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ABSTRACT

A recent current profile across the Agulhas Current shows a region of strong current shear near the continental
slope and a relatively gentle exponential decay of the current offshore. If the standard Munk solution is used
to fit the current profile, it can account for only 76% of the variance in the data. In an attempt to provide a
better fit, the problem of a western boundary current with a linearly increasing viscosity coefficient is solved
analytically. It is found that the new solution can explain 97.3% of the variance in the data. The addition of a
constant viscosity inshore layer produces a further significant improvement, the final solution explaining 98.2%
of the total variance.

1. Introduction

Recently Bryden (Bryden 1995; Beal and Bryden
1997) used an Acoustic Doppler Current Profiler
(ADCP) to measure the velocity structure of the Agulhas
Current. The section along which measurements were
made ran perpendicular to the coast starting from a point
approximately 200 km southwest of Durban. It was sim-
ilar to the section sampled earlier by Toole and Warren
(1993) and was chosen because the current is closest to
the coast at this point and exhibits minimal meandering
(Grundlingh 1983).

The data from 237 m, the greatest depth for which
continuous data were obtained, are plotted in Fig. 1.
The data from shallower depths have the same general
behavior but exhibit extra variability, possibly due to
the surface Ekman layer.

The results show that the Agulhas Current has a nar-
row maximum about 13 km from the continental slope,
after which the velocity decays approximately expo-
nentially offshore. The exponential decay is similar to
that observed in a Stommel-type1 western boundary cur-
rent dominated by bottom friction. However, bottom
friction is unlikely to be involved because the depth is
too great (1400 m at the current maximum and increas-

1 Note that Stommel’s theory was developed to explain the west-
ward intensification of boundary currents, not their detailed structure.
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ing rapidly offshore) and there is additional evidence
for a countercurrent at 1000 m. Bottom friction also
cannot explain the current maximum.

A current maximum can be produced by a Munk-type
western boundary current theory using constant hori-
zontal viscosity. However, as shown in Fig. 1, if the
Munk solution is fitted to the whole of the data using
least squares, then the best fit has a scale length (38.4
km), which is too large to successfully reproduce the
narrow peak of the current. As a result, only 76% of
the total variance of the data is explained. At 31.58S the
scale length corresponds to a horizontal viscosity of
1101 m2 s21.

If the Munk solution is fitted to data near the peak,
(9–43 km from the coast), then the scale length is re-
duced to 14.8 km and the viscosity to 63 m2 s21. This
second solution certainly matches the peak of the current
but, when compared to the data, the solution decays too
rapidly offshore.

Other hypotheses may also be considered. MacCready
and Rhines (1993) have proposed that the bottom
boundary layer can be important in boundary currents,
but, as with the Stommel theory, the depth of water and
the presence of a deep countercurrent (Beal and Bryden
1997) mean that this approach is unlikely to be appli-
cable to the present data. Other possibilities include in-
ternal wave drag and a shear stress that does not depend
on the local velocity gradient.

It is also possible that what we are seeing in the data
is the effect of the nearby coastline on the turbulent
structure of the flow (Ellison 1956; Landau and Lifshitz
1987). In this case, simple eddy viscosity ideas are still
valid, but we need to allow for the average scale of the
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FIG. 1. Solid curve is the ADCP current data at a depth of 237 m
for a section crossing the Agulhas Current, at an angle of 1308 relative
to true north near 31.58S. At this depth the edge of the continental
slope is 8.6 km from the coast. Dotted curves are the best-fit Munk
solutions to (a) data between 9 and 43 km, (b) data between 9 and
227 km.

eddies to increase in size away from the coastline, re-
sulting in increased viscosity. The above estimates of
viscosity are certainly consistent with such behavior.

The present paper considers this approach in more
detail, concentrating on cases where the viscosity is ei-
ther constant or increases linearly with distance from
the coast. Unfortunately, we start without a theory for
the structure of a western boundary current when the
viscosity is varying. As a result the present paper is in
two parts. The first, sections 2–5, develops the analytic
theory of western boundary currents for the case where
the viscosity increases linearly away from the coast. It
also derives a number of results applicable to any theory
based on boundary currents in which the alongshore
pressure gradient is balanced by a horizontal shear
stress.

The second part of the paper then uses the analytic
solutions to obtain best fits to the Agulhas Current data
of Bryden (1995). It is shown that a linearly increasing
viscosity gives a much better fit than the standard Munk
solution. If this is matched to a constant viscosity region
near the shore, then a further improvement can be ob-
tained.

