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ABSTRACT. When we solve an ordinary nonlinear programming problem by the most and pop-
ular sequential quadratic programming (SQP) method, one of the difficulties that we must over-
come is to ensure the consistence of its QP subproblems. In this paper, we develop a hew SQP
method which can assure that the QP subproblem at every iteration is consistent. One of the main
techniques used in our method involves solving a least square problem in addition to solving a
modified QP subproblem at each iteration, and we need not add bound constraints to the search
direction. we also establish the global convergence of the proposed algorithm.
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1. INTRODUCTION
We consider the following smooth nonlinear programs:
min  f(x)
s.t. g(x) >0,h(z)=0.

wheref : R* — R, g : R® — R/, h : R® — R™ are continuously differentiable. Among

all robust methods fof (1l.1), the sequential quadratic programming method (SQP) is one of the
most important and the most popular. The basic idea of the classical SQP is as follows: at the
present iterative point, approximate](1]1) by quadratic programs (QP) of the form:

min v f(z)'d+ 3d"Bd
(1.2) st. g'(x)d+ g(x) >0,
B (z)d + h(z) =0,

(1.1)
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2 ZHONG WAN

whereB € R™" is symmetric positive definite, ang(x) € R™*", h'(x) € R™*" are defined

as follows:
’ o 8gz ’ o 0h2
9@):(@%)’ h(sc)_(axj).

The iteration then has the form

T =ux+td,

whered solves|[(1.R) andis a step length chosen to reduce the value of some merit function for
(L.3). In this paper, the merit function is taken as

Opo () = f(2) + 97 Z max{—g;(z), 0} + p"||h(x)]|3.

On one hand, one of the major priorities of SQP lies in that it does not require that the ap-
proximate solution obtained at each iteration is feasiblg fof (1.1). On the other hand, this makes
it possible that the subproblein (IL.2) is not consistent.lIn [1], J.V. Burke and S.-P. Han describe
a robust SQP wherein the QP (1.2) is altered in a way which guarantees that the associated
region is nonempty for each € R™ and for which a global convergence theory is established.
Recently, H. Jiang and D. Ralph developed a new modified SQP method in [3] wherein a similar
global convergence result is obtained under the condition that the following modified QP

min v f(x)7d+ 1d"Bd+p> s
st g (z)d+ g(z) > —s,

B (z)d + h(z) =0,

s>0

is feasible, where is a penalty parameter, ands an artificial variable. The proposed SQP
method in this paper is close td [3], but removes the above condition. Our approach to guarantee
the non-emptiness of constraints region of the QP subproblem comes from the ideas in [1].

(1.3)

2. ALGORITHM AND ITS VALIDITY

In this section, we first describe the algorithm, then we verify the validity of the proposed
algorithm.
Step 0. (Initialization) Letp_; > 0,9, > 0,92 > 0,05 > 0,0 € (0,1), 7 € (0,1). Choose
2% € R™ and a symmetric positive definite mati. Setk := 0.
Step 1. (Search direction) With = = z*, solve the following linear least square problem:

1 )
(2.1) min ||k (z)d + h(z)].

Let d be a solution ofl), computéz) = h'(x)d + h(x), and solve the following modified
QP problem withe = 2%, B = By, p = pi_1:

min vf(z)7d+ td"Bd+pY_, s
st g(x)d+ g(x) > —s,

B (z)d + h(z) = r(z),

s> 0.

Let (d", s*) € R™*' be a solution of this QP and = (X, A}, L) € R**" be its corresponding
KKT multipliers vector.

