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ABSTRACT

The authors investigate the influence of steep bottom topography on the propagation of a vortex in a two-
layer quasigeostrophic model. The vortex is intensified in the upper layer and the planetary beta effect is taken
into account.

The authors find that steep topography can scatter disturbances created by the upper-layer vortex displacement
and maintain the lower-layer motion weak. It is thus shown that, when the vortex radius is smaller than a critical
value, the vortex behaves as if the lower layer was at rest (or infinitely deep as in a reduced gravity model). If
the radius is increased while holding the maximum vorticity of the vortex, the topographic Rossby waves—
generated during the scattering process—have a stronger signature in the upper layer, and the vortex evolution
begins to change in comparison with the reduced-gravity case. However, numerical experiments show that both
the steep topography and reduced-gravity trajectories remain close up to a large radius, after which a vortex
above a strong slope becomes unstable and is dispersed by topographic Rossby waves.

1. Introduction

In so far as displacement, merging, or stability is
concerned, barotropic1 and baroclinic vortices have very
different behaviors (see Flierl 1988; Verron and Valcke
1994; Reznik and Dewar 1994; Sutyrin and Flierl 1994).
Because of their relative simplicity, reduced-gravity
models have often been used in both numerical and
theoretical studies (Nof 1981; Killworth 1983), but,
since the barotropic mode is filtered out from these mod-
els (the vertically averaged streamfunction is zero as the
fluid is considered infinitely deep), some theoretical re-
sults are very sensitive to this assumption of no deep
flow (Mory 1985; Mory et al. 1987; Flierl 1984; Swaters
and Flierl 1991; Verron and Valcke 1994), and one may
wonder if reduced-gravity models are relevant for oce-
anic processes.

Chassignet and Cushman-Roisin (1991) addressed
this issue in a two-layer shallow-water model for the
propagation of a vortex on the beta plane. They found

1 Here, barotropic means that the vortex structure is independent
of depth.
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that for the reduced-gravity model to be valid, the lower
layer must be ‘‘deeper by a factor of 10 or so’’ than the
upper layer and that either the vortex radius must be
smaller than an internal radius of deformation or bigger
than a beta-based radius. However, they did not take
into account the effect of a bottom topography in their
theoretical and numerical calculations.

It has been shown that when a vortex evolves on the
planetary beta plane, it rapidly looses its coherence and
is dispersed into Rossby waves if its potential vorticity
anomaly gradient is less than b, where b is the planetary
potential vorticity gradient (Flierl 1977; McWilliams
and Flierl 1979). In this study, we focus on the behavior
of surface intensified vortices above steep bottom to-
pography. Thus, if the lower-layer background gradient
of potential vorticity, which is proportional to the bot-
tom slope, is stronger than the gradient of potential vor-
ticity anomaly, the initial lower-layer velocity field is
rapidly dispersed by the bottom topography (the time
period for dispersion is inversely proportional to the
bottom slope). On the f plane, La Casce (1998) showed
that the end state is a structure with no motion in the
lower layer and a circulation in the upper layer such
that the potential vorticity anomaly has the same struc-
ture as initially. When the planetary beta effect is taken
into account, the upper-layer vortex will develop a di-
polar component, called beta gyre (see McWilliams and
Flierl 1979; Sutyrin and Flierl 1994), leading to a dis-
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FIG. 1. Model description.

placement of the upper-layer structure that is no longer
stationary. This stretches the deep-water columns and
develops a motion in the lower layer. If it is not too
strong, this motion is again subject to topographic dis-
persion. Kamenkovich et al. (1996) indeed found that
when crossing a steep ridge, even large vortices such
as Agulhas eddies become compensated.

There are thus some reasons to believe that, even
when the beta effect is taken into account, steep bottom
topography can maintain the lower-layer motion weak
enough so that it can be considered at rest and that a
surface intensified vortex could behave as in a reduced-
gravity model.

The problem we address here is to seek under which
conditions of background stratification and vortex char-
acteristics the reduced-gravity model is valid when we
take into account the dispersive effect associated with
a strong bottom topography. The model is described in
the second section. A scaling analysis is performed in
the third section and yields some theoretical grounds
that are used to explain our numerical experiments (pre-
sented in the fourth and fifth sections). Application to
oceanic vortices is discussed in the last section.

2. Model

a. Quasigeostrophic equations

In this paper, we consider a two-layer quasigeostroph-
ic (QG) model on the b plane and take into account the
effect of a bottom topography with a constant slope (see
Fig. 1). When the fluid is at rest, the first layer depth
is H1 and the second layer depth is H2 2 sxx 2 syy,
where (sx, sy) are the east–west and north–south slope
components, respectively, and s 5 ( 1 )1/2 is the2 2s sx y

bottom slope. The densities are r1 and r2 respectively,
the Coriolis frequency is f, and the gravitational accel-
eration is g.

The inviscid equations rely on the conservation of
the total potential vorticity in each layer and can be
written (see Pedlosky 1987, chapter 6)

d
P 5 ] p 1 J(c , p ) 1 b ] c 2 b ] c 5 0,k t k k k k,y x k k,x y kdt

k 5 1, 2, (1)

where
2p 5 z 1 F (c 2 c ) 5 ¹ c 1 F (c 2 c ) (2a)1 1 2 1 1 1 2 1

2p 5 z 1 F (c 2 c ) 5 ¹ c 1 F (c 2 c ) (2b)2 2 1 2 2 2 1 2

is the potential vorticity anomaly in each layer and

Pk 5 pk 1 bk,xx 1 bk,yy (3)

is the total potential vorticity.
In these equations F1 5 f 2/g9H1, F2 5 f 2/g9H2 with

g9 5 g(r2 2 r1)/r1; b1, y 5 b, b1,x 5 0; b2, y 5 b 1
fsy/H2; b2,x 5 fsx/H2, and b is the gradient of the plan-
etary vorticity; b2 5 ( 1 )1/2 then measures the2 2b b2,x 2,y

background potential vorticity gradient in the second
layer and will be used to evaluate topographic disper-
sion. Also ck is the streamfunction in layer k, J(A, B)
5 ]xA]yB 2 ]yA]xB is the Jacobian operator, and z 5
¹2c is the relative vorticity.