2. A western boundary current with horizontal
viscosity

In a steady Munk-type western boundary current,
along a north–south boundary, the dominant terms in
the eastward and northward momentum equations are

1 ]p
2 f y 5 2 ,

r ]x0

1 ]p ] ]
0 5 2 1 A y . (1)h1 2r ]y ]x ]x0

Here x and y are the east–west and north–south coor-
dinates, positive to the east and north respectively; f is
the Coriolis parameter, equal to 2V sinf, where V is
the angular velocity of the earth and f the latitude; y
is the northward velocity; Ah is the constant horizontal
viscosity coefficient; and r0 is the density.

Although Munk (1950) assumed a constant horizontal
viscosity coefficient, in practice the effective horizontal
viscosity is expected to increase away from the coast.
This is because the viscosity is due to small-scale eddies,
and these increase in size as the distance offshore in-
creases.

A similar scale dependence of the viscosity term is
found in other boundary layers (Ellison 1956; Landau
and Lifshitz 1987). For these, theories in which the vis-
cosity coefficient is proportional to x are known to give
good results near the boundary. It is thus of interest to
see how a similar scaling affects the structure of an
oceanic western boundary current.

We know that the size of the horizontal eddies reaches
a maximum a few Rossby radii away from the coastline.
We therefore ought to expect the effective viscosity to
reach a maximum and either remain constant or decay
at farther distances from the coast. It is also not obvious
that viscosity should tend to zero at the continental shelf
edge because of the strong shears and rough slope to-
pography.

A more complete theory may need to take both of
these possibilities into account. However, it is simpler
to first work with a viscosity coefficient that is linearly
proportional to x. The resulting solutions are of interest
in their own right and, as we shall see later, they can
be matched to constant viscosity solutions at small and
large distances from the coast.

Let us assume, therefore, that Ah is equal to Ax, where
A is constant. Equation (1) becomes

1 ]p
2 f y 5 2 ,

r ]x0

1 ]p ] ]
0 5 2 1 Ax y . (2)1 2r ]y ]x ]x0

Eliminating the pressure by cross differentiating gives

2] ]
2x y(x) 5 k y(x), (3)021 2]x ]x

where equals b /A, and b equals ] f /]y. Let z equal2k0

k0x. Then,

2] ]
z y(z) 2 y(z) 5 0. (4)

21 2]z ]z
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Power series solution

Equation (4) is a linear differential equation of third
order. It will have three independent solutions and the
boundary current will be represented by a combination
of these, satisfying suitable boundary conditions. Al-
though the equation is of a classic form, it is not dis-
cussed in any of the standard texts, for example Abra-
mowitz and Stegan (1965). We therefore have to develop
our own analytic solutions.

To obtain the independent solutions, we first try a
power series solution (Mathews and Walker 1965) of
the form

`

s1ny(z, s) 5 c z . (5)O n
n50

Substituting (5) into (4) and equating the coefficient of
zs1n, one finds that, if c0 equals 1,

s12z
sy(z, s) 5 z 1

2(s 1 1)(s 1 2)
s13z

1 1 · · · . (6)
2 2(s 1 1)(s 1 2) (s 1 3)(s 1 4)

Substituting into (4),

2] ]
2 s23z y(z, s) 2 y(z, s) 5 s (s 2 1)z . (7)

21 2]z ]z

Thus, y(z, s) is a solution of (4) when s equals 0 and
1. This gives the first two independent solutions. The
third is found by taking the derivative of (7) with respect
to s. This shows that ]y(z, s)/]s is a solution of (4) when
s equals 0.

The three independent solutions are thus

2 4z z
y (z) 5 1 1 1 1 · · · ,0 2 2 21 · 2 1 · 2 · 3 · 4

`

2n n5 z /[2 G(2n 1 1)G(n 1 1)], (8)O
n50

3 5z z
y (z) 5 z 1 1 1 · · · ,1 2 2 2 2 21 · 2 · 3 1 · 2 · 3 · 4 · 5

`

2n11 n 25 z [2 G(n 1 1)/G(2n 1 2) ], (9)O
n50

and

2z 1 2
y (z) 5 ln(z)y (z) 1 2 22 0 21 2[1 · 2 1 2

4z 1 2 1 2
1 2 2 2 2

2 21 21 · 2 · 3 · 4 1 2 3 4

1 · · · . (10)]

All three of these functions tend to infinity for large
z. For practical use we need solutions that tend to zero
at large distances from the coast. A study of the as-
ymptotic properties of the equation (appendix A) shows
that there are three independent asymptotic solutions:

3
21/3 2/3a (z) 5 z exp z ,0 1 22

Ï31 3
21/3 2/3a (z) 5 z exp 2 1 i z ,1 1 2[ ]2 2 2

Ï31 3
21/3 2/3a (z) 5 z exp 2 2 i z . (11)2 1 2[ ]2 2 2

Note the similarities with the solutions of Munk’s
equation (28). Of the three asymptotic solutions, only
a0 increases exponentially at large z. Thus, as y 0, y 1,
and y 2 correspond asymptotically to linear combinations
of a0, a1, and a2; all are dominated at large z by their
a0 component and have similar behavior. As a result
(see appendix B),

1/2
y (z) p1lim 5 ,1 2 1 2y (z) 2z→` 0

y (z) 1 32lim 5 ln(2) 2 g ø 20.5192499 · · · , (12)1 2y (z) 2 2z→` 0

where g is Euler’s constant (0.577 215 664 . . .).
It is thus convenient to define the independent so-

lutions W1(z), W2(z), and W3(z) as

1/2
p

W (z) 5 y (z) 1 y (z), (13)0 0 11 22

1/2
p

W (z) 5 y (z) 2 y (z), (14)1 0 11 22

1/22 3 1
W (z) 5 y (z) 1 g 2 ln(2) y (z) . (15)2 2 01 2 1 2[ ]p 2 2

These are plotted in Fig. 2. Using the relationship [Abra-
mowitz and Stegan (1965), Eq. (6.1.18)],

G(2n) 5 (2p)21/222n21/2G(n)G(n 1 ½),

one can also show that

1/2 ` np z
W (z) 5 (16)O0 n /21 22 [2 G(n 1 1)G(n /2 1 1)]n50

and that

W1(z) 5 W0(2z). (17)

For large z,
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FIG. 2. The functions W0(z), W1(z), and W2(z).

1/21
lim W (z) 5 a (z),0 01 23z→`

1/21
2ip /3lim W (z) 5 e a (z) 1 c.c.,1 11 23z→`

1/21
2i5p /6lim W (z) 5 e a (z) 1 c.c. (18)2 11 23z→`

Here W0 increases exponentially at large z, and W1 and
W2 are the exponentially decaying solutions that we
require.

The other limit of interest is near the origin:

1/2
p

2lim W (z) 5 1 z 1 O(z ),0 1 22x→0

1/2
p

2lim W (z) 5 2 z 1 O(z ),1 1 22x→0

1/22 3 1
2lim W (z) 5 ln(z) 1 g 2 ln(2) 1 O(z ). (19)2 1 2 1 2p 2 2x→0

In Eq. (18), the asymptotic limit for W0(z) was ob-
tained analytically (appendix B). The limits for W1(z)
and W2(z) were obtained numerically, using a computer
to estimate the combinations of a1 and a2 that fit W1

and W2 at large z. The coefficient values were identified
as being close to the analytic values shown, so a further
check was carried out using Fortran real*16 arithmetic
to reduce the rounding errors when calculating W1 and
W2 at large z. This confirmed that the analytic values
are correct to at least seven decimal places.

In the same way and to the same accuracy we also
have

`

W (z) dz 5 1,E 1

0

`

W (z) dz 5 0. (20)E 2

0

Thus W1(z) is well behaved, but W2(z) is unusual,
having a logarithmic singularity near the coast and con-
tributing nothing to the integrated velocity (i.e., the total
transport of the current).

If the lower limit on z is «, where « is small and
positive, then from (19) and (20)

1/2` p
2W (z) dz 5 1 2 « 1 O(« ),E 1 1 22

«

1/2` 2 3 1
W (z) dz 5 2 « ln« 2 1 1 g 2 ln(2)E 2 1 2 1 2p 2 2

«

21 O(« ). (21)

3. The western boundary current problem
The boundary conditions for the western boundary

current problem are that the velocity should tend to zero
at large distances from the coast, that the total transport
should be some fixed number, and that the velocity
should tend to zero at the coast.

Because the velocity field is expected to behave log-
arithmically near the coastline, giving a singularity at
the coast itself, the coastal boundary condition is ac-
tually more complex. The standard solution is to set the
velocity to zero at a distance «9 from the coastline. The
roughness length «9 is chosen to represent the small
roughness elements near to the coast.