(2.2)
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Step 2. (Termination check)If some stopping rule is satisfied, terminate. Otherwise, go to
Step 3.
Step 3. (Penalty update) et

i k.
) Pr—1; it pr1 > | max |A;
(2.3) Pk = ,
0+ max |Af[, otherwise
1<i<2l+m
'y
IONka I S; = 07
(2.4) Pk = i=1
02 + pr, Otherwise
f l
) s | S; — 0,
(2.5) pr =4 )3
pr—1, Otherwise
and
Pk if r(z) = h(z);
2.6 h— .
(2.6) Pk =\ minf (M) (r(2) — h(x)), 0}

+ 63, otherwise

=2|[(r(z) — h(x))|13

Step 4. (Line search)Lett, = 7%, wherei, is the smallest nonnegative integevhich satisfies
the following inequality:

(2.7) 09 (@ +7'd%) < B0 0 (a") — o' (d")" Byd".
Step 5. (Update)Let z*+1 = 2% + t,.d*. Choose a symmetric positive definite matix,; ¢
R™*", Setk :=k + 1. Go to Step 1.

It is well-known that the direction search and the step length determination are two critical
steps amongst all SQP methods or its variants. In the direction search step of our algorithm,
we further improve the prospect of feasibility of the QP subproblem by solving a linear least
square problen (Z.1), compared with the modified SQP method in [3]. This idea directly comes
from [1]. However, our algorithm, including penalty parameter update and step length determi-
nation, is very different from_|1].

Since By, for eachk is a symmetric positive definite, and QP (2.2) is always feasible with
some vectors ¢ R’ sufficiently large, the search direction and the corresponding multipliers
vector are also well-defined. The following lemma is useful in proving #iais a descent
direction of the merit function.

Lemma 2.1. If d* # 0 for eachk, whered" is a solution QP[(22) withx = z*, then we have
(2.8) (h(2)]I3) (a*; d*) = —2||n'(*)d"|5 < 0.

Proof. Sinced"* satisfies)' (z*)d* + h(z*) = r(2*), it must solve the least square problem|2.1).
Therefore, it is a solution of the following linear equation:

(2.9) B (2)Th (z)d* = —h'(z)"h(z).

J. Inequal. Pure and Appl. Mathb(2) Art. 37, 2004 http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

4 ZHONG WAN

From (2.9), we have
(1h(2)]I3) (a*; d*) = 2(d*)Th' (") T h(a")
= —2(d")h (x)Th (x)d*
= 2|’ (z")d"|3
<0.
U

Itis easy to see thatz"*) = h(z*) if and only if the equality holds irf (2|8).
The next lemma states that faf = 0, 2* turns out to be the critical point of the merit
function under some condition.

Lemma 2.2. Letd* = 0 be a solution QP[(2]2) with = 2*. If b (+*)TAE = 0, thenz* is a
critical point of 4 » with pf., p} being defined a 2.5) an. d (2.6), respectively.

Proof. Sinced® = 0 is a solution QP[(2]2) witlx = =¥, there must exist a multiplier vector
AF = (AR, XE, AF) € R*"™ such that the following KKT conditions hold:

v f(z*) — g'(wk))\’; + h/(xk))\f; =0,
Pr_1€ — )\’g“ -\ =0,
(2.10) g(a®) = =s*, A5 = 0,(Ag)" (g(a*) + %) =0,
sF > 0,2 >0,(\")7Ts =0,
h(z*) = r(z).
Recall that* is a critical point Ofep‘;‘imﬁ and is equivalent to
H;Zﬂ(ajk; d) >0, Vd e R".

To prove the required results, we need the following two inequalities:

211) | Y. —a@hHd+ D max(—g(=")d.0)+ > 0| =—(\)Tg (a")d;

i (zF)<0 gi(z*)=0 gi(zF)>0

(2.12) 200h(x®)T R (2*)d > (NHTH (2F)d.

