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ABSTRACT

A model for a turbulent bottom boundary ‘‘slab’’ layer is described. The model is designed to fit under a
standard, depth coordinate ocean general circulation model, with a view to improving its response both for local
and climate problems. The depth of the layer varies temporally and spatially. Both analytical and numerical
versions of the model conserve energy. The model is tested using a source of dense water on a slope, and
performs satisfactorily, with the plume spreading far more than the equivalent case without a bottom layer.

1. Introduction

It has long been known (cf. Armi and Millard 1976)
that there is a turbulent layer near the bottom, of thickness
10–50 m, whose temperature and salinity are well mixed
in the vertical: the bottom equivalent of a surface mixed
layer, in fact. The behavior of water within these layers
is of vital importance to the global thermohaline circulation
because outflows from areas of deep-water formation,
which pass over sills between basins, descend to the ocean
floor as bottom boundary layers. Typical are the outflows
from the Mediterranean, through the Denmark and Ice-
land–Faeroes Straits, areas of dense water around the Ant-
arctic, the deep western boundary countercurrents, etc.,
although dense bottom layers are ubiquitous in the ocean
(Pratt and Lundberg 1991 give a survey of sill flows).

However, we still know very little about bottom
boundary layers, save in well-surveyed regions such as
the Mediterranean outflow (Johnson et al. 1994). There
is clear evidence of turbulent mixing within the layers,
but under what circumstances there is entrainment or
detrainment is far from clear. The mixed layer at the
ocean surface normally entrains when there is surface
cooling and detrains when there is sufficient surface
heating, but there is no corresponding interfacial heat
flux for the bottom mixed layer. Whether the layer en-
trains or detrains depends on the balance between two
sources of turbulent energy—bottom friction and inter-
nal waves, plus possible external sources (e.g., tidal
mixing)—and two sinks—turbulent dissipation, which
is normally modeled as a fraction of the energy inputs
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and so is never large enough to counter the sign of the
inputs, and entrainment itself.

Lack of a bottom boundary layer model in level gen-
eral circulation models has an immediate impact on the
water mass structure in those models (C. Gordon 1996,
personal communication). In such models, dense water
passing over a sill finds itself one grid point above less
dense water beneath it. The resulting convective over-
turn, usually repeated downstream over several grid
points, results in the dense water mass becoming heavily
diluted from its original value, thus destroying the water
mass structure in the recipient basin.1

Semianalytical models of the bottom boundary layer
in regions of outflow have existed for over 20 years
(Smith 1975; Killworth 1977; Price and Baringer 1994).
These traditionally use a streamtube. In this approach,
the outflow is assumed to occur in a confined tube whose
velocity, temperature, and salinity are assumed constant
over a cross section normal to the mean flow. Predictive
equations are produced to give the downstream variation
of properties and include turbulent friction, entrainment,
and other features. These models can be tuned to give
a good fit to observations (e.g., Price and Baringer 1994)
if certain ad hoc assumptions about the aspect ratio of
the streamtube are made. However, recent work (Emms
1998a) suggests that apparently trivial changes to the
physics of the model can induce dramatic changes in
its behavior, so the agreement may be fortuitous.

1 Models based on other coordinate systems have other problems
(Dynamo Group 1997). Sigma-coordinate models have similar, but
weaker, behavior—water is still being projected above lighter water,
but because of the terrain-following coordinates the effect is less.
Isopycnic coordinate models have too little mixing under normal
conditions and so move dense water in the densest layer over too
great a lateral distance.
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FIG. 1. Schematic of the bottom boundary layer concept. The thin
arrows show the direction and destination of lateral fluxes.

Jungclaus and Backhaus (1994) extended the model
from one to two dimensional. Apart from numerical
difficulties near the edge of the layer, the model system
was able to reproduce observed features well and in one
case (Jungclaus et al. 1995) demonstrated a splitting of
a streamtube into two at a saddle point in topography
in a realistic manner. Recently, the effects of suspended
particulate matter, which have a very strong effect on
density, have been included in two-dimensional (Fohr-
mann et al. 1998) and streamtube models (Emms
1998b).

The above models all possess two shortcomings.
First, the codes are divorced from large-scale general
circulation models because they are still quasi analytical
(i.e., numerical approaches are used to solve the prob-
lem). Second, all of the models mentioned permit tur-
bulent entrainment, which can be cut off under certain
stability conditions, but none permit detrainment of wa-
ter from the bottom boundary layer. Integration of such
models under an ocean general circulation model would
result in a gradual removal of water from the ocean
interior, by entrainment, into the bottom boundary layer
so that eventually the entire ocean would be subsumed
into the bottom layer.

Three extant numerical models explicitly include a bot-
tom boundary layer. First, the Sandia model (Dietrich et
al. 1987) has a multilayer turbulent bottom boundary
layer in terrain-following coordinates added to a slab
representation of the lowest grid point. This scheme has
obvious advantages: the bottom layer is explicitly cal-
culated so that the parameterization of its physics is min-
imized. Also, the Mellor–Yamada (1974) closure scheme
used in the Dietrich et al. (1987) model formally permits
an increase of turbulence near the floor if the physics
requires it. Such an approach is attractive and covers both
surface and floor boundary layers equally well, but at the
cost of additional complexity in the equations for tur-
bulent energy, etc., which are required. However, the
ocean interior above the layer is still described by a single
gridpoint value so that one is grafting on a system with
many degrees of freedom to an interior point with pre-
cisely one degree of freedom. Second, Beckmann and
Döscher (1997) couple a terrain-following bottom bound-
ary layer to a interior level coordinate system, but choose
a simplification whereby only tracer tendencies are eval-
uated in the terrain-following coordinate system with ve-
locities, etc., taken from the near-bottom interior values.
Third, Gnanadesikan (1999) takes the Beckmann and
Döscher (1997) approach one stage further by using the
analytically correct pressure gradient within the bottom
boundary layer and permitting direct flow between the
bottom layers. However, the layer thickness is prespec-
ified so that turbulence is modeled with a turbulence
coefficient rather than with entrainment/detrainment.

The approach taken in this paper is intermediate be-
tween the full boundary layer approach and a simple
parameterization. The idea is to pose consistent equa-
tions for a ‘‘slab’’ boundary layer that occupies some

time- and spatially varying depth at the ocean floor.
These are posed in a continuous model, which permits
straightforward tests of consistency if required. The
equations are then cast into finite-difference form. In
most level models, the ocean floor has a stepped to-
pography, with a locally flat bottom below tracer (tem-
perature, salinity, etc.) points and abrupt changes at the
box edge. The boundary layer now occupies a (locally
flat) fraction of the bottom tracer box. At the edge of
the box, outflow from the boundary layer rises or falls
instantaneously to the side of the next box laterally, as
indicated schematically in Fig. 1. Outflow from the re-
mainder of the bottom grid box flows purely horizon-
tally (although through an area whose size will depend
on the thickness of the bottom boundary layer).

Section 2 discusses the continuous formulation, and
section 3 the numerical implementation into a free sur-
face model (MOMA; Webb 1996). Section 4 gives an
example, and section 5 discusses the model.

2. The bottom boundary layer model

The continuous form of the equations is given here,
although some aspects of the finite-difference version
must inevitably intrude because of the manner in which
we have chosen to handle turbulent entrainment (ig-
noring convection for clarity).