b. Numerical model

The numerical model we use is a pseudospectral code
in the horizontal (a biperiodic domain with a 128 3
128 horizontal grid; Orszag 1971). A biharmonic vis-
cosity is used with a viscosity coefficient n 5 5 3 107

to 5 3 108 m4 s21 to avoid computational instability.
The mesh size is dx 5 20R/128 and depends on the
vortex radius R (defined below). The time step is 2160
s, and the model is typically run for 150 days.

On the planetary beta plane, the vortex usually does
not interact with the periodic continuation of the Rossby
wave wake generated during its propagation within this
time period. But for strong bottom slopes, the topo-
graphic Rossby waves rapidly crosses the domain and
may interact with the vortex again. However, we believe
that this does not alter our conclusions as different slope
orientations do not seem to change the general vortex
behavior.

c. Initial state, vortex structure

In this study we focus on vortices with a strong sig-
nature in the upper layer. We thus choose the initial
streamfunctions as follows:

2V R1 2 22r /2Rc 5 e ,1 2

where R is the vortex lengthscale and corresponds to
the radius at which the velocity reaches its maximum,
r is the distance from the vortex center, and V1/2 its
rotation rate near the center. As we only consider an-
ticyclonic vortices, V1 is positive. Notice that the initial
minimum vorticity z1 5 ¹2c1 is 2V1 (and not 2V1/2).

To test for the sensitivity of the processes to vortex
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structure, we have considered vortices for which c2 5
0 initially (so that the lower layer was initially at rest)
and vortices with no initial potential vorticity anomaly
in the second layer, p2 5 0. On the f or b plane, many
studies have shown that these structures usually have a
very different behavior (see Verron and Valcke 1994;
Morel and McWilliams 1997). In addition to considering
different initial deep flow, we have also tested for the
sensitivity of our results to different slope orientations.
The c2 5 0 and p2 5 0 cases have thus been system-
atically considered with different (sx, sy) couples (but
the same bottom slope s) including east–west, north–
south, or opposite sign slopes.

3. Scaling analysis
a. Process

As mentioned in the introduction, steep bottom to-
pography is likely to maintain the lower-layer motion
weak enough so that the upper-layer vortex evolves as
in a reduced-gravity model. The bottom layer may how-
ever affect the general behavior and trajectory of the
structure if either the lower-layer motion becomes strong
enough so that the circulation it generates in the upper
layer via stretching is comparable to the beta gyre or if
the excitation of the topographic Rossby waves asso-
ciated with the vortex displacement induces a strong
energy leakage. If this latter and the second-layer motion
are weak, the lower layer does not play a big role on
the dynamics of the vortex, and it behaves as if the
lower layer was at rest, or infinitely deep as in a reduced-
gravity model.

In the following analysis, we address this issue as-
suming that the upper-layer vortex displacement is not
affected by the topographic Rossby waves and behaves
as if the lower layer was infinitely deep. We can then
calculate the effect of the vortex displacement on the
lower layer, and this yields an estimate of the lower-
layer motion that can then be used to evaluate its influ-
ence on the development of the upper-layer beta gyre.
We then seek a contradiction with the initial assumption
(negligible effect of the lower layer) to derive an ana-
lytic criterion for the validity of the model.

b. Analysis

Let us develop Eq. (1) and derive a scaling for each
term. The equation for the upper and lower layers can
be written

] (z 2 F c ) 1 F ] c 1 J(c , z ) 1 F J(c , c )t 1 1 1 1 t 2 1 1 1 1 2

T1 T2 T3 T4

1 b ] c 5 0 (4a)1 x 1

T5

] (z 2 F c ) 1 F ] c 1 J(c , z ) 1 F J(c , c )t 2 2 2 2 t 1 2 2 2 2 1

T6 T7 T8 T9

1 b ] c 2 b ] c 5 0.2,y x 2 2,x y 2

T10
(4b)

In (4a), if c2 is weak enough, T2 and T4 are negligible
and the equation is then equivalent to a reduced-gravity
model on the b plane with an internal radius of defor-
mation R1 5 1/ . In this case, an intense upper-layer1/2F1

vortex keeps its axisymmetric part and translates essen-
tially westward (see Sutyrin and Flierl 1994). This dis-
placement is due to the development of a dipolar cir-
culation component called beta gyre and can be eval-c91
uated together with the propagation speed C 5 R/t 1 as
T1, T3, and T5 have the same order of magnitude (see
McWilliams and Flierl 1979; Sutyrin and Flierl 1994;
Reznik and Dewar 1994; Sutyrin and Morel 1997). At
first, since T1 is associated with the axisymmetric part
displacement, O(T1) ø CO(=p1). In the vortex core,
both the stretching and relative vorticity terms have the
same sign (negative for an anticyclone), and we can
thus evaluate the order of magnitude of the potential
vorticity anomaly p1 by simply summing the order of
magnitude of both terms. This yields O(T1) . V1(1 1
F1R2)/t 1. (Notice the coefficient for the order of mag-1 1

2 2

nitude of the stretching term. This coefficient depends,
in fact, on the shape of the streamfunction but is usually
close to when R is defined as the radius where the1