We will continue using the nondimensional form of
the equations, so let «, equal to k0«9, be the nondimen-
sional roughness length. The boundary condition at
large distances from the coast means that the general
solution to (4) is of the form

y(z) 5 AW1(z) 1 BW2(z). (22)

Near the origin, the boundary condition gives

AW1(«) 1 BW2(«) 5 0. (23)

For unit transport we require
`

1 5 y(z) dzE
«

` `

5 A W (z) dz 1 B W (z) dzE 1 E 2

« «

« «

5 A 1 2 W (z) dz 2 B W (z) dz. (24)E 1 E 21 2
0 0

The integrals are evaluated by substituting the power
series expansions of W1 and W2 and reversing the order
of integration and summation. Equations (23) and (24)
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FIG. 3. The alongshore velocity plotted for different values of «.
The dotted line is the function W1. The crosses indicate the position
of the current maximum estimated from (26).

can then be solved for A and B. Figure 3 shows the
resulting velocity field for a series of values of «.

The figure uses nondimensional units for the axes. If
A equals 0.1 m s21, then at 308S, where b equals 1.14
3 10211, the horizontal scale length is 93 km. At21k0

this distance from the coast the viscosity is 9.3 3 103

m2 s21. The velocity scale V0 equals (k0T /D), where T
is the total transport in the boundary current and D is
its depth. If T equals 20 Sv (Sv [ 106 m3 s21) and D
is 1 km, then V0 equals 21 cm s21.

Near the coast the solutions are dominated by the
logarithmic boundary layer. However, the velocity soon
peaks and drops away, giving the western boundary
current. Offshore, the velocity field oscillates in sign
and decays rapidly, the wavelength of the oscillations
increasing away from the coast.

The results show that the roughness length affects the
magnitude and position of the current maximum but that
it has little effect on the total width of the boundary
current. The latter is approximately equal to .213k0

When « is small,

A 5 1 1 O(«)

p 1 3
B 5 ln(2) 2 g 2 ln(«) 1 O(«). (25)1 2@1 22 2 2

Substituting (25) and (19) in (22), the current max-
imum ymax is found at a distance xmax from the coast,
where

1/22
k x 5 B 1 O(«),0 max 1 2p

1/2
p 3 1

y 5 1 ln(k x ) 1 g 2 ln(2) 2 1max 0 max1 2 1 22 2 2

1 O(«). (26)

These values are plotted as small crosses in Fig. 3. The
agreement with the exact solution is good for the cases
where « is less than 0.1.

4. The Munk and Stommel solutions

It is of interest to compare these solutions with those
obtained by Munk, who assumed Ah was constant, and
by Stommel, who used bottom friction.

If Ah is constant, then instead of (3) we obtain
3]

3y(x) 5 k y(x), (27)m3]x

where equals b /Ah. The three independent solutions3km

are

Ï32 1
y (x) 5 k exp 2 k x sin k x ,m1 m m m1 2 1 22 2Ï3

Ï31
y (x) 5 k 2 exp 2 k x cos k x ,m2 m m m1 2 1 22 2

1
y (x) 5 k exp 1 k x . (28)m3 m m1 22

The solution y m1, which is zero at the coast, tends to
zero far from the coast, and has unit transport per unit
depth, is the solution used by Munk (1950) to describe
western boundary currents.

Stommel (1948) assumed that the north–south pres-
sure gradient was balanced by bottom friction. Equa-
tions (1) then become

1 ]p
2 f y 5 2 ,

r ]x0

1 ]p k
0 5 2 2 y , (29)

r ]y H0

where H is the depth of the ocean and k is the coefficient
of bottom friction. Equation (3) now becomes

]
y(x) 5 2k y(x), (30)s]x

where ks equals bH /k.
The solution with unit transport per unit depth is

y s(x) 5 ks exp(2ksx). (31)

The two solutions y m1(x) and y s(x) are plotted in Fig.
4 together with the solutions of (3) obtained earlier. For
the comparison both km and ks are set to unity. For the
Munk solution, this is equivalent to using a viscosity
coefficient equal to that at the point where k0x equals
one in the linearly varying case (i.e., near the center of
the boundary current). For the Stommel solution, the
choice gives unit current at the coastline.

In many ways the solutions are remarkably similar:
for example, the first zero crossings of the Munk and
variable viscosity solutions all occur in the same region
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FIG. 4. The alongshore velocity with different values of « compared with the Munk and Stommel
solutions.

with k0x between 3 and 5. The Stommel solution has
no zero crossing, having no countercurrent, but by k0x
equals 5 its amplitude is negligible.