In the ocean interior, standard Boussinesq Navier–
Stokes equations are assumed to apply:

pxu 1 u · =u 2 f y 5 2 1 A (u 1 u ) 1 A ut H xx yy V zzp0

(2.1)

pyy 1 u · =y 1 f u 5 2 1 A (y 1 y ) 1 A yt H xx yy V zzp0

(2.2)

p 5 2grz (2.3)
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u 1 y 1 w 5 0 (2.4)x y z

T 1 u · =T 5 K (T 1 T ) 1 K T (2.5)t H xx yy V zz

S 1 u · =S 5 K (S 1 S ) 1 K S (2.6)t H xx yy V zz

r 5 r(T, S, z). (2.7)

These are, respectively, conservation of east and north
momentum, the hydrostatic relation, zero flow diver-
gence, conservation of heat and salt, and the equation
of state; standard notation is used. Turbulent coefficients
for momentum and tracers have been assumed, but other
forms can be used. (The code below uses spherical polar
coordinates, but these are omitted here for clarity.)

These equations hold in the interior of the fluid, be-
tween the surface z 5 0 (numerically the surface is taken
as a free surface, though a rigid lid can equally well be
used) and a height h(x, y, t) above the bottom z 5
2D(x, y); here h(x, y, t) represents the thickness of the
bottom boundary layer. Rather than the normal bottom
boundary conditions, vertical turbulent fluxes vanish at
z 5 2D 1 h; they are replaced by the effects of en-
trainment/detrainment.

We now proceed to develop equations for the slab
bottom layer. For clarity of exposition we will initially
assume that all required quantities such as layer height
and entrainment velocity can be expressed as continuous
differentiable functions of time. For reasons given be-
low, we will subsequently modify this approach.

Assume that the boundary layer is locally entraining
with entrainment velocity w*. Then by continuity, w*
satisfies

w* 5 h 2 w 2 u · =(D 2 h)t i I

5 h 1 = · (hu ), (2.8)t m

where subscripts i and m denote interior and boundary
values respectively (interior values are here taken just
above the boundary layer, and boundary layer values
are assumed independent of height). The situation is
modified when the layer is detraining. Equations for slab
conservation of tracers and momentum are then

(hu ) 1 = · (hu u ) 2 w*u 2 fhym t m m i m

pmx5 2h 1 A = · (h=u ) 2 C |u |u (2.9)H m D m mr0

(hy ) 1 = · (hu y ) 2 w*y 1 fhum t m m i m

pmy5 2h 1 A = · (h=y ) 2 C |u |y (2.10)H m D m mr0

(hT ) 2 w*T 1 = · (hu T ) 5 K = · (h=T ) (2.11)m i m m H m

(hS ) 2 w*S 1 = · (hu S ) 5 K = · (h=S ), (2.12)m i m m H m

where there is a quadratic bottom stress with coefficient
CD. It is perfectly straightforward to add other dissi-
pative terms (cf. Gnanadesikan 1999) to represent ex-
ternal and other energy sinks, for example, tidal mixing.

The divergence and gradient operators are here two-
dimensional. If the layer is detraining, interior values
are replaced by boundary layer values in the w* terms.
Similar terms occur as boundary conditions for the in-
terior quantities.

The ‘‘pressure gradients’’ in (2.9), (2.10) are not true
gradients, but instead are depth-averaged pressure gra-
dients over the layer. Some care is needed with these
terms to minimize any erroneous pressure gradients pro-
duced in a similar manner to those that occur when
sigma coordinates are used (Haney 1991). To obtain the
expressions, let z 5 2H be some level surface in the
fluid interior. Then within the bottom layer,

2D1h

p 5 p 2 g r dz 2 g(z 1 D 2 h)r , (2.13)2H E I m

2H

where a subscript I denotes interior values (which vary
with depth). The first two terms are the pressure at the
top of the boundary layer, pi. Then

2D1h1
=p [ =p dzm Eh

2D

2D1h

5 = p 2 g r dz 2 gr =(D 2 h)2H E I m1 2
2H

gh
1 =rm2

gh
5 =p 2 gr =(D 2 h) 1 =r (2.14)i m m2

h
5 =p 2 gr = D 2 , (2.14a)m m 1 22

where pm is the pressure at the center of the bottom
boundary layer. This latter expression—used in the ac-
tual code—is identical to Gnanadesikan’s (1999) for-
mulation with the exception of the last term (he assumes
h to be very small in this context). He gives three cases
in which no error in pressure gradient occurs: uniform
interior density and a different (uniform) bottom layer
density, a uniform interior, and density a linear function
of depth. It follows that for vanishingly small h the same
holds here. (However, there must be a pressure gradient
for uniform linear stratification when h is not small since
any chosen value for density in the bottom boundary
layer will cause a pressure gradient to occur if h varies.)
In the discretized form of these test problems, pressure
gradient errors occur anyway. For these and for more
general density distributions, the size of the error is
generally small except for steep slopes or when a step
in topography occupies many grid points, which Hughes
(1995) has argued should be avoided on energy grounds.
Appendix B discusses pressure gradient errors.

In order for (2.14) to reduce to known results when
applied numerically, it is necessary to modify the way
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that the hydrostatic relation is computed between the
lowest interior grid box and the bottom boundary layer.
For energy conservation, normal MOM-like codes eval-
uate pk 2 pk21 as (g/4)(Dzk21 1 Dzk)(rk21 1 rk) (cf.
Cox 1984) between levels k 2 1 and k. It is important
to revise this near the bottom by explicitly integrating
with the in situ density values, so pm 2 pI is evaluated
as g(Dz/2 2 h)rI 1 ghrm/2.

Then, it is easily seen that (2.14) reduces to known
values in various limits. For example, if p2H and rI are
both constant, then =pm vanishes if D, h, and rm are all
constant. If only rm is allowed to vary, (2.14) gives =pm

5 (gh/2)=rm as in Jungclaus and Backhaus (1994); this
is not the case using the original Cox formulation. If
instead h is allowed to vary, =pm 5 g(rm 2 rI)=h,
again as in Jungclaus and Backhaus (1994); this is again
not the case using the Cox approach. Finally, if D, h,
and rm all vary,

gh
=p 5 2g(r 2 r )=(D 2 h) 1 =r ,m m I m2

as used by Jungclaus and Backhaus (1994). Note that
this would be represented solely as 2g(rm 2 rI)=D
(probably the dominant term under most circumstances)
in Gnanadesikan’s (1999) simplified formulation.

It will appear in the discrete version that the pressure
gradient is also modified in the lowest interior layer;
this will be discussed in section 3.

These equations are to be completed with a specifi-
cation of w*, which in the case of a surface mixed layer
would be derived from a turbulent energy equation for
the rate of change of layer thickness. However, as noted
above, it is difficult to formulate a simple energy equa-
tion that permits detrainment, in contrast to the case of
a surface mixed layer, without some ad hoc way to
specify energy dissipation. Accordingly, this approach
is inconvenient in a model. Another practical reason
caused the abandonment of this approach. Numerical
tests showed, and simple analysis confirmed, that a
plus–minus temporal behavior built up rapidly when
simple functional forms for w* were taken, with bound-
ary layer thicknesses oscillating between two unphysical
values.

A second method was adopted here. The approach is
similar to that used for many implementations of surface
boundary layers. Equations for slab conservation of
tracers and momentum are made for the bottom layer
as before, together with conservation of layer thickness,
where now entrainment or detrainment is neglected; that
is, the w* terms in (2.8) to (2.12) are neglected. In other
words, the layer acts as if there is a thin membrane
between it and the interior fluid. The effects of turbu-
lence are then added a posteriori, in this case at the end
of each time step when a suitable formula for layer
thickness based on momentum and tracers in the interior
and the layer is applied (Zilitinkevich and Mironov

1996).2 The resulting adjustment in bottom boundary
height is considered to represent the effects of entrain-
ment if the layer has deepened, or detrainment if the
layer has become thinner. Tracers and momentum are
simply removed from the interior (boundary layer) and
mixed into the boundary layer (interior) depending as
the layer is entraining (detraining).

