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1. Introduction

In the accompanying comment, Kalmykov expresses
two concerns regarding the work of Lin and Perrie (here-
after LP) 1) that the numerical simulations of five-wave
interactions by Kalmykov were not cited by LP and 2)
that, because the results of Kalmykov are qualitatively
different from those of LP, therefore the conclusions of
LP cannot be justified.

The authors apologize for not citing the work of Kal-
mykov. These papers constitute important early attempts
to compute the five-wave interactions. Unfortunately,
the later Kalmykov paper did not become available until
after the LP paper had gone to press.

The authors’ major concern in this reply is to dem-
onstrate that the conclusions of LP are correct. The five-
wave interactions, as described by LP, are for finite am-
plitude waves with a narrow spectral spreading and large
peakedness g, rather than small amplitude waves with
a broad spectral spreading and small g 5 1, which is
the approach taken by Kalmykov’s papers.

2. Scientific background

First, the dominance of the five-wave interactions di-
rect or inverse cascades depends on the shape of the
spectrum. Five-wave interactions can cause both energy
transfer from low to high frequencies (the direct cas-
cade) and energy transfer from high frequencies to low
frequencies (the inverse cascade). These cascades are
shown in Fig. 1. Following LP, a dominant inverse cas-
cade is shown in Fig. 1a, assuming a narrow (Hassel-
mann–Mitsuasyu) spectral spreading, as motivated by
Hasselmann et al. (1980) from JONSWAP analysis,
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D(u, f ) 5 I(s) cos2s[(u 2 umax)/2], (1)

where I(s) is a normalization factor and s is parame-
terized as

4.066.97( f / f ) for f / f , 1.05.p ps 5 (2)
m59.77( f / f ) for f / f $ 1.05.p p

Here, m is a weakly dependent function of wave age,
U10/Cp, which satisfies the relation

U10m 5 2.33 2 1.45 2 1.17 ,1 2Cp

where Cp is the phase speed at f p. A similar form was
proposed by Mitsuyasu et al. (1975).

However, if the spectrum is very broad in angle, for
example cos2u, then the dominance of a direct cascade,
as suggested by Kalmykov’s comment and papers, is
correct. In Fig. 1b, we give five-wave interactions direct
and inverse cascades for the latter spreading, showing
the dominance of the direct cascade. However, in this
case, assuming deep water waves that are not steep, LP
and Kalmykov’s papers all suggest that four-wave in-
teractions should dominate over five-wave interactions,
implying that inverse cascades due to four-wave inter-
actions would be a dominant feature.

Second, four-wave interactions are local interactions,
which are proportional to d3, where d is the width of
the spectrum, whereas five-wave interactions are global
interactions that are not significantly affected by d, as
presented in LP. Therefore, the five-wave interactions
allow the study of finite-amplitude narrow spectral in-
teractions, which may be able to obtain significant three-
dimensional patterns, as described by McLean’s
(1982a,b) instability analysis, Su’s (1982a,b) experi-
mental analysis, Long et al.’s (1994) observations, and
the long-lived patterns of Shrira et al. (1996).

Third, as discussed in Zakharov (1991), the direct
cascades cause the energy transfer from low to high
frequency, whereas the inverse cascades cause the en-
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FIG. 1. (a) The nonlinear transfer for five-wave interactions, using
JONSWAP input spectrum (with peakedness g 5 3.3) with Hassel-
mann–Mitsuasyu spreading as given in Eqs. (1)–(2), steepness 0.3
and water depth, 10 m. (b) As in Fig. 1a, assuming Pierson–Mos-
kowitz input spectrum (g 5 1) with wide cos2u spreading.