First, we prove the inequality (2.11). In the case that*) < 0, we haves? > 0 and(\*); = 0,
hencep,_1 = (\F); from KKT conditions [2.1p). Since for this casEs # 0, we have
pf = pr-1 = (AE); from (2.8). Therefore,

9
Pl —g@d=— )" (Aig(eM)d.
gi(z*)>0 gi(zk)<0
In the case thag; = 0, if ¢'(2*)d < 0, hencemax(—g;(z*)d, 0) = —g;(x*)d, then we have
pl > max(—g;(a")d,0) > — Y (Ah)igi(ab)d.
9:(4)=0 g:(a9)=0

Otherwisemax(—g;(z*)d,0) = 0 > (A);g;(z*)d.
In the case thagz( *) > 0, sinces} > 0, hencey;(z*) + s} > 0 and we havg\}); = 0
From the above argument, we can deduce that inequiality] (2.11) holds.
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The second inequality (2.1.2) can be proved by using conditiorf)” A} = 0 and
W () h(zF) = b («")TH (2*)d" = 0.
Moreover, from it we have that the equality holds[in (2.12).

By the inequalities (2.11) anf (2]12), it follows from the first equality in the KKT conditions
(2.10) that for alld € R™,

00 i (2°5d) 2 (Vf (") — g (2%)Ag + 1 (@")A})Td = 0.

0

Remark 2.3. The conditionh'(z*)"\¥ = 0 actually requires that the vectaf belongs to the
null space of the matrixh(z*).

The last lemma in this section states that for evéry# 0, it must be the descent direction
of the merit function, which is important in making sure that the proposed algorithm is valid, in
particular, the line search step can be finished in a finite number of times.

Lemma 2.4. Let(d*, s*) be a solution of QP (2]2), angf, o} be defined as irf (215) anf (2.6),
respectively. Suppose thét +# 0, then

(2.13) 00 (@5 d") < (V) Td = ()T (a")d* + (N}) TR (2*)d"
—(d")' Brd* < 0.

Proof. Since(d*, s*) is a solution of QP[(2]2) with: = 2*, there must exist a multiplier vector
AF = (XE AE, ML) € R such that the following KKT conditions hold:

(2.14) Vf(a¥) + Brd® — g (aF)ME 4+ B (2)AF =0,

(2.15) pr-1e — Xo = \F =0,

(2.16) g (@) d" + g(a¥) > =¥ A > 0, M) (g (2F)d" + g(2¥) + 5F) = 0,
(2.17) s> 0,0 >0,(\)Ts =0,

(2.18) W (F)d* + h(a®) = r(2F).

Recall that

(2.19) O, (" d") = Vi) d" +pf | Y —gi(ab)d"

gi(zk)<0

+ Y max(—g;(a")d",0) + 0| — 2otk (zF)d"||3.

gi(zk)=0 gi(zF)>0

We first prove that the following inequalities hold:

(2.20) pf | > —gi(= Z max(—g;(z*)d*,0) + 0| < —(\)"g'(a*)d";

gi(zF)<0 gi(zk)= gi(zF)>0
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(2.21) =20k |1 (@) I3 < ()R () d",

It is easy to prove inequality (2.R0) by using Lemmal 2.1 and the penalty updaté ryle (2.6).
Here, we only prov O

In the case thaEZ . s¥ =0, we haves? = 0 for eachi € {1 LU} If g < 0, then
—Vgi(z")Tdh < gi(a*) + st = g; <0, it follows from Pl = pr > ()\’“) that

—ppvgi(a®)d" < —(N5)ivgi(a")"d".
If g; = 0, then—vg;(zF)Td* < g;(«*) + s¥ = 0, hencemax(—vg;(z*)Td*,0) = 0, and
—(A§)iVgi(a®)Td" = —(A\Di(gi(a") + 57) = 0.