The main differences are in the details of the current
maxima. The maximum for the Stommel solution is at
the coast and for the Munk solution it is relatively far
offshore. Compared with the variable viscosity solu-
tions, the latter arises because the Munk equation has
a higher horizontal viscosity near the coast. Offshore,
the Munk solution has a narrower return flow region, a
result of its lower viscosity.

Overall, the main effect of using a scale-dependent
viscosity coefficient is the generation of a logarithmic
boundary layer near the coast and the resulting move-
ment of the current maximum toward the coastline. Off-
shore it produces a broader countercurrent region, a di-
rect result of the higher horizontal viscosity in the re-
gion.

5. Force and shear stress

Consider the general form of Eqs. (1) and (2), where
the alongshore pressure gradient is balanced by the off-
shore gradient of a shear stress S(x):

]p
2r f y 5 2 ,0 ]x

]p ]
0 5 2 1 S(x). (32)

]y ]x

In physical terms, S(x) represents the onshore or off-
shore transport of alongshore momentum. If it depends
on a local eddy viscosity A(x) and the local velocity
gradient, then

]
S(x) 5 r A(x) y(x). (33)0 ]x

However, the general results derived in this section are
not dependent on this equation and will hold whatever
physical mechanism is responsible for the shear stress.

Eliminating the pressure from (32)
2]

S(x) 5 r by(x). (34)02]x

Let the transport offshore of x be denoted by T(x). Then,
`

T(x) 5 y(x9) ]x9. (35)E
x

From (34),

` 21 ]
T(x) 5 S(x9) ]x9E 21 2r b ]x90 x

`
1 ]

5 S(x9)[ ]r b ]x90 x

1
5 [F(`) 2 F(x)], (36)

r b0

where F(x) is the force per unit volume acting on the
fluid. The solution decays offshore, so F is zero at in-
finity. Thus,

F(x) 5 2r0bT(x). (37)

At the coast,

F(0) 5 2r0bT(0). (38)

Thus, the force acting on the water adjacent to the
coast depends only on the total transport and the value
of b and is independent of the detailed structure of the
current or the form of the viscosity A(x). From (32),
F(0) is also equal to the alongshore pressure gradient.

The force F(x) is plotted in Fig. 5 for different values
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FIG. 5. The alongshore force F(x) for different values of « compared with the Munk solution.

of « and for the Munk solution. The functions were
evaluated by substituting the power series expansions
of y and reversing the order of differentiation and sum-
mation. In the figure, the scale force F 0 equals
(r0bT /D). With the values quoted earlier (20 Sv in the
top 1000 m at 308S), F0 equals 2.3 3 1024 N m23.

At the coast the solutions all tend to the same value
because they have the same transport. Far offshore the
Munk solution decays most rapidly, the new solutions
again showing the effect of the much higher viscosity
that produces a slower offshore decay.

The shear stress S(x) can also be written in the form

`

S(x) 5 2 F(x9) dx9E
x

`

5 r b T(x9) dx90 E
x

` `

5 r b dx9 y(x0) dx00 E E
x x9

`

5 r b (x9 2 x)y(x9) dx9. (39)0 E
x

Thus,

`

S(0) 5 r b T(x) dx0 E
0

`

5 r b xy(x) dx. (40)0 E
0

This shows that the shear stress at the coast depends on
the integral of the transport or the first moment of the
current field. For a simple boundary current without
countercurrents, the shear stress at the coast can never

be zero or negative, but it is least when the current is
in the form of a jet close against the coast. In the more
usual case, when there is a series of currents and coun-
tercurrents, the offshore countercurrents reduce the
stress on the coastline and, in principal, can make it
negative.

The distribution of shear stress S(x) for the cases con-
sidered above is plotted in Fig. 6. The unit of stress S0

equals (r0Ak0T /D). With the values quoted earlier, S0

equals 21 N m22.
At the coast the broad Munk solution produces the

greatest stress. For the other cases, the stress is reduced
as « becomes smaller and the peak of the main current
moves toward the coast. Offshore the countercurrent
region has a large effect on the shear stress but the total
effect of the offshore currents, as measured by the min-
imum value of the shear stress, is only weakly affected
by changes in «.

