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ABSTRACT

Amplified motions in vortices have been observed in Gulf Stream rings and over seamounts. This paper uses
the near-inertial oscillation approximation to model near-inertial motions in the presence of a barotropic vortical
background flow. The resulting trapped modes are calculated: there is always at least one such mode, but higher
modes may exist and these are obtained. The characteristics of the trapped mode depend on the quantity
G/ f 0 where G is the circulation (integrated vorticity) of the ring, f 0 is the local Coriolis frequency, and Rn is2Rn

the nth Rossby radius of deformation, which may be interpreted as a combined measure of the vertical length
scale and stratification. Asymptotic expressions are presented for the frequency of the gravest radial mode for
strong and weak vortices. The calculated frequencies are compared to previous results, and good agreement is
obtained. The initial value problem is also studied: the contribution of the trapped modes to the evolution of
the near-inertial wave field is calculated, as is the contribution due to the continuous spectrum. The long time
behavior of the continuous spectrum decays like (lnt)21 and takes different forms in the vortex core and far
from the vortex.

1. Introduction

Warm core rings are the most spectacular oceanic
example of coherent structures with strongly negative
core vorticity. Because ray-tracing calculations show
that internal waves are trapped inside regions of neg-
ative vorticity (Kunze 1985) one anticipates that these
vortices might contain localized near-inertial activity.
Indeed, the observations of Kunze and Lueck (1986),
Kunze (1986), and Kunze et al. (1995, KST hereafter)
show convincing signatures of trapped, near-inertial
modes in a warm core ring. KST also contains a the-
oretical investigation of the near-inertial trapped modes
of an axisymmetric barotropic vortex. However, the cal-
culations of KST neglect regular singularities in the co-
efficients of the equation they solve, neglect interactions
with certain mean-flow terms outside the vortex, and
implement an incorrect matching condition across the
edge of the vortex. More recent work (Kunze and Boss
1998, KB hereafter) has been necessary to vindicate the
main theoretical conclusions of KST. Kunze and Toole
(1997) have studied the trapped near-inertial modes over
Fieberling Guyot using a similar model.

In this paper we use the near-inertial oscillation (NIO)
approximation developed by Young and Ben Jelloul
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(1997, YBJ hereafter) to examine the near-inertial
modes on a barotropic, axisymmetric vortex. Because
the NIO approximation is a reduction of the linearized
primitive equations, the time-dependent equations for
NIOs in rings can be cast in a straightforward form.
The resulting equations do not suffer from the mathe-
matical inconsistencies of the original KST analysis, and
lead to a simple formulation of the time-dependent prob-
lem. The eigenproblem for trapped modes may be
solved in a similar fashion to KB, although there are
some important differences, as will be seen. In addition,
however, the time-dependent problem is solved. This
leads to interesting information on the role of the prop-
agating and the trapped modes in the evolution of the
system. An important point is that the NIO approxi-
mation is based on a multiple timescale approximation
and does not assume separation of spatial scales between
the geostrophic flow (the ring) and the near-inertial
waves (the eigenmode). Thus, results based on the NIO
approximation are not limited to modes whose spatial
scale is much smaller than that of the vortex. In fact,
we will find interesting examples of weakly trapped
modes with radial decay scales of many vortex diam-
eters. This does mean, however, that results obtained
using the approximation must be examined to check that
the predicted slow timescale is not too close to the in-
ertial period, which would invalidate the approximation.

The outline of the paper is as follows. Section 2 out-
lines the formulation of the problem using the theory
of YBJ. Section 3 solves the dispersion relation for the
Rankine vortex, both in nondimensional form and also
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taking into account a model of ocean stratification. The
latter results are compared to the results of KB. Section
4 examines the trapped modes for a family of vorticity
profiles that are more realistic than the Rankine vortex
and identifies asymptotic properties of the dispersion
relation that hold for all ring profiles. Section 5 ex-
amines the initial value problem of the evolution of the
trapped mode, given a spatially uniform excitation, Fi-
nally, section 6 discusses and summarizes the results of
the paper. Mathematical results not central to the paper
are given in the appendix.

2. Formulation

a. The NIO approximation

We start with the NIO equation of YBJ. The wave
variables are expressed in terms of a complex field,
A(x, y, z, t), by

2i f t0u 1 iy 5 e LA, (1)
2 2 2i f t0w 5 2( f /N )A e 1 c.c., (2)0 zj

2i f t0b 5 i f A e 1 c.c., (3)0 zj

2i f t0p 5 i f A e 1 c.c. (4)0 j

The differential operators ]j and L are defined by

1
2 22A [ (A 2 iA ), LA [ ( f N A ) . (5)j x y 0 z z2

Using (1)–(4), the leading-order dynamical variables as-
sociated with the near-inertial oscillation can be ob-
tained from A. The complex field A evolves according
to the NIO equation of YBJ

](C, LA ) i i
2LA 1 1 f ¹ A 1 ZLA 5 0, (6)t 0](x, y) 2 2

where C is the geostrophic streamfunction and Z 5 ¹2C
is the geostrophic vorticity. Throughout this paper, ¹2

[ 1 is the horizontal Laplacian. The equation for2 2] ]x y

the wavefield A is linear, and we shall take A to have
value 1 at the origin.

b. Projection onto vertical normal modes

We confine our attention to barotropic flows, Cz 5
0. This is a dramatic simplification of the highly bar-
oclinic structure of the vortices that have been observed,
and many physical processes are therefore lost. How-
ever, in doing so, we can follow the analysis of KST in
order to make the resulting problem analytically trac-
table; in particular it is now possible to project onto
vertical normal modes. Using the notation of Gill
(1984), the Sturm–Liouville problem associated with the
linear operator L is

Lp̂n 1 p̂n 5 0,2 22f c0 n (7)

where the eigenvalue, cn 5 f 0Rn, is the speed of mode

n and Rn is the Rossby radius of mode n. The functions
p̂n(z) are vertical normal modes. The Sturm–Liouville
problem (7) defines the Rossby radius Rn, which may
be related in the case of constant stratification N to a
vertical wavelength lz by

l NzR 5 . (8)n 2p f0

The field A is represented as

`

A (x, y, z, t) 5 A (x, y, t)p̂ (z), (9)O n n
n51

and each modal amplitude satisfies the Schrödinger-like
equation

](C, A ) i i\n n 2A 1 1 ZA 5 ¹ A , (10)nt n n](x, y) 2 2

where

\n [ f 0 ,2Rn (11)

is the ‘‘dispersivity’’ of mode n. The terms in (10) have
obvious physical interpretations: advection, frequency
shift, and, on the right-hand side, wave dispersion.

c. The eigenproblem for an axisymmetric vortex

For a barotropic radially symmetric eddy, C(r), with
azimuthal velocity V 5 Cr, (10) reduces to

i i
2A 1 VA 1 ZA 2 \ ¹ A 5 0, (12)nt nu n n n2 2

where V [ V/r and Z 5 Crr 1 r21Cr. This equation
has an energy integral that may be obtained by multi-
plying by and taking the real part. The result isA*n

Ent 1 VEnu 1 = · Fn 5 0, (13)

where the energy density of the nth vertical mode is En

5 An and the energy density flux is given by1 A*2 n

i
F 5 \ (A*=A 2 A =A*). (14)n n n n n n2

The advective term VEnu in (13) cannot result in an
energy flux to infinity. Requiring that Fn → 0 as r →
` is the boundary condition for trapped near-inertial
modes.