2

velocity is maximum.) Concerning T3, as the Jacobian
term is zero for a purely axisymmetric structure, we
must take into account the beta gyre component toc91
evaluate this nonlinear term. We get O(T3) ø V1/R2.c91
The last term represents advection of background po-
tential vorticity by the vortex circulation and a rough
estimate is O(T5) ø b1RV1/2. As each term has the
same order of magnitude, we finally get

22 1 F R1t ø1 b R1

3c9 ø b R /2.1 1

Let us now consider (4b) and the lower-layer dynamics.
As Rossby waves propagate along lines of constant total
potential vorticity, dispersion occurs in this layer when
potential vorticity contours extend to infinity. In our
configuration, this happens when the order of magnitude
of the background potential vorticity gradient b2 5
( 1 )1/2 (ø fs/H2 for a steep enough bottom to-2 2b b2, x 2,y

pography) is greater than the potential vorticity anomaly
gradient \=p2\. This condition yields a constraint on
the upper-layer vortex strength (considering that the or-
der of magnitude of p2 is mainly given by F2c1)

2O(T8 1 T9) F R V2 1d 5 . # 1.disp O(T10) b R2

This parameter controls dispersion at depth and, in prac-
tice, rapid scattering occurs for values of ddisp above 1
(up to ddisp ø 2 or so). In this case, the nonlinear terms
T8 1 T9 (associated with the second-layer potential
vorticity gradient) can be neglected in comparison with
T10 (associated with the background gradient of poten-
tial vorticity). On the f plane this sole criterion governs
the vortex evolution: if it is satisfied, the vortex becomes
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compensated (see La Casce 1998). On the beta plane,
the upper vortex propagates and this induces a motion
at depth through term T7, which acts as a forcing in
(4b). To evaluate the order of magnitude of the circu-
lation in the second layer we assume that ddisp is small
enough to neglect T8 and T9 in (4b) (see appendix A).
We find that c2 can be decomposed into two terms
evolving at two different timescales: a slow one, t 1 5
(2 1 F1R2)/b1R, associated with the upper-layer forcing,
and a rapid one, t 2 5 (2 1 F2R2)/b2R, associated with
the topographic scattering. Both parts have the same
order of magnitude for the lower-layer vorticity (see
appendix A); it can also be obtained if we notice that
T10 and T7 must have the same order of magnitude
(they are both prevailing terms for the slow part). We
get

2F V R b F R2 1 1 2O(z ) 5 V ø 5 V . (5)2 2 12b t b 1 1 F R2 1 2 1

When the vortex has an initial deep flow (for instance,
when we choose p2 5 0 initially), this scaling is, of
course, not valid as long as the lower-layer motion has
not been dissipated by the topographic Rossby waves.
But this only lasts for a short time period of several t 2.

c. Criteria for model validity

We now evaluate the influence of the lower-layer cir-
culation on the upper-layer vortex evolution and look
for a contradiction with the previous hypothesis (neg-
ligible influence). This circulation changes the first-layer
velocity and potential vorticity fields via stretching. In
(4a) the second term is mainly associated with the fast
topographic wave part of c2 (t 2 K t 1) and represents
the signature of the topographic Rossby waves in the
first layer. Its ratio with T5 compares the topographic
Rossby waves signature with the development of the
beta gyre and will be called dTRW:

O(T2) F V1 2d 5 .TRW O(T5) t b V R2 1 1

2 2F R F R1 25 . (6a)
2 2(2 1 F R )(2 1 F R )1 2

The fourth term is associated with the changes in the
potential vorticity distribution due to the lower-layer
circulation and subsequent interface deviation. It is a
nonlinear effect, and its ratio with T5 will be called dNL:

2 2 2O(T4) F R V F R F R V1 2 1 2 1d 5 . 5 . (6b)NL 2O(T5) b R 1 1 F R b R1 1 2

The criteria for the validity of the reduced-gravity model
are thus ddisp , 1, dTRW K 1 and dNL K 1.

4. Reduced-gravity regime

a. Dissipation

Let us imagine twin experiments with a vortex of the
same initial shape in the upper layer, but a resting infinite
lower layer on the one hand and a finite lower layer but
with steep topography on the other hand. For the latter
case, when dTRW and dNL are small, the topographic Ross-
by wave signature and the potential vorticity changes
associated with the lower-layer motion (terms T2 and
T4) can, a priori, be neglected in Eq. (4a) and the vortex
in the first layer should evolve as if the lower layer was
at rest. Thus, both experiments should yield the same
evolution for the vortex in the first layer.

In fact, some discrepancies may appear because in
the finite depth case, the upper-layer vortex displace-
ment generates a motion in the lower layer that is as-
sociated with a significant energy loss on a long time-
scale. Thus some differences of the vortex strength and
shape appear between both experiments after a while.
To keep the same evolution, one must reinitialize the
reduced-gravity experiment using the fields of the finite
depth one with a period much shorter than the timescale
associated with the decay due to the generation of bot-
tom motion.

We have not been able to calculate the rate of decay
(an estimation can however be given under some as-
sumptions; see appendix B), but the numerical experi-
ments seem to show that, in the reduced-gravity regime
(dNL and dTRW small), it has little influence on the vortex
evolution for the period of time considered in this paper
(;150 days).

b. Flat bottom

If there is no bottom topography, dispersion in the
lower layer can only happen if ddisp 5 F2V1R/b # 1,
where b ø 2 3 10211 m21 s21 is the planetary beta. On
the other hand, for the vortex in the first layer to resist
dispersion and stay coherent, a similar scaling analysis
can be performed, which yields 5 F1V1R/b k 1.d9disp

So both criteria can only be satisfied if F2/F1 5 H1/H2

K 1.
This condition was first derived by Chassignet and

Cushman-Roisin (1991), in the framework of a more
general two-layer shallow-water model on the beta
plane. They concluded that two conditions must be sat-
isfied for the reduced-gravity model to be valid.