Then the equations satisfied by the bottom layer are
exactly (2.8) to (2.12) without the w* terms; that is,

h 1 = · (hu ) 5 0 (2.15)t m

(hu ) 1 = · (hu u ) 2 fhym t m m m

pmx5 2h 1 A = · (h=u ) 2 C |u |u (2.16)H m D m mr0

(hy ) 1 = · (hu y ) 1 fhum t m m m

pmy5 2h 1 A = · (h=y ) 2 C |u |y (2.17)H m D m mr0

(hT ) 1 = · (hu T ) 5 K = · (h=T ) (2.18)m t m m H m

(hS ) 1 = · (hu S ) 5 K = · (h=S ). (2.19)m t m m H m

Essentially this is a form of equilibrium turbulence
closure for the bottom boundary layer. We assume that
the layer is always in a local equilibrium state in which
its depth depends on local mean gradients in the vertical.
A necessary condition for this to be justified is that a
timescale for the layer to return to one-dimensional
equilibrium is small compared with a timescale for
changes in the mean flow. It would be straightforward
to modify this approach to a relaxation toward an equi-
librium depth given an estimate of an appropriate re-
laxation timescale.

While this approximation may be too crude for some
problems, it is particularly appropriate for a general ex-
tension to MOM-like codes, as it is closely analogous
to the turbulence closure in the interior of the fluid,
which is of the eddy viscosity, or lowest order closure.
In such a closure, the level of turbulence depends only
on spatially and temporally local values of mean gra-
dients.

There is a wide literature on turbulent mixed layers;
Nurser (1996) gives a thorough review. Little work ex-
ists on bottom boundary layers themselves (Armi and
Millard 1976) save for overflow regions and other spe-
cialized areas such as the HEBBLE experiment. Even
in these well documented regions, estimating entrain-
ment is not easy (cf. Baringer and Price 1997b). Zili-
tinkevich and Mironov (1996) have proposed an ex-
pression for the equilibrium depth of a turbulent, stably
stratified boundary layer including the effects of rota-
tion, buoyancy flux, and static stability. Their work is

2 This approach makes it trivial to modify the formula for layer
thickness within the code.
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FIG. 2. Contours of boundary layer depth h (in m) as the bottom
boundary layer speed u (cm s21) and density contrast Dr/r0 vary, at
308N. The diagram shows a smooth transition from density-dominated
thicknesses (upper half) to rotationally dominated thicknesses (lower
half).

aimed mainly at boundary layers whose velocity field
exceeds that in the interior, so the appropriate Richard-
son number is one based on the bottom layer velocity.
Armi and Millard (1976) find a best fit to data using
such a number. An alternative Richardson number based
on velocity jumps across the layer interface is frequently
used in modeling of streamtubes (e.g., Price and Bar-
inger 1994) since it governs the production of internal
wave energy through instability. In the case of a qui-
escent interior, the two Richardson numbers are of
course identical.

In the case of a bottom boundary layer where there
is no buoyancy flux, Zilitinkevich and Mironov’s three-
term formulation reduces to

2h h
1 5 1, (2.20)1 2C u / f C u /Nn i* *

where Cn, Ci are constants; u* is the surface friction
velocity—here taken as given by 5 CD|um| 2—and N2u*
is the background buoyancy frequency. This provides a
smooth transition for the depth h between a value dom-
inated by the Rossby and Montgomery (1935) value
Cnu*/ f, when the stratification is weak, to a value dom-
inated by Deardorff’s (1972) indicated value Ciu*/N,
when stratification is strong or rotation weak, for ex-
ample, near the equator. Zilitinkevich and Mironov
(1996) suggest Cn 5 0.5, Ci 5 20.3

Numerically, the quantity N is awkward to compute
since, as a gradient, it formally involves tracer values
one and two grid points above the bottom. It is not
obvious that density gradients far from the bottom
boundary layer are relevant to the layer dynamics. In-
stead, we choose to use a value estimated by

g(Dr/r ) g902N 5 [ , (2.21)
h h

where Dr 5 rm 2 rI and the distance over which the
density gradient is taken is the width of the boundary
layer (a simple estimate based on grid spacing would
yield answers varying with resolution; it seems simpler
to assume that the gradient is felt over a distance whose
order is the mixed layer depth). Armi and Millard (1976)
use the same approach, though with slightly different
emphasis: they assume the bottom layer to be produced
by purely local vertical mixing so that its density can
be directly calculated from the layer depth and interior
stratification. Applying the formula h 5 Ciu*/N then
leads to

2 2 2C u |u |i m2*h 5 5 C C . (2.22)i Dg9 g9

Using CD 5 0.003 gives the coefficient in (2.22) as 1.2.

3 This gives no formal difficulty at the equator, although Zilitink-
evich and Mironov did not test the formula there. We have run wind-
forced experiments at the equator with no difficulty.

Thus we rewrite (2.20) slightly as

2h h
1 5 1, (2.23)

21 2C u / f C |u | /g9n k m*

where Ck 5 CD, which is used henceforth. It is2C i

straightforward to replace (2.23) by a different formula
in the code if desired. Figure 2 shows contours of h
from (2.23) using the default values, at 308 latitude. For
large density contrasts, (2.23) is dominated by the sec-
ond term on the lhs, while, for smaller density contrasts,
the Coriolis term dominates; the smooth transition be-
tween the two is clearly demonstrated by Fig. 2. Note
that layer depth is a fairly sensitive function of the pa-
rameters, none of which is well defined from obser-
vations.

When u*/N K u*/ f, the second term in (2.23) dom-
inates, in which case (2.23) is equivalent to specifying
the bulk Froude number

|u |mFr 5
1/2(g9h)

of the layer to be a constant (1/ ). For the values1/2C k

given above, this is 0.9, though this value is obviously
sensitive to parameter variation. Observations in tur-
bulent outflow plumes such as the Mediterranean out-
flow (Baringer and Price 1997a) show Froude numbers
varying from 0.1 to over unity. Here, it is clear, a local
vertical equilibrium parameterization is not a complete
solution to the entrainment–detrainment problem that
we seek to solve; but it is a first step toward a more
complete solution.

In a slope configuration for a streamtube model, the
alongslope velocity um is usually given by the geo-
strophic relation um 5 g9a/f, where a is the topographic
slope (Killworth 1977; Price and Baringer 1994). Com-
bining this with the Froude number relationship defines
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the depth h 5 Ckg9a2/ f 2 as a function of the environ-
mental parameters. In particular, h varies as g9, so denser
plumes (relative to their environment) are thicker. Thus
the thickness of a downslope plume is limited by this
method, which in turn means that—other things being
equal—for a plume with this formulation to carry more
flux, it must become wider rather than thicker.

We now imagine the situation after a time step in
which h has been predicted by (2.15). The boundary
layer depth has thus changed because of large-scale di-
vergence or convergence of the flux in the layer. In
addition, turbulent effects must be included. The mod-
ified Zilitinkevich and Mironov (1996) formula (2.23)
is applied at each point to give a value hnew, or equiv-
alently a change Dh 5 hnew 2 h between the formula
value and that obtained from the large-scale dynamics.
If Dh is positive, the layer is entraining; if negative, the
layer is detraining.