For a radial vortex, solutions of the form An 5
ei(mu2vt)An(r) may be sought. The resulting eigenproblem
for v is

21 2 1 m
A0 1 A9 1 v 2 mV 2 Z 2 A 5 0. (15)

21 2[ ]r \ 2 r

We have now lightened notation by suppressing the sub-
script n on A and \. The boundary condition on the
eigenproblem above is that A decays faster than r21/2 as
r → ` so that F vanishes at great distances from the
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vortex. (This requirement distinguishes the discrete,
trapped modes of the vortex from the continuum of
radiation modes.)

Multiplying (15) by rA* and integrating leads to the
relation

` ` ` 2|A|
2 2 22v r |A| dr 5 \ r |A9| dr 1 m \ drE E E r0 0 0

`

21 (2mV 1 Z )r |A| dr. (16)E
0

Because we are limiting our attention to trapped modes
with rapid decay, terms such as arising from`[rA9A*]0

the integration by parts are zero. This result shows that
the eigenfrequency, v, is real. Then, without loss of
generality, one can take A to be real.

In addition, if (v (1), A (1)) and (v (2), A (2)) are both
solutions of (15), then one can obtain the orthogonality
relation

`

(1) (2) (1) (2)[v 2 v ] rA (r)A (r) dr 5 0; (17)E
0

that is, radial eigenfunctions with distinct eigenvalues
are orthogonal. Equation (17), together with the or-
thogonality relations for the vertical and azimuthal
structure functions can be used to project an initial con-
dition onto the three-dimensional eigenfunctions (see
section 5).

We now nondimensionalize the problem. We take the
vortex to have radius a and circulation G. We now define
a nondimensional radial coordinate by h [ r/a. The vortex
is then specified by giving the vorticity in the form

G
Z(r) 5 D(h). (18)

2a

The profile function, D(h), is normalized by
` 1

D(h)h dh 5 , (19)E 2p0

so that G is, in fact, the total circulation of the vortex.
In this paper, the frequency v of the normal mode of
the NIO wavefield is a departure from the inertial fre-
quency f 0. The actual physical frequency is f 0 1 v.

d. Comparison with alternate formulations

Our formulation of the eigenproblem differs from the
earlier works of KST and KB in several respects. First,
we use a Cartesian representation of the velocity field,
namely u 1 iy , whereas KST and KB use the radial
component of the velocity, ur, as the independent var-
iable (following Brink 1989, 1990). This difference pro-
duces ambiguity in the definition of the azimuthal wave-
number: because

ur 5 Re[e2iu(u 1 iy)], (20)

it follows that our azimuthal wavenumber m 5 0 corre-
sponds to the azimuthal wavenumber 21 of KST and KB.

Despite the axisymmetry of the vortex, the Cartesian
form, u 1 iy , is a natural representation of the linearly
polarized NIO modes observed by KST. Specifically,
Fig. 14 of KST shows that the inertially backrotated
wave phase, which corresponds to the phase of A, does
not vary around the ring. In essence, this means that if
A is decomposed into azimuthal modes of the form eimu,
then only the m 5 0 mode is present and A 5 A(r, t).

It may seem that the distinction between ur and u 1
iy is an unimportant formality but there are attendant
differences in the physical interpretation of the results
that are confusing. The main issue concerns the possible
Doppler shift produced by the term VAnu in (12). For
our m 5 0 mode, this advective term vanishes exactly,
and so there is no Doppler shift. However, if one uses
ur as the independent variable, then for the same mode,
the advective term is nonzero and this leads to the dis-
tinction that KST draw between the Lagrangian and
Eulerian frequencies.

As a simple illustration of these different interpre-
tations consider a solid-body flow with (U, V) 5
V(2y, x); the vorticity is 2V. For disturbances with very
large spatial scale, the pressure gradient is negligible
and, using the Cartesian representation, one has

Du
2 (V 1 f )y 5 0, (21)0Dt

Dy
1 (V 1 f )u 5 0, (22)0Dt

where D/Dt 5 ] t 2 Vy]x 1 Vx]y 5 ]t 1 V]u is the
convective derivative. The solution of (22) is

(u 1 iy) 5 .2i( f 1V)t0e (23)

Thus, the frequency shift is V, or half of the vorticity
of the solid-body flow. The advective terms in D/Dt
vanish because u and y in (23) do not depend on the
spatial coordinates; that is, there is no Doppler shift in
this Cartesian representation.

Alternatively, one can solve this problem using cy-
lindrical coordinates with the independent variables

u 5 u cosu 1 y sinu , (24)r

u 5 2u sinu 1 y cosu. (25)u

In cylindrical coordinates the equations of motion are

Dur 2 (2V 1 f )u 5 0, (26)0 uDt

Duu 1 (2V 1 f )u 5 0, (27)0 rDt

and the solution is

(u , u ) 5 {cos[u 1 ( f 1 V)t], 2sin[u 1 ( f 1 V)t]}.r u 0 0

(28)
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FIG. 1. The first two eigenbranches obtained from the eigenvalue
relation (33), plotted as solid curves. The abscissa is the nondimen-
sional vortex strength parameter 2G/\ and the ordinate is the non-
dimensional frequency s 5 22a2v/\. The dotted lines show the
large-s behavior of the eigenbranches from (36). The next eigen-
branch, q 5 2, starts around 2G/\ ø 150.

In (26) and (27) the shift in the inertial frequency is
2V, but the advective term is nonzero and its contri-
bution (a ‘‘Doppler shift’’) cancels half of the apparent
frequency shift. This leads to the distinction that KST
and KB draw between the intrinsic frequency, vi 5 f 0

1 2V, and the Eulerian frequency, vE 5 v i 1 nV [for
the solution in (28) the azimuthal wavenumber is n 5
21].

Of course the two representations are completely
equivalent; that is, (23) and (28) are the same. This
example shows that the distinction between the intrinsic
frequency and the Eulerian frequency depends on which
equivalent representation of the velocity field one hap-
pens to use. In ray-tracing problems, such as those dis-
cussed by Kunze (1985), the notion of a Doppler shift
is well defined and useful. But in the present context it
makes no sense to assign a Doppler shift to a trapped
modal structure (as opposed to a propagating plane
wave).

3. Trapped modes in a Rankine vortex

We follow KST by considering the Rankine vortex,
specified by

21p for h , 1
D(h) 5 (29)50 for h . 1,

as an initial example. Our strategy is to first solve the
Rankine case in some detail and then turn to the more
realistic examples with smooth vorticity profiles. Many,
but not all, features of the Rankine case are represen-
tative of the general case.

a. The m 5 0 case

The easiest case, and the one which corresponds most
closely to the observations of KST, is m 5 0. In non-
dimensional form, the m 5 0 eigenproblem is

21 2a v G
A 1 A 1 A 2 D(h)A 5 0. (30)hh hh \ \

For h . 1, D 5 0. A bound state solution is only possible
for v , 0, that is, only if the frequency of the mode is
subinertial. For h , 1, D 5 1/p, and we anticipate that
the coefficient of the undifferentiated term in (30) must
be positive; that is, 2a2v 2 G/p . 0. The two conditions
v , 0 and 2a2v 2 G/p . 0 together imply that the
vortex must have negative circulation G , 0 for trapped
waves to exist. Hence trapped normal modes are only
possible for anticyclonic vortices, such as rings (see
KST).