1) F2/F1 K 1: the lower layer must be much bigger, by
a factor of 10 or so, than the upper one.

2) min(F1R2F2R2, F2V1R/b) K 1: the vortex radius is
either smaller than an internal deformation radius or
smaller than a beta-based horizontal scale.

Some slight differences exist between their results and
the model developed in this paper due to different scal-
ing analysis. For instance, Chassignet and Cushman-
Roisin concluded, in fact, that when the radius of the
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FIG. 2. Vortex trajectories for H1 5 H2 5 1500 m, g9 5 0.01, R
5 40 km, V1 5 0.3 f and s 5 0 (dotted), (sx, sy) 5 (0, 0.01) (dashed),
(sx, sy) 5 (0.01, 0) (where circles indicate the vortex position every
10 days) and in the reduced gravity case (plain). Each curve represent
vortex trajectories for 150 days. Notice the similarity between the
strong slope and the reduced gravity cases.

vortex is greater than a beta-based critical radius, the
reduced-gravity model can recover its validity; but in
their model they chose to hold the maximum depth de-
viation (or streamfunction maximum Cmax 5 R2V1/2)
constant while varying the vortex radius. This conclu-
sion is changed if one chooses to test for the sensitivity
of the vortex evolution to its radius with a fixed max-
imum velocity, potential vorticity anomaly, or, as is the
case in this paper, fixed relative vorticity maximum V1.
Both our and the Chassignet–Cushman-Roisin analysis
however give the same order of magnitude for the va-
lidity of the reduced-gravity model (replacing V1 by
2Cmax/R2). We will thus not compare both models fur-
ther and focus on the additional effect of steep topog-
raphy.

c. Sloping bottom case

When steep bottom topography is taken into account,
the validity domain of the reduced-gravity regime is
drastically changed. According to our scaling analysis,
the bottom layer no longer needs to be much deeper
than the upper one as steep topography is able to dis-
perse the motion in the lower layer while keeping the
upper-layer vortex coherent. Indeed, as b2 depends on
both the planetary beta and bottom slope, ddisp can be
greatly decreased if a steep slope is taken into account.

Let us first present an experiment with two layers of
the same depth, for which Chassignet and Cushman-
Roisin’s constraint is not satisfied. For this preliminary
experiment, we have chosen H1 5 H2 5 1500 m, f 5
7 3 1025 s21, b 5 2 3 10211 m21 s21, g9 5 0.01, and
a vortex with a maximum vorticity V1 5 0.3 f and a
radius R 5 40 km. The lower layer is initially at rest.
Such a vortex is able to resist dispersion in the upper
layer ( 5 F1V1R/b ø 15) while the lower layer isd9disp

subject to dispersion when a bottom slope s 5 0.01 is
taken into account (ddisp 5 F2V1RH2/ fs ø 0.8). In ad-
dition, in this parameter regime, the reduced-gravity
model should be valid (we get dTRW ø 0.04 and dNL ø
0.1).

Figure 2 represents the vortex trajectories on the beta
plane with and without bottom slope and compared to
a reduced-gravity model (plain). The duration of each
simulation is 150 days. Two different bottom slope ori-
entations are presented: the dashed trajectory corre-
sponds to the (sx, sy) 5 (0, 0.01) case (north–south
slope) and circles to the (sx, sy) 5 (0.01, 0) case (east–
west orientation). Initially, c2 5 0 and the dotted line
is associated with the flat bottom experiment. Even
though some discrepancies appear after 80 days or so,
the reduced-gravity model and the strong bottom slope
cases yield comparable trajectories, whereas without to-
pography the vortex displacement is quite different. No-
tice for instance how the trajectories are deviated west-
ward in the reduced-gravity and strong slope cases. This
is, in addition, independent of the slope orientation. The
differences after 80 days are probably due to the energy

loss associated with the development of motion in the
lower layer for the finite depth case and we believe they
can be avoided if the reduced-gravity model is reini-
tialized with the finite depth c1 every 50 days in this
case (the rate of decay calculated in appendix B yields
Tdecay ø 600 days).

5. Regime limits

a. Reduced-gravity regime

Let us now consider a more ‘‘realistic’’ two-layer
configuration with the following characteristics: H1 5
500 m, H2 5 3500 m, g9 5 0.01 m s22, f 5 7 3 1025

s21 and b 5 2 3 10211 m21 s21. The internal radius of
deformation is Rd ø 30 km. We take a bottom slope s
5 0.015 into account, the vortex maximum vorticity is
V1 5 0.3 f and is held constant, but the radius R is now
variable.

Figure 3 represents ddisp as a function of the vortex
radius. It shows that dispersion can occur in the lower
layer for up to R 5 100 km. Figure 4 shows dTRW

(dashed) and dNL (plain) as a function of the vortex
radius R. It shows that the reduced-gravity regime
should be valid up to R ø 30 km or so (dTRW and dNL

# 0.1). It is, in fact, rather difficult to estimate the
largest value for which the reduced-gravity model and
the finite depth/strong slope one give similar vortex evo-
lution, as our criteria are based on a scaling analysis,
not exact analytical calculations, and the discrepancies
between both models cannot be evaluated. We have thus
performed many experiments with different background
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FIG. 3. Lower-layer dispersion coefficient, ddisp 5 F2V1H2R/fs, as
a function of the vortex radius R for H1 5 500 m, H2 5 3500 m, g9
5 0.01, V1 5 0.3 f, and s 5 0.015. Dispersion occurs up to ddisp ø
1 or so.

FIG. 4. Plot of dTRW (dashed) and dNL (plain) as a function of the
vortex radius R for the same background stratification and vortex
strength as in Fig. 3. These parameters measure the influence of the
lower layer on the evolution of the upper vortex.