In the case tha}_._, s* # 0, we havep! = p,_;. If s¥ > 0, then from ) we have
(A¥); = 0, hence from((2.15) we hayg_; = (A);. It directly follows that

= Y (g dr == Y Vg d == Y plvgi(at)d,

gi(xk)<0 gi(zk)<0 gi(xk)<0

> pimax(—vgi(x")'d*,0) = Y max(—(A\});vgi(z*)"d",0)

gi(z*)=0 gi(xk)=0

= Z max(()\]g“)isf, 0)

gi(z*)=0
= Y OB
gi(z*)=0

Forg; > 0, we also have
k kK\T ik k k k

If s} = 0, thenvg;(z*)"d" + g:(z*) > 0, (A); > 0 and (A})i(Vgi(z*)d* + gi(z¥)) = 0.
Therefore,

—vg(z¥)TdrF <0, for g;(z*) < 0;
vgi(z¥)Td" >0, for g;(z"*) = 0;
—()\’g“)Ngi(:z:k)Tdk = ()\’g“)igi(:z:k) >0, for gi(z*)>0.

Since from (2.1F),we have._, = (A\})i + (AF); > (\%);, and combined with above argument,
we can obtain the inequality (2]20).

Multiply (R.14) by ¥, and from[(2.2D) and (2.21), we obtain that
H;g,pg(xk;dk) < (VR = (M) g (@F)dE + (A))TR (%) d*
—(dk)TBkdk < 0.

O

From the above argument, we know that our modified SQP method is well-defined.
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3. GLoBAL CONVERGENCE

In this section, we study the global convergence of the algorithm. For this, we assume that
d* # 0 for eachk, and let{z*} be a infinite iterate sequence generated by the algorithm.
Moreover, we make the following blanket assumptions:

(A;). For allk, there exist two positive constants< [ satisfying
alld|]®> < d"Bd < g||d|]*, Vd € R™.
(Ay). After finitely many iterationsp,, = pi, pi' = p3.
Lemma 3.1. Under (4;) and (A,), suppose that* is a cluster point of{z*}, i.e., for some
subsets, limy(cy)—oo z* = z*, then the following conclusions hold.

(1) L, s¥ =0, for k € « large enough;

(2) The multiplier sequencefg/\’;}kem{)\ﬁ}kem {\}1ex and the penalty parameter se-
quence{p } e, are bounded;

(3) The direction sequendgl* } .. is bounded;

(4) If hmk(@ﬁ)ﬂoo dk = d*, 11mk(€n)~>oo Bk = B,, 11mk(€n)~>oo pi — ﬂﬂ, hmk(en)ﬂoo Pk = Pxs
limy(en)—o0 i = p, then(d*,0) is the solution of thef (22) with = 2*, r(z) = 0.
Moreover, the following inequality holds:

(3.1) 05 p(x*d) < —(d")"B.d".

(5) If d* = 0 andr(z*) = 0, thenz™* is feasible for the primary problem, and is a feasible
stationary point.

Proof. Since for allk large enoughyp;. = p}, we can deduce th@4 sk = ( after finite steps

=11

by the penalty update rule (2.4), hence from the boundednégs pfve know that{, } is also
bounded. By the penalty update ryle {2.3), it follows that after finite steps, we have

k
k—1 > max |A7].
p 1§i§2l+m| il

By assumptior{A;), we obtain that fok € «, {A\}'}, {\;} and{\%} are bounded.
SinceY!_, s¥ = 0 after finite steps, so fok(c «) large enough we have that
Pr = Pk
hence thafpj } is bounded. The first and second conclusions above have been proved.

Next, we prove that the third conclusion holds.
From the boundedness ok} } and{)}}, without loss of generality, we assume that

lim M=X,  lim M\ =\
k(er)—o0 g g k(er)—o0 h

Using the KKT conditions (2.14), we obtain that
lim Bpd" = -V f(z*) + gl(x*))\z — b ()N

k(ek)—o0
Thus, we can deduce theB,d* : k € x} is bounded. By assumptidai, ), we have
1 1
(3.2) 4511 < ~[ld* [ Bud"|| < ~[ld*|1M, Vk € ,

where)/ is a constant scalar large enough.