The solution of (30) for h , 1 is

22a v G
A } J h 2 . (31)01 2! \ p\

For h . 1, the solution is

22a |v|
A } K h . (32)01 2! \

The matching condition at h 5 1 is obtained by match-
ing pressure and radial velocity as in KB. In the NIO
approximation, the complex velocity is proportional to
An [because of (7)] whereas pressure is proportional to
Anj. In polar coordinates, therefore, the radial velocity
is continuous if A(r) is continuous and the pressure is
continuous if A9(r) is continuous. The two conditions
on A and its derivative lead to the eigenvalue relation

2J (Ï2a |v| 2 G/p\)1
2 2Ï2a |v|/\Ï2a v/\ 2 G/p\ 2

2J (Ï2a |v|/\ 2 G/p\)0

2K (Ï2a |v|/\)1
5 . (33)

2K (Ï2a |v|/\)0

This equation may be solved numerically to give the
eigenvalue relation for the nondimensional frequency s
. 0, defined by

22a v
s [ 2 , (34)

\

as a function of the nondimensional ‘‘vortex strength,’’
2G/\ . 0. Figure 1 shows the first two branches, labeled
q 5 0 and q 5 1, of the eigenrelation in the (2G/\, s)
plane. The branches originate with s 5 0 at circulation
values 2G/\ 5 , where j1,q is the qth zero of J1.12pj1,q

1 The integer index q starts at q 5 0; we use the convention that
the ‘‘zeroth’’ zero of J1 is j1,0 5 0. Then, as in Abramowitz and Stegun
(1965), j1,1 ø 3.83, etc.
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FIG. 2. The velocity amplitude A(r) [chosen to have A(0) 5 1] for
the two radial modes supported by a Rankine vortex with 2G/\ 5
60. The vortex has radius h 5 1.

TABLE 1. Physical parameters: the first five are parameters for
the Gill model buoyancy profile (in fact Nmix is derived from the
previous four), and the last four, which relate to the vortex and its
surroundings, are taken from KST.

Description Abbreviation Value

Depth of ocean
Depth of mixed layer
Length scale of deep N2

profile
Stratification parameter
Buoyancy frequency at

base of mixed layer

H
Hmix

z0

s

Nmix

4200 m
50 m

4330 m
2.5 m s21

0.01392 s21

Coriolis parameter
Radius of vortex
Core vorticity
Circulation of vortex

f0

a
zc

G 5 pzca2

1024 s21

43 km
2f0 /4
21.45 3 105 m2 s21

We may note that the form of the curves of Fig. 1 is
independent of the the value of Rn since the abscissa
and ordinate both scale with .22Rn

The gravest radial mode is the q 5 0 branch emerging
from the origin in Fig. 1. Consequently, very weak vor-
tices (i.e., vortices with 0 , 2G/\ K 1) have a single,
trapped, near-inertial mode. In this limit, the approxi-
mate solution of the eigenvalue relation (33) is

s ; e4p\/G K 1. (35)

The eigenfrequency s is ‘‘exponentially small’’ in the
vortex strength parameter 2G/\; this explains why the
q 5 0 eigencurve in Fig. 1 is so ‘‘flat’’ near the origin.
The mode is weakly trapped because the radial decay
scale, lK, of the modified Bessel function K0 in (32) is
lK ø a/ s k a. That is, most of the eigenfunction isÏ
outside the core of the vortex.

As the strength of the vortex increases and we proceed
up the q 5 0 curve in Fig. 1, the mode becomes tightly
bound to the vortex core. Also, as 2G/\ increases, new
modes with more radial structure appear: q 5 1 and so
on. At their birth on the abscissa of Fig. 1, the modes
have s K 1, and consequently the new modes are weak-
ly trapped. But as |G/\| increases the higher modes also
become tightly bound to the vortex core. Figure 2 shows
the two radial modes supported by a vortex with 2G/\
5 60; the corresponding values of the nondimensional
frequency parameter s are 1.38 and 15.32.

In the limit of large s and G/\, the eigenvalue relation
is approximately linear and given by

G
2s ; 2 2 j , (36)0,q11p\

where j0,q11 is the (q 1 1)th zero of the Bessel function
J0. This linear relation is shown by the dotted straight
lines in Fig. 1. The agreement is not good for the rel-
atively small values of s in Fig. 1; however, the dotted

lines do show the eventual s k 1 behavior of the ei-
genbranches.

b. The m ± 0 case

The results of the previous section apply only to the
special case m 5 0, that is, modes with no azimuthal
structure, such as those observed by KST. We made an
unsuccessful effort to find solutions of (15) with m ±
0. We did prove rather easily that there are no solutions
with m , 0. But the case m . 0 remains open. We do
not know if such solutions exist, nor can we prove that
they do not exist.

c. Trapped modes in the presence of a model
buoyancy profile

Figure 1 presents the solution of the eigenproblem in
a compact nondimensional form. However, it is difficult
from this figure to estimate the variables with the most
immediate physical meaning. Therefore, at the risk of
some redundancy, we will consider a specific example
and find the eigenfrequencies in dimensional variables.
This approach has the advantage that one can make an
a posteriori assessment of the validity of the NIO ap-
proximation.

We must first solve the vertical mode eigenproblem
in (7) and obtain the Rossby radius and modal disper-
sivity \n 5 f 0 . We use the buoyancy profile of Gill2Rn

(1984):

0 if H 2 H , z , HmixN(z) 5 (37)5s/(z 2 z) if 0 , z , H 2 H0 mix

(z 5 0 is the bottom of the ocean). The parameters for
the buoyancy profile are given in Table 1: \n decreases
rapidly (like n22) as n increases. Thus, the vortex
strength parameter, 2G/\n, becomes larger as the ver-
tical mode number increases.

The characteristics of the vortex are chosen to match
Fig. 5 of KST and are given in Table 1. The resulting
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FIG. 3. Modal frequency |v|/ f 0 as a function of vertical mode num-
ber n for the first five radial eigenmodes. (The azimuthal mode number
is m 5 0 in all cases.) The modes with q $ 1 exist for sufficiently
large n (i.e., only for sufficiently large G/\n). As n increases, all of
the eigencurves asymptote to |zc|/2 f 0 (1/8 in the figure above).

profile is a simple approximation to what was measured
by KST.2

Figure 3 shows the absolute value of the modal fre-
quency, |v|/ f 0, as a function of the vertical mode num-
ber n for the first few radial eigenmodes. This eigen-
relation has the form

\ Gnv 5 2 F 2 , (38)n,q q2 1 22a \n

where the Fq . 0 are the nondimensional functions
displayed in Fig. 1 for q 5 0 and q 5 1. The eigen-
frequency of the mode with vertical mode number n and
radial mode number q is vn,q , 0. (The azimuthal mode
number is m 5 0 in all cases.) As the vertical mode
number n increases, there are more trapped radial
modes. Also, because the eigenfrequencies are negative,
all of the trapped modes have slightly subinertial fre-
quencies. Figure 3 shows that new radial modes arise
at the vertical mode numbers 1, 5, 9, 13, 17, 20, and
25.