In the entraining case, interior values are left unal-
tered (although part of the interior is swallowed by the
now thicker boundary layer), but boundary layer values
are now modified,

1
T 5 (hT 1 DhT ) (entraining), (2.24)m,new m Ihnew

with similar treatment for other variables. There is an
implicit assumption in (2.24) that interior values do not
change over the vertical distance Dh. Alternatively,
(2.24) can be thought of as an equation connecting
]Tm/]t with ]h/]t. In the detraining case, boundary layer
values are left unaltered, and interior values are modified
above the layer. In a fully continuous case, boundary
layer values would simply be left behind as the layer
retreated. In the finite-difference case, if the bottom grid
spacing is Dz, say, over which the bottom interior value
is spread, then

1
T 5 [(Dz 2 h)T 2 DhT ]I,new I mDz 2 hnew

(detraining). (2.25)

Such an approach implicitly assumes the interior to
be locally well mixed in the vertical. (For a gridpoint
model this holds automatically within the bottom grid
point.) If this is not the case, then a gradually detraining
layer would leave behind fluid in the interior with the
same tracer properties as the layer itself, reducing g9 to
a very small value. Then (2.23) would imply that h
became dominated by the rotation term, and detrainment
would only continue if either the layer flow was con-
vergent or if the flow speed was decreasing (e.g., if there
were no interior geostrophic flow).

In regions of weak flow, (2.23) predicts thin boundary
layers; the code as written includes a minimum layer
thickness since we imagine the turbulence level to have
some background value that would prevent the layer
thinning too far. Conversely, in regions of rapid flow,
for example, in overflow regions, (2.23) predicts layer

depths of at least 100 m. Since the numerical concept
(Fig. 1) is that the layer occupies a fraction of the bottom
gridpoint depth, too fine a vertical resolution would
cause difficulties: the bottom layer would naturally oc-
cupy more than one grid point in the vertical. At present
we see no convenient way to overcome this problem—
although it could be coded with some difficulty—and
have set a maximum layer depth, which is locally a fixed
fraction of the gridpoint thickness4; other formulations
(e.g., Beckmann and Döscher 1997) suffer from similar
potential problems.

3. Numerical implementation

This section discusses how to add the continuous bot-
tom boundary layer model into a B-grid finite-difference
model (MOMA: Webb 1996, although any code based
on Cox’s 1984 work suffices). The normal code stores
tracer, density, and pressure at the center of grid cells
of (horizontally uniform) thickness Dzr. Horizontal ve-
locity is stored at the corners of this grid in the tradi-
tional manner, at the same depths as the other fields.
Vertical velocities are computed from the divergence
equation and are situated at the top of the grid boxes,
above either tracer or velocity dependant upon the equa-
tion being used. Centered differences and flux forms are
used throughout. The barotropic fields (sea-surface el-
evation and depth-averaged horizontal velocity) are
stepped with smaller steps using a time-splitting ap-
proach (cf. Killworth et al. 1991).

The idea is to minimize changes to the model and
hence to whichever code is used. To this end, most of
the additional fields relevant to the bottom boundary
layer have been coded by increasing the vertical di-
mension of the fields by one and defining the new (bot-
tom) value to be that in the bottom boundary layer, no
matter what its actual depth. This means that with small
modifications much of the existing code remains func-
tional, even when it applies to the bottom boundary
layer. Other coding methods are, of course, possible.
However, flux conservation details (see below) mean
that some essentially three-dimensional fields need to
be computed. At present these are not stored three-di-
mensionally, thus economizing on possibly valuable
storage at the cost of additional cpu time.

Interior values are time-stepped as near to normally
as possible. To avoid pressure gradient difficulties, the
levels at which pressure is evaluated must remain uni-
form horizontally. This means that, in addition to the
requirement in the previous section, the boundary layer
cannot occupy more than 50% of the thickness of the
bottom grid point, otherwise the boundary layer would

4 This can itself induce difficulties: if the vertical grid spacing is
variable, as is customary, then this restriction could cause the layer
thickness to vary as the layer descends a slope, for example.
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FIG. 3. Schematic of the grid arrangement for the B-grid model.

overlap the site for the pressure evaluation. This leads
to the structure shown schematically in Fig. 3.

As shown in Fig. 3, the presence of the bottom layer
leads to spatial and temporal variation of the heights,
and hence the volumes, of certain cells. The bottom
tracer cell represents the boundary layer and has height
Dzr 5 h. The layer above the bottom layer also has
variable depth Dzr 5 Dz0 2 h, where Dz0 is the height
of the cell in the absence of the bottom layer. The height
of a velocity cell is taken to be the average of the sur-
rounding tracer cell heights:

yx
Dz 5 Dz , (3.1)u r

where the averaging notation means (e.g., in the x di-
rection)

5 [a(x 1 Dx/2) 1 a(x 2 Dx/2)]/2.xa (3.2)

In the bottom layer the average of adjacent bottom layer
values is used, and outside the bottom layer the average
is taken over adjacent values at the same vertical level,
some of which may be modified by the boundary layer
while others are not. Where the bottom is not flat this
can lead to a change of the effective depth of a fluid
column at a velocity point, defined as the sum of the
heights of the velocity cells. The change is unavoidable,
produced by the stepped nature of the topography. The
effect can be seen in the column centered on the uB

point in Fig. 3. Here, a portion of the bottom layer has
been removed from the depth of the lowest internal u
cell, uB, giving it an effective depth Dz 2 (0 1 h9)/2,
where the zero reflects the fact that to the left, the cell
is interior and so full depth. (Effects normal to the di-
agram are ignored for clarity). However, the effective
depth of the bottom layer at the u9B point is (h 1 h9)/2
so that the total depth at this point is h/2 larger than it
is in the original code. This change must be taken into
account in summing the contributions from individual

momentum equations to the forcing for the barotropic
mode. Note that the ocean volume remains constant, but
the depth over which nonzero velocity is allowed has
increased as a result of allowing direct exchange be-
tween bottom layer boxes as in Fig. 1. There is a con-
sequent decrease in the depth over which u is set to zero
and no momentum equation is evaluated. In Fig. 3, this
occurs in the momentum box immediately below uB.

The fluxes into computational cells depend on the areas
of the cell faces, which now have variable height. From
Fig. 3 it is clear that the appropriate height for the flux
into a velocity cell is given by the adjacent value of Dzr.
Taking into account variation along the cell face, it is seen
that the appropriate effective height of the velocity cell
face a distance Dx/2 from the cell center is Dzr . Changes

y

in the areas of cell faces are implemented in the code in
the form of masks. Thus the mask for advection and dif-
fusion in the x direction takes the value Dzr . Fluxes in

y

the y direction are defined analogously.
Tracer cell faces lie at discontinuities in the bottom layer

height, so the most appropriate definition of the masking
area is not as readily apparent. It turns out to be necessary
for energetic consistency to define the masks as follows
(for further justification see appendix A). The advective
flux of a tracer T in the x direction takes the value

and the advective flux of T in the y direction
x y

T uDz Dy,u

is Diffusive fluxes in the x direction are
y x

T yDz Dx.u

masked by the effective height and diffusive fluxes
y

Dzu

in the y direction are defined analogously. Thus even an
apparently interior cell, such as that centered on rC in Fig.
3, possesses modified fluxes. [Note that Hughes (1995)
has shown for energetic consistency in a Cox-like code,
topography should never rise by more than one grid point
per horizontal grid point.]