ergy transfer from high to low frequency. The latter can
cause waves to grow and the peak frequency to down-
shift to lower frequencies, whereas the former causes
waves to break. Therefore, inverse cascades, as given
by the finite-amplitude, five-wave interactions of LP, are
central to the long timescale, three-dimensional me-
chanics, as observed by Su (1982a,b), McLean
(1982a,b), Long et al. (1994), and Shrira et al. (1996),
whereas associated direct cascades are central to the
short timescale mechanics for remote sensing and radar
scattering. As four-wave interactions are primarly two-
dimensional, whereas five-wave interactions are pri-
marily three-dimensional, the four-wave interactions, by
themselves, cannot provide a comprehensive description
of these three-dimensional patterns of Su (1982a,b). By
contrast, the five-wave interactions of Kalmykov (1999,
p. 2) are only significant in shallow water. Unless waves
are extremely steep, they are only associated with direct
cascades and they are always much smaller than the

corresponding four-wave interactions. Therefore, the
five-wave interactions of the comment inhibit wave
growth because of their dominant direct cascades, and
they cannot account for the finite-amplitude three-di-
mensional patterns of Su (1982a,b).

Fourth, recently Lin and Chubb (1999) found signif-
icant direct cascades by weakly nonlinear four-wave in-
teractions when the initial spectrums are split so the
observed direct cascades at the tail of the spectrum may
be due to four-wave interactions instead of five-wave
interactions.

Finally, it is well known that five-wave interactions
can be significant only when the wave steepness is great-
er than about 0.3, as given by Su (1982a,b), McLean
(1982a,b), Shrira et al. (1996), and LP. At the bottom
of p. 2, Kalmykov (1999) states that ‘‘This instability
II (3D) was triggered by instability I (2D) or Benjamin-
Feir instability.’’ This is inconsistent with the comment
(i) at the top of p. 2, where Kalmykov suggests that
these four-wave resonant conditions cannot be satisfied
in shallow water and that five-wave interactions would
result, and (ii) on p. 6 of the comment, where Kalmykov
uses scaling arguments to suggest that even for very
steep waves in very shallow water, five-wave interac-
tions should be much less important than four-wave in-
teractions. Moreover, we note that the mechanics by
which four- and five-wave interactions are coupled to
generate 3D wave–wave interactions patterns was sug-
gested by Su (1982a,b) for deep water waves, not for
shallow water waves.

3. Numerical simulations

We have some concerns regarding Kalmykov’s (1993,
1995, 1997, 1998) results.

1) A major problem is that in the first three of these
papers, the nonlinear transfer due to five-wave in-
teractions is strongly asymmetric. Figure 3 of Kal-
mykov (1997) notes that the energy is moved from
the spectral maximum uo 5 0 to lateral waves at u2

5 608 and u1 5 2908. By contrast Kalmykov (1998)
gives symmetric lateral transfer to waves at u 5
6708, which is similar to the lateral transfer angle
presented by LP. No discussion is given in regard to
this lateral transfer. Thus, the results of Kalmykov
(1998) appear inconsistent with the results of Kal-
mykov (1993, 1995, 1997).

2) It is difficult to quantitatively compare the magni-
tudes of Kalmykov’s results because of the nondi-
mensionalization he has implemented. Even in non-
dimensional units, his results show some variation
in his four papers cited above. For example, in di-
mensionless variables, five-wave interactions have a
maximal magnitude of about 0.05 in Kalmykov
(1995, 1997), which becomes about 18 in Kalmykov
(1999) and Kalmykov (1998). Kalmykov (1998)
does indicate the factor to convert these values to
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dimensional values, which then gives maximal mag-
nitudes of order 1025, similar to LP maximal values.
However, a detailed direct comparison between LP
and Kalmykov’s results is difficult to make because
Kalmykov uses a Pierson–Moskowitz input spec-
trum, which corresponds to very old sea state con-
ditions, whereas LP use JONSWAP input spectrum
with peak frequency at 0.3 Hz, corresponding to ac-
tively growing, evolving, young sea state conditions.
Moreover, Kalmykov’s directional spreading is cos2u
for |u| # p/2, which is significantly broader than the
Hasselmann–Mitsuasyu spreading in LP, as de-
scribed above. Although Kalmykov (1999) claims to
use a JONSWAP input spectrum, it is, in fact, the
old sea state spectrum (Pierson–Moskowitz) of Fig.
2a in Kalmykov (1998).