In terms of dimensional variables, the approximate
dispersion relation (36) is

1 \n 2v ø z 1 j , (39)n,q c 0,q1122 2a

where zc is the constant vorticity in the core of the
Rankine vortex. The approximation above shows that
the modal frequencies, vn,q, saturate at zc/2 for large n.
Thus, the largest value of |vn,q| is always less than |zc/2|.
The timescale separation assumption made in YBJ is

2 The Coriolis frequency however is taken to be 1024 s21: the small
difference from the actual value at the latitude of the warm core ring
(9.4 3 1025 s21) has no importance for the results of this section.

that |v|/ f 0 K 1 so that, in this problem, one requires
that |zc|/2 f 0 K 1. This condition is verified a posteriori
for the parameters in Fig. 3, for which |vn,q|/ f 0 , 1/8
K 1.

d. Comparison with the results of KB

Kunze and Boss calculated the frequencies of trapped
near-inertial oscillations in the presence of a background
barotropic azimuthal flow, which is meant to model the
warm core rings of KST and also the strong vortex cap
observed above Fieberling Guyot. The parameters for
the warm core ring and Fieberling Guyot are given in
Table 2. We shall use the same values to be able to
compare results.

The results obtained so far may now be applied to
the warm core ring and to Fieberling Guyot. We shall
not use any model for the buoyancy profile, but rather
calculate the dispersivity from the parameters of KB.
The resulting value of \ will not correspond to a vertical
mode as such, but will give a numerical value appro-
priate to the measurements as reported by KB.

The analysis of KB is in terms of a vertical wave-
length lz, which we shall relate to the dispersivity \
through [cf. (8)]

2 2l Nz\ 5 . (40)1 22p f0

As in KB, only the gravest radial mode (q 5 0) is
considered and the vorticity distribution is taken to be
the Rankine vortex. The governing parameter in the
eigenrelation (33) is then

2 3 2G 4p G 4p f z a0 c5 5 . (41)
2 2 2 2\ l N l Nz z

For each radial mode, the dispersion relation is mono-
tonic (see Fig. 1), and hence it suffices to consider the
extremal values of G/\ to obtain bounds for the fre-
quency of each mode. High values of s, that is, fre-
quencies farther away from the inertial frequency, are
obtained for large values of zc and small values of N 2

and lz, and vice versa.
For the warm core ring, these parameters lead to ex-

tremal values for |G|/\ of 78 and 1086. This corresponds
to a dimensional frequency in the range 0.95 f 0 , vE

5 f 0 1 v , 0.98 f 0. This is the Eulerian frequency of
KST and KB. The most subinertial frequency corre-
sponds to the larger value of |G|/\, that is, to the stronger
vortex. One advantage of the current representation is
that it is easy to provide bounds for the frequency of
the trapped mode, given the range of the physical pa-
rameters. The analysis of KST and KB is in terms of
the effective Coriolis frequency, f eff [ f 0 1 zc. The
ratios vE/ f eff and vi/ f eff, where vi is the intrinsic or
Lagrangian frequency of KST, depend both on G/\ and
on zc. In fact, the Eulerian frequency ratio vE/ f eff in-
creases monotonically with G/\ with extremal values
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TABLE 2. Physical parameters for a warm core ring and Fieberling Guyot (taken from KB).

Description Abbreviation Warm core ring Fieberling Guyota

Coriolis parameter
Radius of vortex/Guyot
Scaled core vorticity
Vertical wavelength
Buoyancy frequency

f0

a
2zc /f0

lz

N

9.4 3 1025 s21

43 km
0.04–0.1
96–200 m
4.5–5.1 (3 1023 s21)

8 3 1025 s21

5–7 km
0.45–0.52
170–220 m
4–5 (3 1023 s21)

a Data originally from Kunze and Toole (1997).

FIG. 5. Solution envelope, A(r), for Fieberling Guyot, as considered
by KB. The inner envelope corresponds to the 7-km core radius, the
outer envelope to the 5-km core radius. Both radii are shown as dotted
lines. As in Fig. 4, the upper limit of each envelope corresponds to
the smaller value of |G|/\ and the lower to the larger value of |G|/\.

FIG. 4. Solution envelope, A(r), for the warm core ring considered
in KST and KB. The upper bounding curve corresponds to the smaller
value of |G|/\ and is less trapped than the lower curve, which cor-
responds to the larger value of |G|/\. The dotted line corresponds to
the edge of the vortex at 43 km.

vE 5 (1.024–1.056) f eff. This is within 1% of the range
(1.022–1.062) f eff calculated by KB (in terms of the fac-
tor in front of f eff). The intrinsic frequency, on the other
hand, decreases with zc for fixed G/\ and increases with
G/\ for fixed zc. As a consequence its extremal values
do not necessarily correspond to the extremal values of
G/\ and zc and must be obtained as a two-parameter
problem.

Figure 4 shows the solution envelope. It is very sim-
ilar to Fig. 5 of KST and Fig. 2 of KB. The present
solutions also match smoothly across r 5 a. The outer
and inner radial wavelengths of KB become lK 5
2pas21/2 and lJ 5 2pa(2s 2 G/p\)21/2. The inner ra-
dial wavelength has the range 118–136 km while the
outer has the range 15–59 km. The KB values are 118–
136 km and 15–60 km, respectively, and the agreement
is excellent.

The magnitude of the quantity G/\ suggests that the
asymptotic expression (39) should be a good approxi-
mation to the actual frequency. In fact, the leading order
term in (39), zc, is good to better than 0.3%. Hence,1

2

for these large values of 2G/\, the value of the core
vorticity gives the frequency of the trapped mode.

The same calculation for Fieberling Guyot using the
values of Table 2, which give two possible values for

the core radius, leads to a range of 7.4 , |G|/\ , 22.3
for a radius of 5 km and to a range of 14.5–43.7 for
the 7-km radius. The corresponding frequency ranges
are (0.85–0.95) f 0 and (0.81–0.90) f 0 , respectively.
These ranges indicate that the predicted frequency is too
far from f 0 for the NIO approximation to hold. The
same remarks as before about the dependence of the
frequencies expressed in terms of f eff apply, further
complicated by the existence of two different core radii.
The range of the Eulerian frequency is (1.719–1.764) f eff

for the 5-km radius and (1.630–1.679) f eff for the 7-km
radius. The agreement in this case with the results of
KB is only good to about 18%. The resulting eigen-
function envelopes in Fig. 5 are similar to those of KB,
but are smooth since the appropriate matching condition
for the NIO problem leads to continuous A and A9, un-
like the KB matching condition. The range of inner
wavelengths is 18–24 km for the 5-km core and 23–28
km for the 7-km core, compared to the 22–34-km values
of KB.

The asymptotic relation (39) does not hold for these
parameter values. The measured K1 tidal frequency of
0.933 f 0 lies within the calculated range for the 5-km
radius core. Taking the larger values of lz and zc and
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FIG. 6. Six members of the quartic vorticity-profile family D(h).
The value of D0 5 D(0) is given next to each curve.