As noted earlier, there is an additional term to the
pressure gradient evaluated in the lowest internal grid
point (which is not needed in the continuous version).
If H denotes the depth of the top of the lowest internal
grid point, then the pressure halfway down the box (at
height 2 H 2 D/2) is computed as normal by a level
code as p 5 p2H 1 gr(D 2 H)/2. Without a bottom
boundary layer, this would also be the depth-averaged
pressure gradient within the box. However, because the
actual thickness of this box is (D 2 H 2 h), modifi-
cations are needed. These are straightforward. We have

2H 2H z

=p dz 5 = p 2 g r dz9 dzE E 2H E1 2
2D1h 2D1h 2H

5 (D 2 H 2 h)=p2H

1
21 (D 2 H 2 h) =r. (3.3)

2

Thus

1
=p 5 =p 1 (D 2 H 2 h)=r. (3.4)2H 2
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In the second term, (D 2 H) is already accounted for
by the usual level code. So the extra term required is
merely 2gh=r/2. Here h is a weighted contribution
from the four surrounding tracer points, a contribution
occurring only if the relevant point lies just above the
bottom layer. Thus, in Fig. 3, there is no contribution from
point C in the pressure gradient term computed at B.

The barotropic mode is computed for this free surface
model as in Killworth et al. (1991) or Webb (1996),
although a similar treatment can be made for rigid-lid
models. A depth integration of terms contributing to
changes of horizontal momentum is made [neglecting
Coriolis terms, which are stepped explicitly, as in Kill-
worth et al. (1991), although frictional terms are now
included in the depth integration rather than being
stepped explicitly; cf. Webb (1996)]. This involves in-
tegration of (2.1), (2.2), although varying gridbox depths
means that forms similar to (2.16), (2.17) are actually
used. As noted above, this integration is over a depth
that depends on h. These forcing terms are passed to
the time-splitting integrator for the barotropic mode.

Finally, there is no alteration to the manner in which
convection is handled. The MOMA code uses the orig-
inal Cox (1984) formulation of successive pairwise
checking for local instability, and this is carried over to
the model here. Other convective algorithms would also
function normally.

4. A test problem

We now describe the response of the model to an
idealized dense outflow problem designed to be a clear,
but also appropriate, test of the model dynamics. The
domain is a zonally periodic channel, 48 wide and 88
long with one-quarter degree horizontal resolution, cen-
tered at 428N. There are 14 vertical levels, including the
bottom layer, with vertical spacing increasing from 30
m at the uppermost level to 740 m at the deepest. The
bottom topography varies in the meridional direction
only, increasing northward from the middle of the do-
main by one vertical level at each horizontal grid point.
This represents a reduction in depth from 4 km in the
south of the domain to 580 m at the northern boundary.
The only active tracer is potential temperature, which
is initially set to a uniform value of 208C, so giving
unstratified fluid.

For our basic run, surface fluxes of momentum are
set to zero and the surface temperature is relaxed toward
its initial value of 208C using a Haney relaxation time-
scale of 50 days. The principal forcing is due to a lo-
calized inflow of dense water at the northern boundary.
This inflow is provided by appending a cool basin to
the north, which acts as a reservoir of dense fluid. We
are not concerned with the dynamics within this cool
basin, only with the dense inflow it provides. We note
simply that the cool basin has the same zonal extent as
the model domain but is closed at either end with a
meridional extent of 28, that the initial temperature in

the basin is 108C, and that the surface temperature is
restored to this same value. The two basins are con-
nected by a strait that is one tracer grid cell long and
four tracer grid cells, or one degree, in width. Apart
from the inflow region, the lateral boundary conditions
for the model domain are zero flux at the northern and
southern boundaries and periodicity at the eastern and
western boundaries. Values for numerical coefficients
were standard (in m2 s21), viscosity was 104 horizon-
tally, 2 3 1023 vertically, and diffusion was 2 3 103

horizontally, 1024 vertically.
Figure 4 shows the results after two months of in-

tegration. In contrast, Fig. 5 shows the results of two
months of integration of an equivalent run without the
bottom boundary layer parameterization, injecting the
cold water in the lowest grid point. A region of cool,
dense water can clearly be seen moving down the slope
and spreading westward in the bottom boundary layer,
as expected from geostrophic adjustment theory. The
maximum velocity at the inflow is around 40 cm s21,
with typical velocities reaching around 70 cm s21 in the
dense slope current; the incoming volume flux is 3.6 3
106 m3 s21. A barotropic flow of maximum velocity
around 20 cm s21 has developed, which flows primarily
from west to east along the slope. Superimposed on this
is a weaker cyclonic barotropic circulation near the
source region. This is consistent with the horizontal vor-
ticity tendency of the bottom pressure torque term,
through the well-known relation J(c, f/D) 5 J(E, 1/D)
where E 5 rgz dz is potential energy measured rel-0∫2D

ative to the surface, and other forcings, including bottom
stress, are neglected. Since D 5 D(y) only and varia-
tions of 1/D dominate variations of f, this gives simply
cx 5 Ex/ f to leading order. Now E has the same sign
as temperature, so Ex is negative west of the inflow and
positive east, yielding a cyclonic circulation as observed.

Over the flat bottom in the southern half of the domain
there is only relatively weak flow so that for much of the
flat region the height of the bottom boundary layer takes
its minimum allowed value, which in our simulations is
set to 1 m. Stronger flow over the slope gives rise to a
deeper bottom layer, with a maximum depth of almost 100
m near the bottom of the slope. Where the layer depth is
largest, it is limited mostly by stratification; the rotational
depth limit Cnu*/ f is roughly 180 m at this point, while
the stratification limited value Ciu*/N is around 140 m.
The slope current does not have a very sharply defined
nose but, if we arbitrarily choose the 198 contour to define
a length scale for the distance travelled by the dense cur-
rent, we find that after one month the position of this
contour has moved about 825 km westward (to obtain this
figure we have run the model again using a domain twice
as long, to avoid self-interaction of the plume). This gives
an average speed of 27.5 cm s21. The geostrophic slope
current velocity scale g9Dy/ f (cf. Nof 1983), by compar-
ison, is about 30 cm s21, taking a temperature contrast of
18C and a mean slope of 1.8 3 1022, in good agreement
with the observed value.
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FIG. 4. Model results after a two-month integration. Shown are (a) depth of bottom boundary layer (cm), (contour
interval: 10 m); (b) free surface elevation (contours, cm), contour interval: 4 cm, and barotropic velocity (vectors, every
other grid point); (c) bottom boundary layer temperature (contours, 8C), contour interval: 0.58C, and velocity vectors,
every other grid point (cm s21); (d) temperature (contours, 8C), contour interval: 0.58C, and velocity vectors, every
other grid point (cm s21) at 482-m depth.

In fact, comparison with plume theory can be made
more quantitative. If a turbulent plume descends with
speed U down a slope, oriented at an angle u to the
east–west direction, then the two predominant balances
become

2C UDg9D sinu 5 ; g9D cosu 5 fUy yh

so that the angle of fall is given by tan u 5 CDU/ fh.
Using values from Fig. 4 for U, h we obtain an angle



1230 VOLUME 29J O U R N A L O F P H Y S I C A L O C E A N O G R A P H Y

FIG. 5. Model results after a two-month integration for the problem without a bottom boundary layer. Shown are (a)
free surface elevation (contours, cm), contour interval: 4 cm, and barotropic velocity (vectors, every other grid point);
(b) temperature (contours, 8C), contour interval: 0.58C, and velocity vectors, every other grid point (cm s21) at the
lowest model level; (c) temperature (contours, 8C), contour interval 0.58C, and velocity vectors at 482 m; (d) as (c),
but at next lower depth level.

of fall of about 158 after length scalings are taken into
account; tan21(CDU/fh) 5 158 also. Thus the approach
is generating values similar to those in plume models.