6. Application to the Agulhas Current data

We consider first the case where the viscosity in-
creases linearly away from the boundary. For the data
taken at a depth of 237 m, the boundary is assumed to
be the point 8.6 km from the coast where the continental
slope has this depth. As with (22), we ignore any small
Sverdrup transport at large distances from the coast and
assume that the velocity field has the form

x x
y(x) 5 AW 1 BW . (41)1 21 2 1 2x x0 0

The solution has three free parameters, the horizontal
scale length xw (equal to ), the roughness length «,21k0

and the current transport (24). These were estimated by
minimizing the variance s 2 between the analytic so-
lution (41) and the Agulhas Current data,
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FIG. 6. The viscous shear stress S(x) for different values of « compared with the Munk solution.

TABLE 1. Variance of the raw data and the best-fit residual variance
for each of the models together with the model parameters. In the
model names, C and L refer to constant and linearly varying viscosity
regions and are ordered starting from the shelf edge. Here x1 and x2

are the distances of the inner and outer boundaries between the regions
from the shelf edge; xm1 and xw are the scale lengths for the inner
and linearly varying region, respectively. For model L, when there
is no coastal constant viscosity region, x1 is the roughness length.

Model

Residual
variance
(cm2 s22)

Variance
explained

(%)
xm1

(km)
x1

(km)
xw

(km)
x2

(km)

Data
C
L
L-C
C-L
C-L-C

449 080.3
107 611.2

12 055.7
12 056.6

8104.6
8104.6

76.04
97.32
97.32
98.20
98.20

38.35

18.99
18.99

0.23
0.22

18.61
18.62

64.57
64.65
81.74
81.74

581.8

876.1

FIG. 7. The best-fit solution to the data obtained with a linearly
varying viscosity. The best-fit parameters are tabulated as model L
in Table 1.

2 2s 5 (y 2 y(x )) , (42)O i i
i

where y i is the velocity data at distance xi from the coast.
The problem is a nonlinear one in terms of xw and «,
but if these are fixed, it transforms into a linear equation
for the total transport. NAG routine E04FDF (NAG
1993) was used to estimate the best-fit values of xm1 and
«, the transport being calculated from the linear equation
during each iteration.

The resulting best fit is shown in Fig. 7. Parameter
values and the residual variance are given in Table 1
(case L). At 31.58S and with the coast at an angle of
408, a scale length xw of 64.57 km corresponds to the
coefficient A having a value of 0.063 m s21.

Diffusion is an integral effect due to all unresolved
time-dependent motions, but it sometimes helps to con-
sider it in terms of some dominant eddy field. In the
present case such eddies have a velocity of order 0.06

m s21 and a horizontal scale comparable to the distance
from the coast. The estimated velocity is about 5% of
the maximum velocity measured in the core of the Agul-
has Current and is not unreasonable for transient mo-
tions.

Although the viscosity is low near the boundary, in
the core of the current 17 km from the boundary it has
risen to 1383 m2 s21. At 100 km, the viscosity is 8139
m2 s21. This continued increase offshore is almost cer-
tainly unphysical. However, the current shear at large
distances is small, so if the viscosity levels off, or be-
comes smaller, the effect on the velocity profile should
be small.

Figure 7 and the table of variances show that a linearly
increasing viscosity gives a reasonably good fit to the
Agulhas Current data. Although the new solution has
only one more parameter than the Munk solution, the
position and magnitude of the peak of the current are
fitted well, as is the decaying tail. The residual variance
also drops from 24% with the two parameter Munk



JULY 1999 1525W E B B

FIG. 8. The best-fit solution to the data with a coastal constant
viscosity layer matched to an offshore linearly varying viscosity. The
best-fit parameters are tabulated as model C–L in Table 1.

solution to 2.3% with the new solution. This appears to
be statistically significant, but unfortunately an F test
cannot be used because the underlying models are non-
linear. (If it was valid, then the improvement would be
significant at the 99% level.)

The major remaining discrepancies between the so-
lution and the data are the inshore current shear, which
is too large, the shape of the current maximum, which
is too wide, and the offshore zero crossing, which is
not present in the data. The first two indicate that the
viscosity may be too small near the coast and too large
near the peak of the current. The offshore zero crossing
is more difficult and is discussed later.

Mixed solutions

As we now have analytic solutions for both the con-
stant viscosity and linearly varying viscosity problems,
it is possible to consider more complex cases. Three
will be considered. The first, denoted C-L, has an in-
shore region where the viscosity is constant and an off-
shore region where it is linearly varying. The viscosities
are equal at the matching point. The second case, L-C,
has an inshore linearly varying region matched to an
offshore constant viscosity region. The final case, C-L-
C, has both inshore and offshore constant viscosity re-
gions matched to an intermediate linearly varying re-
gion.