If we assume thajtd*|| # 0, then from [3.2) we know thatd"|| < 1M. i.e. the direction
sequencdd” : k € x} is bounded.

Then, we prove the forth conclusion.
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By the second and the third conclusions, we can assume that

lim d* = d, lim B, = B,,
k(er)—o0 k(€r)—o0

lim pf = p? lim pf = p}
k(€k)—o0 Pr P k(€k)—o0 Pi P2

lim p; = p° lim = p;
k(€k)—o0 Pr P k(€k)—o0 Pk i

then from the KKT conditiond (2.14) { (2.18) we have
Vf(x*) + Bud® — g (*)X; + B (x*) A}, = 0,
pie— Xy — N =0,
g (z")d" + g(z*) > —5", \; > 0,
()T (g (@)d* + g(a*) + 5%) =0,
§* >0, >0,(\)Ts =0,
B (z*)d* + h(x*) = r(z*).
It shows that(d*, 0) is a solution of the following problem:
min v f(z*)7d+ 3d"B.d + p; L s
st. g (z*)d+ g(z*) > —s,
B (2%)d + h(a*) = r(2”),
s > 0.
Therefored* is a solution of the following problem:
min v f(z*)"d+ 3d"B.d
(3.5) st g (2¥)d+ g(z*) >0,
R (z*)d + h(z*) = r(z*).

Also sincelimyc.)—o pf = p, SO from the penalty update rufe (2.6), we obtain that) =
h(z*) after finite steps. Hence we havér*) = h(z*) in the problem[(3)5). The inequality
(3.1) can be easily proved under assumptidn).

In what follows, we prove the last conclusion.

If & = 0andr(z*) = 0, then fromr(z*) = h(z*) proved above we can obtain thgt*) > 0,
h(z*) = 0. i.e. z* is feasible for the primary problem. Also sindé = 0 is a solution of
the QP subproblen (1.2), we can deduce thiats a feasible stationary point of the original
problem. O

(3.3)

(3.4)

The following lemma can be proved similar to the corresponding result in [3].

Lemma 3.2. Supposing that
li F=2*  lim =0, i 7=,
AT T =0 A et
lim pf = p} lim d* = d,
k(En)—>oopk P2 k(er)—o0

then we have

. epiwé (xk + tkdk) - epi,pg ("Ek) /
lim sup

k(€r)—o0 (7%
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Theorem 3.3. Suppose thaimy e, 2* = z*. Under assumption&4;) and (4,), we have
limy(en)—oo A = d* = 0. Thereforez* is a generalized stationary point of the primary problem
(1.3). Ifr(z*) = 0, thenz* is a feasible stationary point.

Proof. From assumptiofid,) and Lemma 3]1, we know that férlarge enough, the following
equality holds:
sz,pg(x’“) = Gpgﬁ (xk)
By Lemm, we know thaff,; (") : k € x} is a monotonically decreasing sequence
and lower bounded, hence from Lemma 3.1, we have the following limits (if necessary, we can
choose some subsequence):
lim d"=d*, lim By=B..
k(ek)—o0 k(ek)—o0
Next, we prove that’* = 0.
If the cluster pointt* of step length sequende; : k£ € x} is nonzero, then from the line
search step of the proposed algorithm, we have
lim  t,(d*)" Byd* = 0,
k(€er)—o0
or
t*(d)"'B,.d* =0,
hence by the positive definitenessi®f, we can deduce that = 0.
If t* =0, then

[ 123
epg’pg (fljk + ?dk> — epip; (ﬂjk) > —U?(dk)TBkdk,
or
Tk

S —(d*)TB*d*7
ie. (1 —0)(d)"B.d* < 0. Soforo € (0,1), we have(d*)T B.d* < 0. By the positive
definiteness oB,, we also obtain that* = 0.
At last, from the forth and fifth conclusion in Lemrpa[3.1, we can prove the desired results.
(seel[3, Proposition A.4]). O
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