In contrast the run without a bottom layer parame-
terization has much weaker flow in the layer immedi-
ately above the slope. The inflow of dense water pro-

duces a strong barotropic circulation, as in the case with
a bottom layer, but the dense fluid fails to propagate far
either along or down the slope, contrary to expectations
and observations of the behavior of true slope currents.

The effects of background flow on plume penetration
are complicated by interactions with the strength of the
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FIG. 6. As for Fig. 4 but with a steady westward wind stress of amplitude 0.1 N m22 varying sinusoidally from zero
at north to zero at south, with a maximum at midlatitude.

turbulent friction, and other effects. Figure 6 shows the
equivalent calculation to Fig. 4, but with a steady west-
ward wind of maximum strength 0.1 N m22, varying
sinusoidally northward with zero values north and south.
This promotes a westward flow, which slightly increases
the flow in the boundary layer, leading to a marginally
thicker layer, and slightly weakens the topographically
forced eastward barotropic flow above.

The basic test run of Fig. 4 has a region of strong
entrainment near the inflow with weaker entrainment
over the middle of the plume. Detrainment occurs over
about half of the plume area, being strongest close to
the region of maximum layer height where the slope
current meets the flat bottom of the domain. The small
temperature perturbations outside of the bottom layer
provide evidence that detrainment is weak. Confirma-
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FIG. 7. Bottom-layer term balance in the northward momentum
equation for the flow in Fig. 4, at midlongitude in the diagram. All
terms are taken to be on the rhs of (2.17) and are divided by depth
h. Thus the terms are drag 5 2CD|um| y m, pressure 5 2pmy /r0, Cor-
iolis 5 2 fum.

tion of the relatively small effect of entrainment and
detrainment on the dynamical balance in the bottom
layer has been obtained by examination of terms in the
model equations. The principal dynamical balance for
the baroclinic velocities is between the pressure term,
including the terms due to bottom slope, and the Coriolis
and bottom drag terms. Figure 7 shows the variation of
these three terms in the equation for the northward bar-
oclinic velocity in the bottom layer for a north–south
section halfway along the domain.

5. Discussion

We have demonstrated that a turbulent bottom bound-
ary layer can be added to a vertical coordinate model
with step topography in a consistent manner and have
provided a code written within the framework of an ex-
isting popular model code. Appendix A shows that the
code conserves energy (and of course conserves tracers,
etc., as in the original codes). The model has been de-
signed so that changing entrainment depth parameteri-
zations would be a straightforward and rapid exercise.

The strength of our model is that the fluxes in and out
of the bottom layer are calculated on the basis of phys-
ically sensible parameterizations of an equilibrium depth
for the layer. Considering the difficulty in obtaining ob-
servations of the benthic boundary layer it is clearly de-
sirable to minimize the number of free parameters in any
model parameterization of the layer. However, in models
with otherwise uniform spatial grids, including most
common OGCMs, the spatial and temporal variation of
layer depth gives rise to significant increases in storage
requirements or alternatively—as in our formulation—
cpu requirements. It is worth noting, therefore, that it is
the inclusion of downslope pressure forces that is most

important in allowing the model to simulate dense slope
flows. The extra computational requirements of our mod-
el, on the other hand, are dominated by the calculation
of the height of the layer. Experience with models at least
as advanced as ours might provide enough knowledge of
the behavior of the bottom layer to parameterize the var-
iation of bottom layer depth both with more computa-
tional efficiency and more confidence, without sacrificing
the essential extra physics.

Finally, although the tests described here are in ide-
alized circumstances, we can note that K. Stratford
(1996, personal communication) has incorporated the
code into an eddy-permitting model of the Mediterra-
nean; the code runs without any difficulties.
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APPENDIX A

Energetics

It is important to ensure that the total energy is con-
served by both the continuous and finite-difference ver-
sions of the system, apart from frictional, diabatic, and
turbulent changes. We consider first the continuous, and
then the discrete, forms.

a. Continuous equations

In the continuous form, we have
01 ]KE ] 1

2 25 dA (u 1 y ) dzE Er ]t ]t 20 A 2D

2D1h] 1
2 25 dA (u 1 y ) dzE E[]t 2A 2D

0] 1
2 21 (u 1 y ) dz , (A.1)E ]]t 2

2D1h

where A is the horizontal ocean area, and dA denotes
an element of it. The integral has been split into bound-
ary layer and interior components. We first examine the
boundary layer term. Using (2.15) to (2.17) gives, after
some algebra,

2D1h 2] 1 um2u dz 5 2= · u h 1 fhu yE m m m1 2]t 2 2
2D

h
2 u pm mxr0

2D1h 2] 1 y m2y dz 5 2= · u h 2 fhu yE m m m1 2]t 2 2
2D
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h
2 y pm myr0

so that

1 ] 1
KEz 5 2 dA {u hp 1 y hp }bottom E m mx m myr ]t r0 0A

since other terms either cancel or are divergences. Using
the definition of pmx , etc., this simplifies to

21 ] 1 gh
KEz 5 2 dA 2p = · (hu ) 1 ghr u · =(h 2 D) 1 u · =r . (A.2)bottom E i m m m m m5 6r ]t r 20 0 A

Here divergences and gradients are two-dimensional.
We also have

0 01 ] h 1 1t 2 2 2 2KEz 5 dA 2 (u 1 y ) 2 = · u (u 1 y ) dz 2 (up 1 yp ) dzinterior E i i E E x y5 1 2 6r ]t 2 2 r0 0A 2D1h 2D1h

1 1 1
2 2 2 2 2 25 dA (u 1 y )= · (u h) 1 w (u 1 y ) 2 u (u 1 y ) · =(2D 1 h)E i i m i i i i i i52 2 2A

01
2 [= · (up) 1 wrg] dzE 6r0 2D1h

after considerable algebra. The second and third terms
cancel from the definition of wi, the first term can be
simplified, and the horizontal part of the three-dimen-
sional divergence vanishes, giving

01 ] h p 1t iKEz 5 dA 2 wrg dzinterior E E5 6r ]t r r0 0 0A 2D1h

(A.3)

so that

2] gh
KE 5 dA 2ghr u · =(h 2 D) 2 u · =rE m m m m5]t 2A

0

2 wrg dz . (A.4)E 6
2D1h

The contribution from potential energy is simpler:

0]
PE 5 dA rgz dzE E]t A 2D

2D1h 0] ]
5 dA rgz dz 1 rgz dzE E E5 6]t ]tA 2D 2D1h

2D1h

5 dA h r g(2D 1 h) 1 r g z dzE t m mt E5
A 2D

2 h r g(2D 1 h)t i

0]
1 r gz dz . (A.5)E t 6]t

2D1h

Assuming linear equations of state and use of (2.5),
(2.6), (2.18), and (2.19), manipulation leads to

] grmtPE 5 dA gr h (2D 1 h) 1 h(h 2 2D)E m t5]t 2A

0

1 wrg dz . (A.6)E 6
2D1h

Adding (A.4) and (A.6), and use of the representations
for time derivatives in terms of horizontal gradients,
gives

2] gh
(KE 1 PE) 5 dA 2ghr u · =(h 2 D) 2 u · =r 2 gr (2D 1 h)= · (hu )E m m m m m m5]t 2A

gh
2 (h 2 2D)u · =rm m62
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5 2g dA {r (h 2 D)= · (hu ) 1 r hu · =(h 2 D) 1 h(h 2 D)u · =r }E m m m m m m

A

5 2g dA = · {r hu (h 2 D)} 5 0 (A.7)E m m

A

so that total energy is conserved.

b. Finite-difference form

In the finite-difference version, both the bottom layer
and the layer above have variable depth. To account for
this we need to add ‘‘extra’’ pressure terms in both
layers: in the bottom layer as defined in section 2 and
analogously in the layer above. Here we show that the
discretization of these extra terms can be chosen such
that an averaged form of energy is conserved spatially
in the interior of the fluid. We consider only the ad-
vective part of the time step, as energy should not be
conserved in the process of turbulent entrainment.