FIG. 5. Vortex center (upper layer streamfunction maximum) tra-
jectories in a reduced gravity model (plain line), a finite depth without
topography (dotted), a finite depth with a strong topography, and (sx,
sy) 5 (0, 0.015), p2 5 0 initially (dash-dotted) (sx, sy) 5 (0, 0.015),
c2 5 0 initially (dashed) or (sx, sy) 5 (0.015, 0), c2 5 0 initially
(circles every 10 days). H1 5 500 m, H2 5 3500 m, g9 5 0.01, V1

5 0.3 f and the vortex radius is R 5 30 km. Each curve represent
vortex trajectories for 150 days.

stratification and found that, for the period of time con-
sidered here (150 days), both models roughly yield the
same evolution if dTRW and dNL are both smaller than
0.3. Beyond this value, because of growing influence
of the topographic Rossby waves in the upper layer,
some discrepancies appear: the vortex shapes become
different, and we observe a growing influence of the
vortex initial deep flow (i.e., discrepancies appear be-
tween the c2 5 0 and p2 5 0 cases). The latter can, in
fact, be explained if we consider the upper-layer poten-
tial vorticity. The c2 5 0 and the p2 5 0 initialization
yields, indeed, very different P1 when the vortex radius
becomes large. As this quantity is conserved and is im-
portant for the upper-vortex evolution, it is not really
surprising to see growing influence of the initial deep
flow when R is large.

It is however worth mentioning that as long as dNL

# 1 or so, both the reduced-gravity model and the steep
topography case yield similar evolutions in the sense
that in both models the meridional displacement is weak
and the trajectories are close, whereas in the finite depth/
flat bottom case, the southward displacement is as large
as the westward displacement and the translation speed
is much more important. In addition, the vortex often
exhibits several instability periods above a flat bottom
but remains stable above a steep topography or in a
reduced-gravity model. Thus, in this intermediate pa-
rameter regime (0.3 # dNL # 1), a vortex above a strong
bottom slope appears to be trapped and to keep its sig-
nature in comparison with the flat bottom case (see
Thierry 1996).

To illustrate these results, let us now compare the
behavior of vortices in the reduced-gravity model to
evolutions in the finite depth case with H1 5 500 m,
H2 5 3500 m, g9 5 0.01 m s22, different bottom to-
pographies, and initial lower-layer streamfunction.

Figures 5, 6, and 7 represent the trajectories of the
vortices in the reduced-gravity model (plain), with a

finite depth without topography and c2 5 0 (dotted)
initially and with a finite depth but a strong north–south
slope (sx, sy) 5 (0, 0.015) and either c2 5 0 (dashed)
or p2 5 0 (dash-dotted) initially. As mentioned previ-
ously, a different slope orientation (sx, sy) 5 (0.015, 0)
was also considered with the c2 5 0 initialization, and
the corresponding trajectory is represented by circles.
The results are given for three different vortex radii R
5 30 km (Fig. 5), R 5 40 km (Fig. 6), R 5 80 km (Fig.
7) corresponding, respectively, to (ddisp, dTRW, dNL) ø
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FIG. 6. Same as Fig. 5 except for R 5 40 km. FIG. 7. Same as Fig. 5 except for R 5 80 km.

(0.3, 0.08, 0.1), (0.4, 0.18, 0.2), and (0.8, 0.5, 0.6). The
trajectories of the vortex above an infinite resting lower
layer and above a strong slope s 5 0.015 are very close
for R 5 30 km and R 5 40 km independently of the
initial lower-layer streamfunction or slope orientation.
They exhibit slight differences when R 5 80 km (the
final westward displacement are 235, 220, and 180 km
for the reduced-gravity model, the finite depth/strong
north–south slope with p2 5 0 and c2 5 0, respec-
tively), but remain quite close in comparison with the
flat bottom case. [Notice that, in Fig. 7, the total tra-
jectory for the flat-bottom experiment did not fit in the
plot and that the final vortex position was (x, y) 5
(2380, 2430) km.] This result is somewhat surprising
as for such radii, dTRW and dNL are not small and the
topographic Rossby waves have a rather strong signa-
ture in the upper layer. We thus expected a non-negli-
gible influence on the development of the beta gyre and
a subsequent effect on the vortex propagation. That the
topographic Rossby waves have no effect on the vortex
displacement may be associated with their rather rapid
propagation. Indeed, the beta gyre development time-
scale is t 1, which is much bigger than t 2, the timescale
associated with the topographic Rossby waves. Thus,
even though these latter have a strong instantaneous
signal, their effect, when averaged over t 1, can be quite
small.

Figure 8 represents the upper-layer potential vorticity
anomaly p1 evolution at time t 5 0, 50, 100, and 150
days for the reduced gravity case and R 5 30 km. Notice
the development of Rossby waves and the general west-
ward displacement. Figure 9 compares the upper-layer
potential vorticity anomaly after 150 days for a vortex
with a radius R 5 30 km in the reduced-gravity model
(Fig. 9a), the finite depth/strong north–south slope, (sx,

sy) 5 (0, 0.015), and either c2 5 0 (Fig. 9b) or p2 5
0 (Fig. 9c), and finally the finite depth/strong east–west
slope, (sx, sy) 5 (0.015, 0), with c2 5 0 (Fig. 9d). Each
model yields rather close evolutions, whatever the initial
lower-layer velocity field or slope orientation.

Figure 10 is the same as Fig. 9 except that the vortex
radius is now R 5 80 km and Fig. 10e represents the
evolution above a flat bottom. Some discrepancies be-
tween the different models become clearer in the Rossby
wave field and vortex structure but the vortex remains
stable above an infinite lower layer or steep topography.
This is not the case above a flat bottom where the vortex
exhibits an unstable behavior and has a much larger
propagation speed (see Fig. 10e).

b. Unstable regime

When dNL is increased beyond 1, the vortex above a
strong slope is apparently unstable and dispersed by
topographic Rossby waves.