FIG. 7. Eigenvalue curves for the first radial eigenmode (q 5 0)
of the quartic family (solid lines). The value of D0 is indicated next
to the eigenvalue curves. The asymptotic approximations (44) and
(45) are the dotted curves.

the smaller value of N leads to a theoretical value of
0.9454 f 0, which is within 1.4% of the observed value.

We emphasize that the results in Figs. 4 and 5, as in
KB, apply only to the gravest radial and azimuthal mode
q 5 0 and m 5 0, respectively. The argument has often
been made that large-scale forcing will dominantly ex-
cite this mode. In section 5 we provide a critical as-
sessment of this assumption.

4. Trapped modes in smooth vorticity profiles

a. A family of quartic vorticity profiles

We now turn to the near-inertial eigenstructure for
vortices with spatially varying core vorticity. We obtain
numerical results for an illustrative family of vorticity
profiles and compare these to some asymptotic results
that apply to arbitrary profiles. The profiles that we
consider are given by

6
2 4 2 2D(h) 5 D (1 2 4h 1 3h ) 1 h (1 2 h ) (42)0 p

for h , 1 and 0, otherwise (see Fig. 6). The profiles
above form a one-parameter (D0) family, normalized so
that (19) is satisfied. If the vorticity at the origin, D0,
is greater than 3/p, the vorticity changes sign in the
interval (0, 1). Such profiles have been observed al-
though they are presumably barotropically unstable. The
results for these vortices are the same as for those with
D0 in the range (3/2p, 3/p). However for D0 , 3/2p,
D0(0) . 0, with the vorticity increasing from D0 up to
a maximum Dm, the results do change. The important
difference is the presence of a maximum in negative
vorticity away from the origin. These cases are similar
to the measured vorticity profile of KST (their Fig. 5).
Dewar (1987) argued that winter cooling might be re-
sponsible for forming such structures. It turns out that

the case with a noncentral Dm has some interesting qual-
itative differences from the Rankine vortex of section 3.

The eigenfunctions take the form (32) for h . 1 since
the vorticity vanishes beyond the core of the vortex.
Inside the vortex, (30) is solved numerically. Using a
trial value of v, the resulting solutions are matched onto
each other, and the procedure is repeated until A and A9
are continuous (which is the appropriate matching con-
dition as discussed previously), yielding the eigenfre-
quency v. The first eigenbranch, q 5 0 is shown in Fig.
7 for two representative members of the family, one
with maximum vorticity at the origin (D0 5 3/p and
hence monotonically decaying) and one with maximum
vorticity in the core of the vortex but not at the origin
(D0 5 3/20p, in which case the maximum in vorticity
is at h ù 0.7). The dotted curves show the asymptotic
behavior for large |G|/\. The agreement is not as good
for the latter profile as for the former.

Figure 8 shows the birth of the second eigenmode for
the quartic profile with D 5 3/5p. The appearance of
new eigenmodes is very similar to the case of the Ran-
kine vortex; the second branch emerges at 2G/\ ; 58
(as opposed to 46 in the Rankine case).

Figure 9 shows the radial modes for the quartic family
for the same values of D0 as Fig. 7, with 2G/\ 5 20.
The maximum of A moves away from h 5 0 more
slowly than the maximum of the vorticity profile to
which it corresponds. This shows that the vorticity min-
imum must be displaced a fair way from the center of
the vortex for the trapped mode to have a clear maxi-
mum away from the core. Figure 10 quantifies this by
showing hm, the value of h where D(h) has its maximum
against hA, the value of h where A(h) achieves its max-
imum. For the quartic family, the maximum in A does
not move off the axis until hm . 0.65.
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FIG. 8. First two eigenbranches of the quartic profile with D0 5
3/5p. The second branch appears at around 2G/\ ø 58.

FIG. 9. The velocity amplitudes A(r) of the lowest (q 5 0) radial
modes of the quartic family with 2G/\ 5 20. The values of D0

characterizing each mode are shown next to the curve.

FIG. 10. The value of h at which A(h) attains its maximum, hA,
plotted against the value of h at which D(h) attains its maximum,
hm.

b. Asymptotic results: The q 5 0 branch near the
origin

A remarkable aspect of Fig. 7 is that the eigenvalues
coincide near the origin of the (s, 2G/\) plane. This
suggests that the structure of the q 5 0 eigenbranch
becomes independent of the vorticity profile as s tends
to 0. The analysis in appendix A confirms this expec-
tation by showing that, in this limit,

s ; e4p\/G. (43)

Physically, when s K 1, the mode is weakly trapped
and only ‘‘feels’’ the total circulation G of the vortex;
roughly speaking, the weakly trapped mode ‘‘sees’’ the
vortex as a point singularity of strength G.

c. Asymptotic results: The q 5 0 branch for large s
and large 2G/\

The behavior of the eigencurves for the gravest radial
mode for large |G|/\ and large s depends on whether
Dm is located at the origin (e.g., the curve D0 5 3/p in
Fig. 6) or away from the origin (e.g., the curve D0 5
3/5p in Fig. 6).

For Dm at h 5 0, and s and |G|/\ both large, the
analysis in appendix B shows that the approximate ei-
genvalue relation is

ivG G 1 D (0)
s ; D 2 2D0(0) 2 . (44)0 !\ \ 6 D0(0)

Notice that D0 is positive while G and D0(0) are both
negative.

For vorticity profiles with D0 , Dm [or equivalently
D0(0) . 0], the approximate eigenrelation is

G G D0(h )ms ; 2 D 2 2 1 m , (45)m 2!\ \ 2

where m2 is given by (B17). The results in (44) and (45)
show that as 2G/\ increases, the dimensional eigenfre-
quencies approach zmin/2, no matter where zmin 5 GDm/a2

is located in r.

5. The initial value problem for a Rankine vortex

We now consider the initial value problem in which
an impulsive wind stress with infinite horizontal scale
sets the uppermost layer of the ocean into unidirectional
motion in the zonal direction, and the geostrophic flow
is a Rankine vortex. The initial condition for (6) is
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FIG. 11. (a) Projection coefficient, , for the lower radial and(q)Fn

vertical modes. Vertical modes n 5 1–6 and radial modes q 5 0–2
are shown. (b) Amplitude coefficients, (t 5 0), for the Balmforth(q)An

et al. (1998) initial condition uI(z). A logarithmic scale is used, nor-
malized with respect to the (0, 0) mode.

LA 5 uI(z) where uI is some function concentrated near
the surface [an example is given in Balmforth et al.
(1998)]. We use the parameter values of Table 1 to define
the vertical modes.

The initial condition is then projected onto the vertical
normal modes defined in (7) and consequently the initial
value problem reduces to solving (10) with an initial
condition

An(r, u, 0) 5 1. (46)

[Because the problem is linear, we can multiply this
solution by the appropriate projection coefficient of uI(z)
onto p̂n.] In order to deal with quantities that decay at
large distances from the vortex, it is convenient to define
Bn 5 An 2 1. It then follows from (10) that

](C, B ) i i\ in n 2B 1 1 ZB 2 ¹ B 5 2 Z, (47)nt n n](x, y) 2 2 2

with the initial condition that Bn 5 0. The right-hand
side of (47) is independent of u and consequently the
solution of (47) is independent of u; thus the Jacobian
term in (47) is zero.