For the first case, C-L, the offshore velocity is given
by (41) and the inshore velocity is a linear combination
of the three Munk functions given by (28). If the bound-
ary between the two regions is at x equal to x1, then the
boundary conditions are obtained by integrating (32)
between x1 2 « and x1 1 «, where « is positive and
infinitesimally small:

] ] ] ]
A(x) y(x) 5 A(x) y(x) ,1 2 ) 1 2 )]x ]x ]x ]xx 2« x 1«1 1

] ]
A(x) y(x) 5 A(x) y(x) ,1 2 ) 1 2 )]x ]xx 2« x 1«1 1

y(x)| 5 y(x)| . (43)x 2« x 1«1 1

In physical terms, these equations require the force,
shear stress, and velocity all to be continuous across the
boundary.

For the second case, L-C, the inshore velocity is a
linear combination of the three W functions (13), and
the offshore velocity is a linear combination of the two
decaying Munk solutions, y m1 and y m2 (28). The final
case, C-L-C, adds three more Munk functions to de-
scribe the inner constant viscosity layer.

In each of the cases, the free parameters were varied
as before to give the best fit as measured by Eq. (42).
The resulting parameters and residual variances are giv-
en in Table 1.

In case C-L, the addition of the inner constant vis-

cosity layer reduces the residual variance by a third.
(With a linear system such an improvement would be
significant at the 99% level.) The improved solution is
illustrated in Fig. 8. Note that the inshore constant vis-
cosity layer extends beyond the peak of the current. The
slight kink in the velocity field 30 km from the coast
is associated with the change of the offshore gradient
of viscosity at the matching point (43).

In this case, the values of xw and xm1 give a value of
A equal to 0.1 m s21 and a value of the viscosity co-
efficient Ah in the inner constant viscosity layer equal
to 102 m2 s21. The value of x1 is also roughly equal to
the position of the Agulhas Current maximum. If, as
before, we assume that the viscosity is due to an eddy
field with velocities of order 0.1 m s21, then the eddy
field inshore of the current maximum has a scale of
order 1 km. The results imply that the underlying tur-
bulent field is relatively constant inshore of the current
maximum and that it increases in scale offshore of this
maximum.

In the two cases, L-C and C-L-C, the addition of the
offshore constant viscosity layer does not improve the
solution significantly. (The minimization algorithm ac-
tually tries to move the boundaries as far offshore as
possible, the resulting velocity profiles being similar to
Figs. 7 and 8, respectively.) These results are surprising,
as in practice one would expect the amount of energy
in the eddy field to reach a maximum and decay at
distances beyond a few Rossby radii from the coastline
and maximum current.

The failure to provide an offshore upper bound on
the viscosity may be associated with the problem of the
zero crossing. If we consider the case of arbitrary vis-
cosity, then from (39), if the shear stress falls to zero
anywhere, the offshore velocity must have zero first
moment. A corollary of this result is that, if there is no
zero crossing as appears to be true in the Agulhas data,
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the stress must have the same sign everywhere. In this
case, the shear stress cannot be a function of the local
current shear. Instead it must still be responding to the
coastal boundary condition even at distances far off-
shore beyond the peak in the Agulhas Current.

The alternatives are that the Bryden (1995) data is
atypical or that additional physics is involved. The latter
might be a result of offshore flow at large distances
from the coast. It could also be associated with the rel-
atively tight recirculation gyre and the alongshore ac-
celeration of the Agulhas Current (Pierce 1977; Stram-
ma and Lutjeharms 1997). Time-dependent processes
may also be involved.

7. Conclusions

We have investigated whether the observed velocity
structure of the Agulhas Current can be understood in
terms of geostrophic balance and simple ideas of eddy
viscosity. The standard Munk western boundary current
was found to provide a poor fit to the data, explaining
only 76% of the variance. This arose primarily because
the solution cannot reproduce both the large shear near
the coast and the slow decay of the current offshore. It
was therefore decided to develop an analytic solution
for the case where the viscosity varies linearly with
distance from the coast.

The investigation showed that the resulting boundary
current has a logarithmic layer near the coast and a
nearshore current maximum. Offshore the current de-
cays and oscillates, giving a series of currents and coun-
tercurrents similar to the Munk solution but with the
wavelength increasing offshore.

The structure of the force and shear stress fields have
also been investigated. For an arbitrary horizontal vis-
cosity, the viscous force acting on water adjacent to
the coast is proportional to the total transport, that is,
the integral of the velocity field. Also the stress on the
coastline is equal to the first moment of the velocity
field. For the present series of solutions this means that
the stress on the coast is smallest when the boundary
roughness « is small and the boundary current is nar-
rowest.