Figure 11 illustrates the dNL $ 1 case. It represents
p1 after 300 days for an initial radius R 5 120 km [(ddisp,
dTRW, dNL) ø (1.2, 0.7, 1.2)], in the reduced-gravity case
(Fig. 11a), and the finite depth with a strong north–
south (Fig. 11b) or east–west (Fig. 11c) slope and c2

5 0 initially. The vortex remains stable above an infinite
lower layer, but in the presence of a strong bottom slope
it is unable to maintain its coherence in this case. This
is quite clear with a north–south slope (Fig. 11b) where
the vortex does not seem to move and is dispersed by
topographic Rossby waves. The east–west slope case is
closer to the reduced-gravity case, but some strong dif-
ferences can be seen in the streamfunction field, which
exhibits strong meanders and small-scale structures due
to several instability period and subsequent scattering.
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FIG. 8. Upper-layer potential vorticity anomaly field c1 at time t 5 0, 50, 100, and 150 days in the reduced gravity model for H1 5 500
m, H2 5 `, g9 5 0.01, V1 5 0.3 f, and the vortex radius is R 5 30 km.

As in this regime topographic Rossby waves have a
strong signature in the upper layer (dTRW 5 0.7), it is
not surprising to see differences between two different
slope orientations.

We have tested for the evolution of this vortex above
a strong east–west or north–south slope and without
planetary beta effect and found that it was unstable. As
a compensated vortex above a slope is a steady state on
the f plane, one can investigate the linear stability prop-
erties of the vortex and look for stable or unstable ei-
genmodes. But, to our knowledge, there does not exist
any theory for the stability of an isolated compensated
vortex over a slope in an unbounded domain, and pre-
vious studies have, as is the case in this one, relied on
scaling analysis. For instance, La Casce (1998) based
his analysis on the dispersion coefficient ddisp. He found
that when ddisp # 0.5 or so, a compensated surface vortex
is stabilized to weak perturbations above a strong bot-
tom slope.

6. Discussion

In this paper, we have studied the evolution of a qua-
sigeostrophic, surface-intensified vortex and sought un-
der which circumstances a reduced-gravity model is val-
id when we take into account a strong bottom slope.
We found that the reduced-gravity model can be ade-
quate for oceanic situations when the vortex evolves
above a steep enough bottom topography and provided
dNL and dTRW , 0.3 (which corresponds to vortex radii
smaller than 50 km for a maximum vorticity V1 5 0.3 f
and for the stratification used in this paper). This result
is independent of the slope orientation. When the vortex
radius is increased, some differences appear as the to-
pographic Rossby wave signature becomes strong in the
surface layer, but both configurations apparently yield
similar vortex trajectories and stability property up to
dNL ø 1 (R ø 100 km). This could be due to the rather
rapid propagation of topographic waves in comparison
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FIG. 9. Upper-layer potential vorticity anomaly at t 5 150 days for a vortex of radius R 5 30 km and for H1 5 500 m, H2 5 3500 m,
g9 5 0.01, and V1 5 0.3 f. Results shown are from the reduced-gravity model (a), finite depth/strong north–south (b) or east–west (d) slope
(s 5 0.015) with c2 5 0 initially and finite depth/strong north–south slope with p2 5 0 initially (c). The same contour values are used in
each plot.

with the beta-gyre development timescale, the former
having a negligible mean influence on the latter. When
dNL . 1, the vortex becomes unstable, looses its co-
herence and is dispersed by topographic Rossby waves.
We believe that these conclusions are not sensitive to
the vortex initial shape (a Gaussian decay in this paper)
as long as the vortex is isolated (fast decay away from
the core: see Morel and McWilliams 1997) and the def-
initions of the vortex radius and strength consistent with
our definitions (radius at which the velocity is maximum
and vorticity maximum respectively). For instance, one
should keep in mind that the previous results on the
sensitivity of the vortex behavior to its radius were ob-
tained for a constant maximum vorticity V1. These are
the main results of this paper.

When the reduced-gravity regime is valid, we have
seen that, after a while, some differences can appear
when we compare the evolution of a surface-intensified

vortex in a reduced gravity and in a finite depth but
steep topography configuration. These differences are
due to an energy loss of the vortex in the finite depth
model as, in this case, the vortex displacement generates
a motion in the lower layer. In the long term, this can
lead to substantial differences between the vortex struc-
tures in both models. To avoid these discrepancies, the
reduced-gravity model should be periodically reinitial-
ized with the upper-layer streamfunction of the finite
depth/steep topography experiment, with a period much
shorter than the rate of decay. We have been unable to
calculate this rate in the general case, but an estimate
can be obtained under some assumptions (see appendix
B). Equation (B4) and the numerical experiment pre-
sented here show that the decay is slow enough to be
negligible if we consider the vortex evolution for 100–
150 days.