For fixed vertical mode number, n, there are only a
finite number of radial modes (Fig. 3); for example, for
n 5 10, there are three trapped radial modes. This sit-
uation is similar to other problems in wave guide theory
in which the trapped modes do not form a complete set.
Consequently, one must also use radiation modes to
represent the initial condition. Thus, our solution of (47)
is

Q(n)
(q)(q) 2iv t (q) (bc)nB (r, t) 5 F e A (r) 1 B (r, t), (48)On n n

q50

where is defined by(q)Fn

`

(q)A (r)Z(r)r drE n

0
(q) (q)2v F 5 . (49)n n `

(q)2rA drE n

0

The number of discrete radial modes for vertical mode
n is Q(n).

Because the discrete modes are not complete, the full
solution of (47) requires the use of the continuous spec-
trum and this produces the term B (bc) in (48). The La-
place transform is a systematic way of obtaining this
solution, and using this method, B (bc) corresponds to a
‘‘branch cut’’ contribution in the inversion formula. The
full details of the solution for the Rankine vortex are
given in appendix C.

It turns out that, for the Rankine vortex, the integrals
in (49) can be evaluated analytically; this leads to

2 2z J J Kc 1 0 0(q)F 5 , (50)n (q) 2 2 2 2v aJ J K 1 K Jn 0 1 0 1 0

where J1 5 J1(a), J0 5 J0(a), K0 5 K0(b), and K1 5
K1(b) with

2 (q)a 5 Ï2a v /\ 2 G/p\ , (51)n n n

2 (q)b 5 Ï22a v /\ . (52)n

The coefficient zc/ may be rewritten as 2G/p\n ,(q) (q)v sn n

which shows that it only depends on the parameters used
in section 3.

Radial mode q 5 1 has a large projection coefficient
for vertical mode n 5 5. However, the vertical depen-
dence for the initial condition must be specified to see
whether the higher modes will actually be significantly
represented in practice. Using the initial condition of
Balmforth et al. (1998) [their Eq. (4.4)], the actual pro-
jection amplitudes of the modes can be calculated for
each n and q using

2u (z) 5 e s p̂ (z) 5 2 A p̂ (z)/R , (53)O OI n n n n n n
n n

where en 5 exp(2n2/600) is a filter to avoid Gibbs-type
phenomena and the sn are properties of the Gill buoy-
ancy profile. Normalizing with respect to the (0, 0)
mode, the next highest amplitudes are the gravest radial
mode of the vertical mode n 5 5, 5 0.0114, and(0)A5

the first radial mode of the lowest vertical mode 5(1)A0

0.065. Hence if anything beyond the gravest mode (ra-
dial and vertical) is seen, the first radial mode will be
observed too. Figure 11 shows the projection coefficient
for the first radial and vertical modes, as well as the
actual values for the initial amplitudes of the modes

.(q)An

The remaining part of the solution is the branch cut
contribution B (bc)(r, t). It is impossible to invert the La-
place transform and obtain an exact expression for
B (bc)(r, t). However, there is a simple asymptotic ap-
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FIG. 12. Real and imaginary parts of the branch cut contribution
(solid curves), B(bc) 1 1, to the solution of the initial value problem
for the Rankine vortex, at time t 5 100 3 (2a2/\). The dotted curves
are the asymptotic approximations (54) in the left-hand panel and
(59) in the right-hand panel. In this calculation G/p\ 5 280.

proximation that is valid if r is fixed and at long times
\nt/a2 k 1:

2 1
(bc)B (r, t) ; 21 2 J (h) 1 O , (54)

21 2lnit (lnit)

where the function J (h) is defined in (C9) and the non-
dimensional time t in (C12). Thus, at fixed r, the con-
tinuum contribution in (54) is a very slowly decaying
(lnt)21 transient. This decay is so slow that for all prac-
tical purposes it is probably unobservable; this greatly
complicates the interpretation of observations, such as
those of KST. Thus, while it is true that large-scale
forcing will excite the undamped trapped modes [the
sum from q 5 1 to Q on the right-hand side of (48)],
the forcing also produces the long-lived transient in
(54). Nevertheless, KST observed intensified near-in-
ertial motions. One reason for the slow decay of the
present result is that it effectively produces inertial
waves of infinite extent. Adding further physical pro-
cesses such as realistic forcing or including the b effect
would lead to more rapid decay, although the problem
would no longer be tractable. In addition, the present
barotropic model does not allow for amplification in a
vertical critical layer at the base of the ring.

Adding to the possibility of confusion between the
discrete modes and the continuum is the fact that the
spatial structure of the transient, B (bc)(r, t), resembles
the q 5 0 mode, although with the wrong frequency to
be a normal mode. The radial structure of the continuous
spectrum for large time is similar to the normal modes
with zero frequency, although the value of G/p\ is now
arbitrary. This is not true for large r however: when h
[ r/a . 1, the lnh term gives the (mistaken) impression
that B (bc)(r, t) grows at great distances from the vortex
center. However, the asymptotic approximation in (54)
is valid only with r fixed and t → `. In order to obtain
an expression that is useful when r and t are large, we
must take a distinguished limit in which the similarity
variable

r
j [ (55)

Ï\ tn

is held fixed and t → `. One can develop this alternative
approximation using the Laplace transform solution in
appendix C. But there is a simpler approach that, be-
cause of the probable importance of B (bc)(r, t), is worth
developing in the body of this paper.

The basic idea is that at long times and great distances
from the vortex many details of the internal structure
of the solution become irrelevant and instead one ob-
tains a self-similar evolution. Rewriting (47) in the re-
gion outside the vortex (where Z 5 0) using j and t
[defined in (C12)] as new independent variables gives

1
22itB 5 B 1 2 ij B . (56)nt njj nj1 2j

With hindsight from the Laplace transform solution of
appendix C, we look for a solution of (56) that has the
form

` (m)B (j)nB 5 . (57)On m(lnit)m51

The leading order term, , satisfies (56) with the left-(0)Bn

hand side replaced by zero; the solution of this equation,
which decays to zero as j → `, is

` du C2(0) iu /2 2B 5 C e 5 E (2ij /2), (58)n E 1u 2
j

where E1 is the exponential integral. The constant of
integration, C, is determined by matching the outer so-
lution in (58) with the inner solution in (54); one finds
that C 5 22. Hence, the similarity solution is given by

2E (2ij /2) 11B 5 2 1 O . (59)n 21 2lnit (lnit)

Figure 12 shows the asymptotic approximations (54)
and (59) for t 5 100 3 (2a2/\). The agreement between
the actual solution and the asymptotic approximation is
very good for h , 1 and j 5 O(1). Between these two
ranges; that is, on the right-hand edge of the first panel,
the agreement is not so good because (54) is not for-
mally valid as r becomes large. The z-dependence enters
implicitly into these results through \.

6. Discussion

We have examined the m 5 0 part of the near-inertial
eigenspectrum of compact vortices. Normal modes exist
for vortices with negative vorticity and relate the two
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nondimensional quantities G/\ and s. Modes appear
with the inertial frequency as the nondimensional
strength of the vortex |G|/\ grows and become progres-
sively more subinertial as |G|/\ increases. For a fixed
value of G/\, higher modes are less tightly bound to the
core of the vortex. There is also a continuous radiation
spectrum that must be considered for the initial value
problem.