The new analytic solution has been used to fit the
data collected from the Agulhas Current. It fitted well,
except near the continental shelf edge where the shear
was too large, and was found to explain 97.3% of the
variance. The addition of a constant viscosity inshore
layer produced a further significant improvement, re-
ducing the shear near the coast and explaining 98.2%
of the total variance. Adding a second constant vis-
cosity region far from the coast, to represent an off-
shore limit to the viscosity, did not improve the fit
significantly.
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APPENDIX A

Asymptotic Series Solution

The equivalent second-order form of (4) has solutions
involving Hankel functions (Ellison 1956; Abramowitz
and Stegan 1965). These have the asymptotic form

w(z) ø zs exp(iaz), (A1)

where a is complex. Various tests based on this form
show that the function y 0(z) behaves as exp(az2/3). With
this in mind, we try the substitution z equal to z2/3. Then
(4) becomes

23 2] y 3 ] y 1 ]y 3
1 2 2 y 5 0. (A2)

3 2 2 1 2]z 2z ]z 2z ]z 2

Try the asymptotic series

`

s2ny(z) 5 exp(az) c z . (A3)O n
n50

Substituting in (A2), setting c0 to unity, and equating
coefficients of zs1n gives

s 5 21/2,

3
1/3a 5 1 ,1 22

c 5 1/(12a),1

2c (3(1/2 2 n) 2 1/2) 1 c (3/2 2 n)((1/2 2 n)(1 2 n) 2 1/2)n21 n22c 5 . (A4)n 23na

Here 11/3 means the three complex cube roots of 1, that
is, 11 and (21 6 i(3)1/2)/2. Equation (11) contains the

leading term of the three resulting series written as a
function of z.
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APPENDIX B

Power Series Asymptotic Limits

Equation (6) can be rewritten in terms of Gamma
functions as

y(z, s)
` G(s 1 1)G(s/2 1 1)

2n1s5 z . (B1)O nG(2n 1 s 1 1)G(n 1 s/2 1 1)2n50

Using Stirling’s formula,
2z z21/2 1/2lim G(z) 5 e z (2p) , (B2)

z→`

and
a a blim (a 1 b) 5 a e , (B3)

b /a→`

one finds that for large z,
` 3n1(3/2)s11G(s 1 1)G(s/2 1 1)3

2n1sy(z, s) ø z . (B4)O
n50 3 3

1/2 3n1s11/2(2p) 2 G 3n 1 s 11 22 2

Let z equal z2/3. Then,
(3/2)s11G(s 1 1)G(s/2 1 1)3

y(z, s) ø
1/2 s11/2(2p) 2

3n` 3 3 3
3n1(3/2)s3 z G 3n 1 s 1 ,O 1 2 @ 1 22 2 2n50

1/2 s /2G(s 1 1)G(s/2 1 1)3 2
ø

1/2(2p)

3n1(3/2)s11/2` 3 3 3
21/23 z z G 3n 1 s 1 ,O1 2 @ 1 22 2 2n50

1/2 s /2G(s 1 1)G(s/2 1 1)3 2 1 3
21/2ø z exp z .

1/2 1 2(2p) 3 2

(B5)

Thus, for large z,

s /2G(s 1 1)G(s/2 1 1)2 3
21/3 2/3y(z, s) 5 z exp z . (B6)

1/2 1 2(6p) 2

The asymptotic forms of y 0 and y 1 are obtained with
s equal to 0 and 1, respectively,

1/21 3
21/3 2/3y (z) ø z exp z ,0 1 2 1 26p 2

1/21 3
21/3 2/3y (z) ø z exp z . (B7)1 1 2 1 212 2

The asymptotic form of y 2 is obtained from the deriv-
ative of (B6) with respect to s :

] 1 3
21/3 2/3y(z, s) ø z exp z

1/2 1 2]s (6p) 2

]
s /23 G(s 1 1)G(s/2 1 1)2 ,1 2]s

1 3
21/3 2/3 s /2ø z exp z G(s 1 1)G(s/2 1 1)2

1/2 1 2(6p) 2

1 s ln(2)
3 c(s 1 1) 1 c 1 1 1 ,1 1 2 22 2 2

(B8)

where C is the Psi (or Digamma) function. Thus, when
s equals 0,

1 3 ln(2) 3
21/3 2/3y (z) ø z exp z 2 g . (B9)2 1/2 1 21 2(6p) 2 2 2
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