As far as application to oceanic situations is con-
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FIG. 10. Same as Fig. 9 except that R 5 80 km and (e) is the upper-
layer streamfunction for an evolution above a flat bottom and with
c2 5 0 initially.
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FIG. 11. Upper-layer potential vorticity anomaly at t 5 300 days
for a vortex of radius R 5 120 km and for H1 5 500 m, H2 5 3500
m, g9 5 0.01, and V1 5 0.3 f. Results shown are from the reduced-
gravity model (a) and finite depth/strong north–south, (b) or east–
west (c) slope model with c2 5 0 initially.

cerned, the weakest point of this study relies on the use
of a QG model together with coherent strong vortices
and steep bottom topography. Indeed, for the quasi-
geostrophic model to be valid, the Rossby number must
be small and the layer depth must not change too much
over the horizontal scale R, which yields, for the depth
variation associated with the bottom topography and
with our notation, Ro 5 U/ fR K 1 and H2/sR K 1 (see
Cushman-Roisin 1994, chapter 6: 77–95, chapter 15:
204–224). The Rossby number in our experiments is
Ro ø V1/2 f 5 0.15, which is reasonable. But the second
criterion yields, for H2 5 3500 m and s 5 0.015, R K
240 km. This criterion is roughly satisfied when R ,
50 km, and we thus believe our results on the similarity
between steep topography and the reduced-gravity mod-
el are also valid in a two-layer shallow-water model. It
is, however, not satisfied in the experiments where we
have considered R 5 80–120 km. Even though a com-
parison with a full shallow-water model would be in-
teresting, we do not expect strong qualitative differences
between both models as far as topographic Rossby wave

signature in the upper layer or vortex stability are con-
cerned.

In addition, the unphysical situations described above
(strong layer thickness changes or even bottom topog-
raphy larger than the fluid depth for large vortex radii)
are also associated with the fact that, for the sake of
simplicity, we have only considered a constant bottom
slope in this paper. We believe that our conclusions
could be similar above a randomlike topography with
steep seamounts of small scale in comparison with the
vortex size and for which the quasigeostrophic as-
sumptions are not violated. In this case the topography
should indeed also disperse the motion in the lower layer
and act so as to maintain the lower layer motion weak
(G. M. Reznik 1995, personal communication).

Many field observations have shown strong interac-
tion of surface intensified vortices, such as Agulhas ed-
dies, Gulf Stream rings or eddies in the Gulf of Mexico,
with steep topography (Walvis ridge, continental slopes,
or a variable but steep bottom topography). According
to our analysis, these vortices should rapidly evolve into
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a compensated state where there is no motion in the
lower layer and, if their radius is small enough, evolve
as in a reduced-gravity model. If their size is large, they
should undergo a stalling period in comparison with the
flat-bottom case, and for very large radii (R . 100 km)
they should become unstable and be dispersed by to-
pographic Rossby waves. Kamenkovich et al. (1996)
studied the effect of a steep ridge (Walvis ridge) on the
behavior of large-scale vortices (Agulhas eddies). They
found that the deep motion undergoes dispersion, the
vortex thus becoming compensated, and that the eddy
trajectory was deflected westward. Byrne et al. (1995)
analyzed Geosat data and found that Agulhas eddies
usually slow down when they cross the Walvis Ridge.
Both Kamenkovich et al. and Byrne et al. results can
be explained with our results and correspond to the ex-
pected behavior for a vortex with an intermediate radius
(0.3 # dNL # 1), R ø 60 to 100 km, for the stratification
and bottom slope used in section 5 and a maximum
vorticity V1 ø 0.3 f.

Let us also mention that this study could have some
implications as far as large-scale general circulation
modeling is concerned. Indeed, in coarse resolution
models, the bottom topography is smoothed. We have
shown that steep topography is similar to a scale selec-
tive dissipation mechanism and this could be added in
general circulation models to take into account small
scale ‘‘roughness’’ of the bottom topography. However,
we have only considered vortices and a two-layer qua-
sigeostrophic model in this paper. A lot of work would
be necessary to assess the vertical extent of this effect,
its influence on more general currents, or the way it
could be parameterized.

Finally, despite that we have only considered a two-
layer model, these conclusions can also apply to inter-
mediate mesoscale vortices in a three-layer model, pro-
vided the Froude numbers FiR2 are calculated taking
into account the stratification at the vortex level. This
was indeed confirmed both by three-layer numerical
studies and experiments in rotating tanks on interme-
diate depth vortices (see Morel 1995).
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APPENDIX A

Lower Layer Motion

Under the assumption that dispersion dominates the
lower-layer dynamics, all nonlinear terms can be ne-
glected in Eq. (4b), which becomes

]t(z2 2 F2c2) 1 b2,y]xc2 2 b2,x]yc2 5 2F2] tc1.
(A1)

Let us then solve (A1) and calculate c2 as a function
of c1. To do so, we consider a spatial Fourier transform
of (A1):

ib kib l F ] ĉ2,y2,x 2 t 1] ĉ 1 2 ĉ 5 , (A2)t 2 22 2 21 2K 1 F K 1 F K 1 F2 2 2

where (k, l) are the east–west and north–south wave-
numbers, K 2 5 k2 1 l2, and

2i(kx1ly)Ĝ 5 e G(x, y, t) dx dyEE
1

i(kx1ly) ˆG 5 e G(k, l, t) dk dl,EE24p

where Ĝ is the Fourier transform of G.
Equation (A2) is readily solved and the solution is

b k 2 b l2,y 2,x
ĉ 5 exp it2 21 2K 1 F2

t b k 2 b lF ] ĉ 2,y 2,x2 t 13 exp it9 dt9. (A3)E 2 21 2K 1 F K 1 F2 20

Let us now assume that over a reasonable time period
the upper-layer vortex is steadily propagating westward
for the sake of simplicity:

5 ,o 2ikCtĉ ĉ (k, l)e1 1

where is the Fourier transform of c1 at t 5 0 and Coĉ 1

is the propagation speed of the structure. In this case
we find

oF kCĉ2 1ĉ 52 2kC(K 1 F ) 1 b k 2 b l2 2,y 2,x

b k 2 b l2,y 2,x
3 exp(2ikCt) 2 exp it . (A4)