Without a bottom boundary layer sensible choices of
discretization lead to exact conservation of energy in
time and space by the diffusive and advective terms in
the equations, at least in the idealized case of a linear
equation of state. With the variable depth bottom layer
we can retain a spatial form of energy conservation, but
it is not possible to conserve energy exactly in time
(using finite-differenced time stepping) in the same way
because the energy form now involves products of three
temporally varying quantities, that is, the layer height
and the square of the velocity rather than quadratic terms
in codes without bottom boundary layers. In spite of
this we consider the spatial conservation property dem-
onstrated below to be an important attribute of our code.
We assume that the bottom is locally flat since the mo-
mentum equations are not defined at steps where the
velocity is zero, but the cancellation between those
terms that are defined at steps is consistent with the
cancellation of interior terms, which we demonstrate
below for a flat bottom.

Defining

dxa [ [a(x 1 Dx/2) 2 a(x 2 Dx/2)]/Dx (A.8)

in addition to (3.2), the following relations can easily
be verified:

x x
ad b 1 bd a 5 d ab (A.9)1 2x x x

xxa d b 1 b d a 5 d (ab) (A.10)x x x

x xxab 2 a b 5 d (bd a). (A.11)x x

We also use the fact that in regions where the grid spac-
ing remains constant—that is, away from the bottom
layer—quadratic quantities are conserved in the same
way as in the normal code; consider a quantity q and

let F 5 (Fx, Fy, Fz) be the advective flux between q
cells. Away from the bottom layer the rate of change
of the sum of q2 values can be discretized as

2 qd qDxDyDz, (A.12)O t

where the sum is taken over all interior q points. We
are concerned here with the advective contribution to
this sum, which is

x y zx y zA 5 2 q[d (q F )Dx 1 d (q F )Dy 1 d (q F )Dz]O x y z

2 x y z5 [q (d F Dx 1 d F Dy 1 d F Dz)O x y z

x x y1 q (q F 2 q F 1 q Fijk i11 j k i j k i21 j k i21 j k i j11k i jk

y z2 q F 1 q Fij21k i j21k i jk11 i j k

z2 q F )], (A.13)i j k21 i j k21

where qijk 5 q(iDx, jDy, kDz), 5 Fx[(i 1 0.5)Dx,xF ijk

jDy, kDz], and Fy, Fz are defined analogously between
q points. The vertical velocity is defined such that the
first term in brackets (proportional to = · F) is zero,
while the remaining terms cancel in pairs between ad-
jacent terms in the sum. Hence A 5 0 unless there are
nonzero fluxes across boundaries.

The kinetic energy is defined by

1
2 2KE 5 r (u 1 y )DxDyDz , (A.14)O0 u2

where the sum is taken over all interior velocity points
and the subscript u again denotes values at velocity
points. The area element DxDy, which is constant, will
henceforth be suppressed. Hence

]
KE 5 ud (uDz ) 1 yd (yDz )O t u t u1]t

1
2 22 (u 1 y )d Dz . (A.15)t u22

By virtue of (A.13), the only advective contribution to
the first term in this sum comes from z 5 2D 1 h
where the vertical flux is taken to be zero before en-
trainment. Hence the advective contribution to (A.15)
consists of the unbalanced contributions to the energy
flux divergence on either side of z 5 2D 1 h. The
vertical flux occurs with opposite sign above and below
z 5 2D 1 h, so the resulting contribution can be re-
arranged to give
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FIG. A1. The difference in height between pressure levels and the
density levels used for energetic calculations.

z zw(u d u 1 y d y)Dz ,O z z w

where Dzw is the vertical separation of horizontal ve-
locity points (i.e., the vertical spacing centered at w
points). The sum is taken over horizontal points eval-
uated at the vertical level z 5 2D 1 h. Combining this
with the second term in (A.15), we find the remaining
interior contribution to (A.15) to be the following sum
over the same set of points:

1z z 2 2R 5 2 w(u d u 1 y d y) 2 d h d (u 1 y ) Dz .O z z t u z w1 22

(A.16)

At tracer points w 5 ht, whereas at velocity points this
holds only in horizontal average, so the advective con-
tribution is approximately zero subject to appropriate
definition of the second term in (A.15). Since the precise
discretization of (A.15) is somewhat arbitrary owing to
the lack of exact conservation in time, this approxi-
mation is not a significant source of error.

Before adding the extra pressure terms, the pressure
gradient contribution to KEt is

y x
2 uDz d p 1 yDz d p (A.17)O 1 2u x u y

y
xy x

5 p d uDz 1 d yDz 1 D (A.18)O 1 x u y u 2 11 2
yx

5 2 pd wDz 1 D (A.19)O z r 2

yx
5 wd pDz 1 D (A.20)O z w 3

yxz5 2g wr Dz 1 D . (A.21)O w 4

The Di are difference terms that do not contribute to
the sum in the interior of the ocean.

The extra pressure gradient term in the bottom layer,
from (2.14), is discretized as

y x
2g r d z uDz 1 r d z yDzO 1 2x x r u y y r u

y xy xx y5 2g r d z uDz 1 r d z yDz 1 D .O 1 2x r u y r u 5

(A.22)

In the layer above the bottom layer, the extra pressure
term in the x-momentum equation required numerically
(but not analytically since that problem is continuous)
is discretized as where zr is taken relative

yx2gz d r ,r x

to the constant height zp at the center of the original
grid cell so that zr 5 h/2 where the bottom is flat, or 0
on the lower side of a step where Dzr 5 Dz0 (see Fig.
A1). Thus we get a contribution to KEt of

y xx yg uDz z d r 1 yDz z d rO 1 2u r x u r y

y
y x xy x y xx y x y5 g uDz z d r 1 yDz z d r 1 D 5 2g r d uDz z 1 d yDz z 1 D1 1 2 1 22O 1 2 Ou r x u r y 6 x u r x u r 7

yxx yy x
5 2g r uDz d z 1 z d (uDz ) 1 yDz d z 1 z d (yDz ) 1 DO 1 2u x r r x u u y r r y u 8

y yx xy xx y5 2g r uDz d z 1 rz d (uDz ) 1 r yDz d z 1 rz d (yDz ) 1 D . (A.23)O u x r r x u u y r r y u 91 2

The potential energy is defined as

PE 5 g rz Dz . (A.24)O r r

The rate of change of PE is discretized as

]
PE 5 g (d (rDz )z 1 rDz d z ). (A.25)O t r r r t r]t

The advective contribution to the first term above is

y xx y z2g d (r uDz ) 1 d (r yDz ) 1 d (r w)Dz zO 1 2x u y u z r r

x yy x zx y z5 g r uDz d z 1 r yDz d z 1 r wDzO 1 2u x r u y r w

1 D .10 (A.26)

The first two terms in (A.26) cancel corresponding terms
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in (A.22) and (A.23) while the third term in (A.26)
cancels with the remaining term of (A.21), although this
cancellation leaves a remainder term because the pres-
sure is evaluated on level surfaces, while the density
levels zr are taken to be at the center of the tracer cells.
To evaluate the remainder, recall that in the hydrostatic
calculation of the pressure in the bottom layer iszr
interpreted as the weighted average of density. Thus the
difference between the bottom two pressure values is

pI 2 pb 5 2g[rI(Dz0/2 2 h) 1 rbh/2], (A.27)

where Dz0 is the original height of the bottom tracer
cell; from here on we use the subscript 1 to denote the
level above the bottom layer. If we interpret in (A.26)zr
as a weighted average between adjacent density levels
in the same way, then the remaining, as yet unbalanced,
interior contribution to (A.26) is

2 [gw r h /2 1 h (p 2 p )]. (A.28)O 1 1 t 1 b

The second term above comes from z 5 2D 1 h, where
w 5 ht and the vertical advective flux is set to zero. We
have now dropped the double overbar, which simply
corresponds to a mapping between velocity and tracer
grids. Combining this with the remaining unbalanced
terms, which are the second and fourth of (A.23) and
the second of (A.25), gives the total remaining rate of
change in the interior, expressed as a horizontal sum
over density points,

]
(KE 1 PE)

]t

5 (2gw r h /2 2 h (p 2 p ) 1 gr z (w 2 h )O 1 1 t 1 b 1 r 1 1 t

1 gr (Dz 2 h)h /2 1 gr hh /2) 5 0,1 0 t b t (A.29)

since zr1 5 h/2 where the bottom is flat. Energy is thus
conserved, as required.