For the warm core ring considered by KST and KB,
the nondimensional strength of the vortex is large
enough for the asymptotic approximation v ø f 0 1 zc

1
2

to hold. This means that the NIO approximation gives
good answers, and the results agree well with KST and
KB. For the mode trapped over Fieberling Guyot, the
conditions of validity of the NIO approximation do not
hold so well since the core vorticity of the flow is no
longer small compared to the inertial frequency, and the
timescale separation between the inertial oscillation and
the slower motion due to the modulation of the NIO is
no longer pronounced. Nevertheless, the calculated fre-
quency agrees well with the observed frequency of the
diurnal tide.

The modes trapped on a family of smooth vorticity
profiles that vanish outside a vortex core have also been
calculated. The results are similar to the case of the
Rankine vortex. In particular, asymptotic approxima-
tions are presented for small and large values of |G|/\.
For large |G|/\, the frequency of the trapped mode tends
to zc. Provided the core vorticity is smaller than the1

2

inertial frequency, this verifies the NIO approximation
a posteriori.

The solution to the initial value problem for the Ran-
kine vortex with a spatially uniform initial condition has
also been considered. The discrete response is not just
concentrated in the lowest radial modes and there is a
potentially significant response in the second radial
mode. Whether this is actually relevant depends on the
initial condition: for the Balmforth et al. (1998) profile,
the maximum amplitude for the second radial mode is
less than 1% of the lowest radial mode, so it is unlikely
to be significant, although it is of the same order as the
amplitude of the n 5 1 vertical mode. Therefore the
response for vertical modes greater than n 5 1 is strong-
ly affected by the first radial mode.

The continuous spectrum is necessary in addition to
the discrete spectrum to obtain the full solution. The
continuous spectrum decays very slowly in time, like
(lnt)21, and has an oscillatory spatial structure in the
core of the vortex that depends only on G/p\, whereas
the asymptotic behavior far from the vortex has a sim-
ilarity form in terms of the exponential integral and also
decays slowly in time. To a certain extent, some of these
features may be due to the simplifications adopted in
the present model, but they provide some explicit results
for the time-dependent problem.
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APPENDIX A

The q 5 0 Eigenbranch for |G|/\ K 1

The confluence as 2G/\ → 0 of the q 5 0 eigencurves
in Fig. 7 suggests that there is a general result, inde-
pendent of the details of the vorticity profile, for the
structure of the eigencurves near (G/\, s) 5 (0, 0).
Consider then a general vorticity profile D(h). The scal-
ings of (35) suggest writing Eq. (15) in the form

1 a
A 1 A 2 sA 2 D(h)A 5 0, (A1)hh hh lns

where the circulation, G, is related to the unknown func-
tion a(s) by

G a(s)
5 . (A2)

\ lns

The goal is to determine a by expanding (A1) and (A2)
in terms of (lns)21; that is, a 5 a0 1 (lns)21a1 1 · · · .
It turns out that this expansion is not uniformly valid
in h and we will need to introduce an outer coordinate
r 5 s 1/2h and perform an asymptotic match.

In the inner field, the expansion of (A1) has the form
A 5 A0 1 (lns)21A1 1 · · · , and the zeroth-order equa-
tion is given by

1
A 1 A 5 0. (A3)0hh 0hh

The solution may be scaled arbitrarily so we take

A0 5 1. (A4)

The next order in the expansion of (A1) is (lns)21 and
at that order

1
A 1 A 2 a D(h)A 5 0. (A5)1hh 1h 0 0h

The solution of the equation above can be obtained as
a double integral of D(h) (or, equivalently, A1 is pro-
portional to the geostrophic streamfunction C). How-
ever, it turns out that all we need for the purposes of
matching is the behavior of A1 when h is large:

lnh
A ; a , (A6)1 0 2p

where the normalization condition (19) has been used.
Assembling the results in (A4) and (A5) we now have
the outer limit of the inner expansion: A ; 1 1 (a0

lnh/2p lns).
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In terms of the outer variable r 5 s 1/2h the eigen-
problem is

1 a
21/2A 1 A 2 A 2 D(s r)A 5 0. (A7)rr rr s lns

For a localized geostrophic eddy, the D term will be
exponentially small in s and hence does not enter into
the far-field problem. The scaling of A in the far field
must now be specified; to match the inner solution we
must solve the equation above by taking A 5 (lns)21A0

1 A1 1 · · · ; that is, the outer expansion starts at (lns)21.
Then the leading-order equation is given by

1
A 1 A 2 A 5 0, (A8)0rr 0r 0r

with solution

A0 5 pK0(r), (A9)

where p is an unknown constant. We take the inner limit
of the outer expansion using K0(r) ; 2lnr as r → 0.
Thus the inner expansion of the outer solution is A ;
2(p/2) 2 p(lnh/lns).

Matching the two expansions above gives the two
relations p 5 22 and a0 5 4p. Thus, the dependence
of the eigenvalue s on the vortex strength parameter
G/\ is given by (35) for all localized vorticity distri-
butions.

APPENDIX B

The Eigenvalue Relation in the Case |G|/\ k 1 and
s k 1

We first consider vorticity profiles that decay mono-
tonically from a central maximum at h 5 0 (the cases
with D0 . 3p/2 in Fig. 6). Then the profile function
D(h) has a Taylor expansion of the form

1 1
2 4D(h) 5 D 2 D h 1 D h 1 · · · , (B1)0 2 42 24

where D2 5 2D0(0) . 0. [We assume that there are no
odd terms in the expansion of D(h).] The calculation is
insensitive to the presence of an annulus of positive
vorticity: it is the location of the negative vorticity max-
imum that counts.

For large |G|/\, the NIO equation can be rewritten as

1
2 2e A0 1 A9 2 e sA 1 D(h)A 5 0, (B2)1 2h

where e2 [ 2\/G. Equation (36) shows that for the
Rankine vortex the leading order behavior is s ;
2D0G/\, where D0 5 1/p is the value of D(h) at the
origin. This observation suggests the scaling e2s 5 D0

1 m, where m 5 em1 1 e2m2 1 · · · . Then, using the
definition [ D0 2 D(h), (B2) becomesD̃(h)

1
2 ˜e A0 1 A9 2 D(h)A 2 mA 5 0. (B3)1 2h

The function increases monotonically from zeroD̃(h)
at h 5 0 to D0 at h 5 `.

The WKB substitution A 5 exp(S/e) leads to

1
2 2˜S9 2 D 1 eS0 1 e S9 2 m e 2 m e 1 · · · 5 0. (B4)1 2h

However, this equation need not be solved in its entirety.
All that is needed is to determine the eigenvalue m by
removing potential singularities in S (arising from the
S9/h term) that cannot match onto the regular solution
of (B2) near the origin. Expanding the leading-order
WKB solution, 5 , about the origin gives1/2˜S9 2D(h)0

Ï2D D2 42 4S ; 2 h 1 h 1 · · · . (B5)0 4 96Ï2D2

Provided D2 does not vanish, the next order equation
near the origin is

1 m1S9 ; 2 2 1 · · · . (B6)1 h Ï2D h2

To avoid a singular solution, the next order correction
to the eigenvalue must be

m1 5 2 2D2.Ï (B7)

Proceeding analogously at the next order gives

D4m 5 . (B8)2 6D2

Assembling the results above, we obtain (44).
We now turn to the case in which the vorticity profile

has a maximum, Dm, at h 5 hm ± 0 (the cases with D0

, 3p/2 in Fig. 7). Define 5 Dm 2 D(h). TheD̃(h)
function has a global minimum at hm and in theD̃(h)
neighborhood of this point,

1
2˜ ˜D 5 D0 (h 2 h ) 1 · · · , (B9)m m2

where [ 2 D0(hm) . 0. Scaling the eigenvalue asD̃0m
e2s 5 Dm 1 m, we again obtain the eigenproblem in
the form (B3).