21 2[ ]K 1 F2

This equation shows that there are two timescales in-
volved in the evolution of c2, a slow one associated
with the forcing by the upper-layer vortex displacement
and subsequent stretching and a rapid one associated
with the bottom topography. Both parts have the same
order of magnitude, which will be evaluated by calcu-
lating c2 at the center of the upper-layer vortex where
the stretching is maximum, (x 5 Ct, y 5 0) and con-
sidering the main axisymmetric part of only. Usingoc1

the inverse Fourier transform, we get
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b k 2 b l2,y 2,x
1 2 exp it kC 1

21 2[ ]K 1 F21
o oc 5 F Ckĉ dk dl.2 EE 2 12 24p kC(K 1 F ) 1 b k 2 b l2 2,y 2,x

This integral can be calculated using polar coordinates
k 5 K cosu, l 5 K sinu and defining a so that

2C(K 1 F ) 1 b2 2,y
cosa 5

2 2 2 1/2{b 1 [b 1 C(F 1 K )] }2,x 2,y 2

b2,xsina 5 .
2 2 2 1/2{b 1 [b 1 C(F 1 K )] }2,x 2,y 2

Using the integral definition of the Bessel function J0(z)
5 (2p)21 ez cosu du (see Abramowitz and Stegun2p∫0

1972), we get

` o1 Kĉ1oc 5 F C cosaF(K, t) dK,2 E 2 2 2 2 1/22p {b 1 [b 1 C(F 1 K )] }2,x 2,y 20

where
2 2 2 1/2{b 1 [(K 1 F )C 1 b ] }2,x 2 2,y

F(K, t) 5 1 2 J t .o 21 2K 1 F2

As 5 (2p)21 K dK, J0(z) → 0 at infinity, C ø`o oc ∫ ĉ1 0 1

R/t 1 5 b1R2/(2 1 F1R2) and, for a strong bottom slope,
b2 k C(K 2 1 F2) this equation can be used to give an
estimated upper bound on :oc2

2b F R1 2o oc 5 c . (A5)2 12b 2 1 F R2 1

APPENDIX B

Vortex Decay

If the lower layer is at rest, the energy of the structure
is

2 2E 5 \=c \ 1 F \c \ dx dy. (B1)redg EE 1 1 1
2R

This quantity is conserved if the lower layer is infinitely
deep, but when the lower-layer depth is finite and on
the b plane, Eredg is not conserved as the upper vortex
displacement generates topographic Rossby waves and
the lower layer can no longer be considered at rest. We
can calculate the evolution equation for Eredg in the finite
lower-layer depth case by multiplying Eq. (4a) by c1

and integrating through the whole horizontal domain.
This yields (with the assumption that c1 and c2 rapidly
tend to zero at infinity)

] E 5 F c ] c dx dy. (B2)t redg EE 1 1 t 2
2R

To estimate the decay timescale associated with the gen-
eration of Rossby waves and motion in the lower layer,
we must derive an order of magnitude for the right-hand
term of (B2) and evaluate D 5 F1c1] tc2 dx dy.∫∫ 2R

This involves both the slow and rapid parts of c2 and
their correlation with c1. If we assume that the corre-

lation is maximum for the rapid part of c2 and is con-
centrated in the vicinity of the vortex core, we get

2O(D) . F O(c )O(c )R /t1 1 2 2

2 2V R V R1 2 25 F R /t . (B3)1 22 2

This thus yields a rough estimate for the decay rate Tdecay

Eredg
T .decay O(D)

2 2 2(1 1 F R )(2 1 F R )(2 1 F R ) 11 1 25 .
2 2F R F R b R1 2 1

(B4)

It is worth noticing that, as we have assumed that the
upper-vortex behavior was not influenced by the lower
layer, the rate of decay does not depend on the bottom
slope. Indeed, if the lower-layer dispersion is rapid
enough, the factor limiting the decay is the rate at which
the upper vortex transfers energy to the lower layer via
stretching, which only depends on the upper vortex dis-
placement speed, interface deviations, and stratification.

REFERENCES

Abramowitz, M., and I. Stegun, 1972: Handbook of Mathematical
Functions. Dover, 1046 pp.

Byrne, D., A. Gordon, and W. Haxby, 1995: Agulhas eddies: A syn-
optic view using Geosat ERM data. J. Phys. Oceanogr., 25, 902–
917.

Chassignet, E., and B. Cushman-Roisin, 1991: On the influence of a
lower layer on the propagation of nonlinear oceanic eddies. J.
Phys. Oceanogr., 21, 939–957.

Cushman-Roisin, B., 1994: Introduction to Geophysical Fluid Dy-
namics. Prentice-Hall, 320 pp.

Flierl, G., 1977: The application of linear quasi-geostrophic dynamics
to Gulf Stream rings. J. Phys. Oceanogr., 7, 365–379.
, 1984: Rossby wave radiation from a strongly nonlinear warm
eddy. J. Phys. Oceanogr., 14, 47–58.
, 1988: On the instability of geostrophic vortices. J. Fluid Mech.,
97, 349–388.

Kamenkovich, V., Y. Leonov, D. Byrne, A. Gordon, and D. Nechaev,
1996: On the influence of bottom topography on the Agulhas
eddy. J. Phys. Oceanogr., 26, 892–912.



924 VOLUME 29J O U R N A L O F P H Y S I C A L O C E A N O G R A P H Y

Killworth, P., 1983: On the motion of isolated lenses on a beta-plane.
J. Phys. Oceanogr., 13, 368–376.

La Casce, J., 1998: A geostrophic vortex over a slope. J. Phys. Ocean-
ogr., 28, 2362–2381.

McWilliams, J., and G. Flierl, 1979: On the evolution of isolated
lenses on a beta-plane. J. Phys. Oceanogr., 9, 1155–1182.
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doctorat de l’Université Joseph Fourier, 155 pp. [Available from
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