to exclude
6 > 0.945 due to numerical overflow. The method to fikg » consists of a shooting technique
to find that valuey(0) = v, such that(r) is a positive solution of (2|1) withim, .., v(r) = 0.
Therefore, we transformed the interva& (0, 00) intos = r/(1+r) € (0,1). The transformed
differential equation becomes, wittir) = u(s),0 < s < 1,

d? N -1 d
(1 o 8)4—U + {(( ) . 2> (1 o S)?)} d_u o u|u|(N+29)/(N729)71 —u= O,
S

ds? S

(3.1) u(0) = vy, disu(()) = 0.

We solved the transformed differential equatipn(3.1) by means of a numerical integration
method (Runge-Kutta of the fourth order) with a self-adapting stepsize routine such that a pre-
scribed maximal relative errok,(;) in each componentu(s),<u(s)) has been satisfied. We
made the choice,., = 10~'°. For every value of), the numerical integrator will find some
point s = s(vg) € (0,1) where either(s) < 0, or Lu(s) > 0. At that points the integra-
tion will be stopped. This integrator is coupled to a numerical zero-finding routinel(see [4]),
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AN,0 AN,0
N1O p s | numerical | lower bnd. Comment
2 11/3[3 |1/2]1|1.379427(6) numerical, this work
1.28953 see[(1.3R), this work
N.A. see|(T1.3]1), this work
1.37026 seel(1.4R), Nasibov
1.35157 see|(1.4b), Nasibov
2 |1/212 |1 |2]1.55524 numerical[(2.10),
based on Weinstein [29]
1.555239(5) numerical, this work

1.46436 see[(1.3pR), this work
1.33134 see[(1.311), this work
1.51739 see[(1.4R), Nasibov
1.51739 see|(1.4p), Nasibov

2 12/3|3/212 |4)1.66287 numerical [(2.1]1),
based on Levine [13]
1.663066(0) numerical, this work

1.63696 see[(1.3R), this work
1.63696 see[(1.3[t), this work

1.55436 see((1.4R), Nasibov
1.61962 see|(1.4b), Nasibov
3 13/412 |1 |2]2.2258(9) numerical, this work

2.21005 see[(1.3R), this work
2.21005 see[(1.311), this work
2.05668 see((1.4R), Nasibov
2.05668 see|(1.4b), Nasibov

Table 1: Comparison of some cases aro; p = N/(20); s = 20/(N — 20) (notation Weinstein)p = 46/(N —
20) (notation Nasibov).

which can also be applied for finding a discontinuity. The functfofor which such a dis-
continuity has to been found is specified by:{fs(vy)) < 0, f(vg) = —(1 — s(v)) else (that
means thustu(s(v)) > 0) f(vo) = (1 — s(vg)). The sought value, has been found if this
numerical routine has come up with two valugsand v} such thatvy — v5| < r,|ve| + ay,
(with r, = a, = 10~ relative and absolute precisions, respectively) gffd,)| < |f(vg)|,
while sign(f(vo) = —sign(f(v$)). During the integration processes the norm$ in|(2.7) will be
calculated. As a check upon this procedure the following expressions

(3.2) lonoll3/(1—6), [[Vonell3/6, |lonelll,

are compared. They should be all equal, (2.7). In the [Table 1 the valug df@re given
with one digit less than the number of equal digits in this comparison; between brackets the
next digit is given.

The results of the calculations are shown in the Figuyes[1,3[5, 6, 7VFer, 3 part of the
f-range has been enlarged to show better the approximations and the infimum of the functional,
see Figure|Z]4. (All figures appear in Apperjd]x A at the end of this paper.)

In Fig. the value(0) of the minimizerv(r) of the functionalAy » as function off for
N =2,3,4,5,10 has been shown. Note the logarithmic ordinate axis{oJ.
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4. DISCUSSION

In this article the infimum of the spectrum of the Schrodinger operater—A + ¢ in RY
has been expressed in the infimum, of the functionalA y », and known estimates fory 4
have been optimized and applied to supply estimates of the infimum of the spectrum. Moreover,
numerical experiments have been done to calcWatgas function ob) for N = 2,3,4, 5, and
10. These results have been used to compare the estimates found in this article with these found
by Nasibov [20].

Except forN = 2, in general, the estimate of Nasibov is better for the lower half of the
f-interval, while the estimate in this article is better for the upper half. ¥c£ 2 there is an
interval (6_,0..) (with _ € (0.615,0.620), and6, € (0.745,0.750)) where the bound in this
article is better, while the opposite is true outside that interval, see[Fig. 80 Fop < 6,
(wheret, € (0.55,0.65) is depending on the value of, N = 3,4, 5, 10), the lower bound by
Nasibov is better, but the bounds are of the same order of magnitude and very close to the actual
value of Ay ; for 6, < 6 < 1, the bound of Nasibov is worse, see Figd. 9710, 11[apd 12.

The ratio of the estimate in this article wit g, for 8 — 1, N > 3, approaches the value

sincely,; = Cn2, N > 3 (see just aftef (1.16) and the Fig$[ 9} [10, 11,[arjd 12).
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APPENDIX A. FIGURES
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N =2, THETA >

21 Xg¢ with four approximations; Approximation-1 corresponds with Theo@ 1.7-(ii),
Approximation-2 with Theorem 1.7-(iii), Nasibov-1 with (3.43), Nasibov-2 ith(1.46).
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21 Ag¢ with four approximations; Approximation-1 corresponds with Theo@ 1.7-(ii),
Approximation-2 with Theorefn 1.7-(iii), Nasibov-1 with (1.43), Nasibov-2 With]1.46).
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Figure 3: N = 3: A3y with four approximations; Approximation-1 corresponds with Theo@ 1.7-(ii),
Approximation-2 with Theorefm 1.7-(iii), Nasibov-1 with (1.43), Nasibov-2 With1.46).
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Figure 5: N = 4: )\, with three approximations; Approximation-1 corresponds with

Approximation-2 with Theorefm 1.7-(jii), Nasibov-1 with (1.43).
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Figure 10: N = 4: Ratio of two approximations with, ¢: Approximation-2 (Theore@.?-(iii)) and Nasibov-1
(L.43).
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Figure 11: N = 5: Ratio of two approximations withs ¢: Approximation-2 (Theore@.?—(iii)) and Nasibov-1
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Figure 12: N = 10: Ratio of two approximations with;, ¢: Approximation-2 (Theore@.?-(iii)) and Nasibov-1
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Figure 13: The value(0) of the minimizew(r) of the functionalA i o as function ob) for N = 2, 3,4, 5, 10.
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