In this case the approximate solution is obtained by
arguing that the eigenfunction is localized in the neigh-
borhood of hm and is exponentially small away from
this point. A local approximation of (B3) is obtained by
defining

z 5 (h 2 hm)/e1/2. (B10)

In this case, the parameter m will have the form m 5
em1 1 e3/2 m3/2 1 e2m2 1 · · · . Then, at leading order,
(B3) is

1
2˜A 1 2m 2 D0 z A 5 0. (B11)0zz 1 m 01 22

The equation above is the well-known problem of the
quantum simple harmonic oscillator. The requirement
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FIG. C1. Complex s-plane for the definition of the Laplace inver-
sion of (C3) and (C4).

that A decays exponentially for large |z| determines the
eigenvalue as

m1 5 2(2q 1 1) ,D̃0 /2Ï m (B12)

where q is an integer. We consider only the q 5 0 branch.
Thus

A0 5 .2m1z /2e (B13)

The equation at next order is

1
2˜A 1 2m 2 D0 z A1zz 1 m 11 22

A 10z 3˜5 2 1 m A 1 D-z A . (B14)3/2 0 0h 6m

Both sides of this equation must vanish when multiplied
by A0 and integrated over all z. Using this compatibility
condition, m3/2 5 0. The solution for A1 is

˜ ˜D- D- 1 23 m z /21A 5 z 1 2 2 z e . (B15)1 25 6[ ]36m 12m 2h1 1 m

The next equation in the hierarchy is

1
2˜A 1 2m 2 D0 z A2zz 1 m 21 22

A zA 1 11z 0z 3 iv 4˜ ˜5 2 1 1 m A 1 D-z A 1 D z A .2 0 1 02h h 6 24m m

(B16)

Now the compatibility condition gives
2 iv˜ ˜1 11D- D

m 5 1 2 . (B17)2 2 4 24h 576m 32mm 1 1

APPENDIX C

Solution of the Initial Value Problem for the
Rankine Vortex

Equation (47) may be solved using the Laplace trans-
form

`

2stB̃ (h, s) 5 B (h, t)e dt. (C1)n E n

0

Hereafter in this appendix we drop the subscript n. Then,
recalling that the solution depends only on h, the trans-
formed version of (47) is

i i\ in 2˜ ˜ ˜sB 1 ZB 2 ¹ B 5 2 Z. (C2)
22 2a 2s

For h . 1, so that Z 5 0, the solution to (C2) is

G jJ ( j )K (kh)1 0B̃ (h, s) 5
2s(G 2 2pa is) kK (k)J ( j ) 2 jJ ( j )K (k)1 0 1 0

(C3)

and for h , 1, so that Z 5 G/pa2, the solution is

B̃ (h, s)

G kK (k)J ( jh)1 05 21 1 ,
2 [ ]s(G 2 2pa is) kK (k)J ( j ) 2 jJ ( j )K (k)1 0 1 0

(C4)

where

2 22isa G 2isa
j [ 2 , k [ 2 . (C5)! !\ p\ \

The point s 5 0 is a branch point; the points in the
complex s plane at which kK1(k)J0(j) 2 jJ1(j)K0(k) 5
0 are simple poles (these are simply the points s 5
2 ). The point s 5 2iG/2pa2 does not have any(q)ivn

special characteristics: the corresponding singularity in
(C3) and (C4) is removable.

The Laplace transform is inverted according to the
standard prescription,

1
st˜B (h, t) 5 B (h, s)e ds, (C6)E2p i L

where L is the straight line labeled ‘‘original Bromwich
contour’’ in Fig. C1. An alternate path of integration is
obtained by deforming the contour to the left so that
the poles on the imaginary axis are enclosed and eval-
uated as residues while the remainder of the contour
surrounds the branch line along the negative real axis.
The residue contribution from the poles gives the sum
from q 5 0 to Q in (48). The contribution from the
branch cut gives the remaining term B (bc) .

The t k 1 behavior of the B (bc) may be obtained from
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(C3), (C4) by an expansion in s near the origin. Ex-
pansion of (C3) and (C4) gives

1 J (h) 1B̃ (h, s) 1 21 1 1 O .
21 2[ ]s J 1 g 1 ln(k /2) 1 1/2 lns s1 0

(C7)
In this expression, g 5 0.577. . . is Euler’s constant,

2G 2ia
j [ 2 , k [ 2 (C8)0 0! !p\ \

and

 J ( j h)0 0 , if h , 1 j J ( j )0 1 0J (h) [ (C9)
J ( j )0 0 2 lnh, if h . 1.

j J ( j ) 0 1 0

In addition J1 [ J (1). Logarithmic terms have been
grouped in with algebraic terms of the same order in
s21.

The branch cut integral (including the contribution
from the singularity at the origin) is then

` 2xtJ (h) e 1
(bc)B (h, t) 5 21 2 dx 1 O . (C10)E 2 2 1 22 x{(J 1 g 1 ln(k /2) 1 1/2 lnx) 1 p /4} t1 00

Ignoring higher-order terms, this may be rewritten as
2i` 2iute

(bc)B (h, t) 5 21 2 2J (h) du,E 2 2u{(lnu) 1 p }0

(C11)
where

2\t
22( J 1g)1t [ e . (C12)

2a

The integral in (C11) may be expressed in terms of
Ramanujan’s function,

` 2xue
N(u) [ dx, (C13)E 2 2x{(lnx) 1 p }0

by changing the contour of integration to the positive
real axis. This is permissible because the original in-
tegration contour is the negative imaginary axis and may
be deformed onto the positive real axis without passing
through the pole of the integrand located at u 5 21.
The final result is

B (bc)(h,t) 5 21 2 2J (h)N(it). (C14)

The asymptotic expansion of Ramanujan’s integral is
given in Bouwkamp (1971) as

2 21 g g 1 p /6
N(u) 5 2 1

2 3lnu (lnu) (lnu)

0.252015810 3.996926673
1 1 1 · · · . (C15)

4 5(lnu) (lnu)

The derivation of Bouwkamp (1971) is valid only for
real arguments of N(u). However it can be shown that
(C15) actually holds for u in the right-half complex
plane, including on the imaginary axis.

The asymptotic behavior (C14) is not valid for large
h and breaks down for h2 k t. It is easy to deduce the
appropriate asymptotic behavior using an appropriate
expansion of the inverse Laplace transform (Ritchie and

Sakakura 1956). However, as shown in section 5, it is
more instructive to work in a similarity variable appro-
priate for the far field. The logarithmic behavior exhib-
ited by (C14) is also seen in diffusion problems in cy-
lindrical geometry (Carslaw and Jaeger 1959; Ritchie
and Sakakura 1956).
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