APPENDIX B

Pressure Gradient Errors

We consider two situations that give rise to horizontal
pressure gradients. The first is one discussed by Gnan-
adesikan (1999). The interior density is everywhere uni-
form, of value rI. The boundary layer density is also
uniform, of value rm. From (2.14), both numerical or
analytical solutions yield the same depth-averaged pres-
sure gradient, namely, 2g(rm 2 rI)=(D 2 h). Thus in
this case no numerical errors are created by the dis-
cretization.

Another case considered by Gnanadesikan is slightly
adapted here. It proves to be useful for estimates of
erroneous pressure gradients, as we shall see. We con-
sider the case when the interior density is rI(z) and the
boundary layer density is rm 5 rI(2D 1 h/2), that is,
the density of the interior fluid at the middle of the
boundary layer. This density is linear in z for simplicity.
In the limiting case of no layer thickness, then there is

no pressure gradient, as noted in section 2. Otherwise,
computing (2.14) gives

g
=p 5 2 r h=h, (B.1)m Iz4

where the vertical gradient of rI is not necessarily related
to the buoyancy frequency, since we suggest that func-
tions of depth be removed from the equation of state as
in sigma-coordinate models and as recommended by
Gnanadesikan (1999). This gradient varies with the
square of h, represents a true pressure gradient, and
vanishes when h vanishes.

There are several ways one can construct the nu-
merical equivalent, in increasing order of ‘‘distance’’
from the analytical equivalent. The simplest case is to
retain the analytic structure in the vertical but to replace
horizontal gradients by finite differences. This, as in
Gnanadesikan (1999), leads to the identical result. The
next case replaces the vertical structure with finite dif-
ferences as well, with the density of each box (both
internal and bottom layer) given as the value of the
linear stratification in that box. Assume for the moment
that there is an increase in depth of one depth box in
the x direction. At the first x point, there is a vertical
collection of levels (with no flow and no horizontal
pressure gradient) above the bottom internal grid box,
which has thickness Dz1 and density rI. The density in
the bottom boundary layer beneath is rMA, and its height
is hA. At the next x grid point, there is one lower internal
box, of density r2, beneath which is a bottom boundary
layer of density rMB. These densities are all given by
the formula r 5 rI 1 az, where z is measured from the
center of the rI box (where horizontal pressure gradients
are assumed zero), and a is the vertical density gradient,
subject to the above comments. Some algebra then gives

ga 1 1
2 2=p 5 (Dz 2 Dz ) 1 (Dz h 2 Dz h )m 2 1 1 A 2 B5Dx 8 2

3
2 21 (h 2 h ) . (B.2)B A 68

The three terms in this expression play differing roles.
The first vanishes when the vertical grid spacing is uni-
form. Otherwise, this term represents an error, of order
grIzDz=D. The second and third terms can be combined
to give a gradient of order 2 grIz{Dz 2 (hA 11 3

2 4

hB)}(hB 2 hA)/Dx, ignoring differences in vertical spac-
ing. This expression is similar to the analytic solution,
with two changes. The numerical coefficient has altered,
and h has been replaced by a depth less than Dz. In
some sense, then, the finite vertical spacing has ex-
panded the thickness h to something close to the grid
spacing itself. If the step occupies more than one grid
point [recall the Hughes (1995) arguments against such
a choice], then additional terms are involved.

The final version of the problem retains a similar
structure to that just discussed, save that the boundary
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layer has the same density as the box just above it. We
again assume that the step involves only one grid box.
Then after some algebra

g
p 5 (Dz 1 Dz 2 h 2 h )(r 2 r ). (B.3)mx 1 2 A B 2 14Dx

[Precisely the same is found using (2.14a) instead.] Now

rIz2(r 2 r ) 5 2 (Dz 1 Dz )2 1 1 22

(with the same comment about vertical gradient as made
above) so, substituting,

gr (Dz 1 Dz )Iz 1 2p 5 2 (Dz 1 Dz 2 h 2 h ) ,mx 1 2 A B8 Dx

so
2gr Dz grIz Iz|p | # 2 5 2 Dzz=Dz (B.4)mx 2 Dx 2

if grid spacings are equal, for simplicity. This has es-
sentially replaced h and =h in (B.1), respectively, by
Dz and =D in (B.4). This occurs because the thickness
of the bottom boundary layer has now effectively been
expanded over the entire grid box.

If the step consists of more than one grid point, it is
straightforward to show that the second term is small
if the density is roughly linear with depth. The first term
is now modified and gives approximately

gr DzIz|p | # 2 E ,mx 2 Dx

where E is the height of the step,

grIz5 2 Dz|=D|,
2

once again. (This assumes uniformity of the interior
density gradient over the N grid points.)

In both versions of this case, the pressure gradients
can produce flows that vary from negligible to O(1 cm
s21), depending on parameters chosen. Whether these
flows are serious overestimates of reality will depend
on the size of h. If h takes its minimum value (chosen
here as a 1 m cutoff ), then steep gradients and large
interior density gradient can combine to give a large
error term. If, however, h is a reasonable fraction of the
bottom grid box thickness, then the pressure gradient
induced will be approximately correct.

This case has been tested numerically, using the same
model domain as in section 4 of this paper (i.e., without
the cool basin), with the initial temperature of the bot-
tom layer given by the linear gradient evaluated at the
midpoint of the bottom layer, as above. We took TIz 5
2 3 1023 8C m21 and uniform salinity, similar to Gnan-
adesikan’s (1999) test case, and retained a nonlinear
equation of state. With the steep gradient of this con-
figuration (1.8 3 1022), flows of up to 5 cm s21 were

rapidly generated but equilibrated, remaining essentially
unchanged during a two-month integration. A second
test using a three gridpoint vertical fall in topography
produced similar flows.

We follow Gnanadesikan (1999) by recommending
that erroneous pressure gradients be minimized by sub-
tracting the areal average of density from the equation
of state at each level. The density of the bottom bound-
ary layer has anyway to be interpolated between the
values it would take were the layer to have that tem-
perature and salinity at the standard depth layers im-
mediately above and below the location of the layer.

It is not obvious how gradient errors can be reduced
below amounts of order grIzDz=D for general problems.
No matter how pressure gradients are evaluated, we be-
lieve that errors of this size will always occur due to
the coarse finite-difference approaches necessary to fit
with the remainder of the code. Other approaches (em-
bedding of a well-resolved bottom boundary layer at
the base of the stack of grid boxes) may well be needed
but are beyond the scope of this paper.
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