3) Young et al. (1996) suggest that shallow water spec-
tra are more broad than deep water spectra, based
on an extensive data analysis, comparing his shallow
lake data to Donelan et al.’s (1985) deep water data
from Lake Ontario. Using a broadly spreading spec-
trum, for example cos2u, Kalmykov (1998) suggests
that the effect of shallower water is to narrow the
spectrum, which is therefore contradictory to Young
et al.’s (1996) observations.

4) Numerical simulation of the nonlinear energy trans-
fer depends on both the transfer coefficient and the
integration method. As Kalmykov claims his transfer
coefficient is taken from Krasitski (1993), his sim-
ulation should be mostly correct. However, problems
occur in his integration method and related assump-
tions. Kalmykov (1997) assumes the five-wave res-
onance conditions are given by 3ko 5 k4 1 k5 and
3vo 5 v4 1 v5, where ko 5 vo 5 1, which is
impossible for five-wave interactions. Unlike four-
wave interactions, five-wave interactions are global
interactions, which means that the five interacting
waves do not need to have comparable wavelengths.
This assumption makes Kalmykov’s (1997) solutions
qualitatively different from the real solutions.

4. Previous work

Kalmykov (1999) claims that all previous works, such
as Dyachenko et al. (1994), Krasitski (1993, 1994), Mei-
ron et al. (1982), Shrira et al. (1996), McLean (1982a,b),
Stiassnie and Shemer (1984, 1987), and Su (1982a,b)
support his results, including his claim that five-wave
interactions support only direct cascades. Unfortunately,
this is not correct. Dyachenko et al. (1994), Krasitski
(1993, 1994), Meiron et al. (1982), and Stiassnie and
Shemer (1984, 1987) basically studied the nonlinear
transfer coefficient, not the numerical simulation. They
concluded that five-wave interactions will generate
three-dimensional wave–wave interactions. They did
not discuss the ability of five-wave interactions to sup-
port inverse cascades or direct cascades.

Shrira et al. (1996) suggested that class II instability

(five-wave interactions, seven-wave interactions, and so
on) generate horseshoe patterns. However, inverse cas-
cades and direct cascades are both present in horseshoe
patterns, and Shrira et al. (1996) did not suggest that
only direct cascades are present, as Kalmykov (1999)
claims. Moreover, Shrira et al. (1996) did suggest that
wave steepness needs to be greater than 0.33 in order
for the generation of the three-dimensional patterns,
which is approximately the same as LP’s criterion for
the dominance of five-wave interactions. Thus, five-
wave interactions must support inverse cascades, as sug-
gested by LP. Otherwise, if five-wave interactions only
support direct cascades and if they dominate over four-
wave interactions, as found by LP, then three-dimen-
sional wave patterns will not be observable because it
is impossible for waves to grow and evolve.

McLean (1982a,b) used a global linear method to
study five-wave instability. He found that five-wave in-
teractions can be greater than four-wave interactions
when wave steepness is greater than 0.28. Su (1982a,b)
first observed the three-dimensional wave–wave inter-
actions in his data. These results agree with the finite-
amplitude analysis of LP and disagree with Kalmykov
(1993, 1995, 1997, 1998). Su and Green’s (1984) anal-
ysis, based on their experimental results, suggests that
the two-dimensional instabilities may trigger the three-
dimensional instabilities in deep water. However, this
approach does not apply to shallow water, because four-
wave interactions become rapidly less important as wa-
ter depth decreases, as shown in Lin and Perrie (1997b).

Recently, Lin and Su (1999) showed that a coupling
of four- and five-wave interactions can cause three-di-
mensional wave–wave interactions in deep water, when
the spectrum is narrow and wave steepness is significant.
The results agree well with LP. When inverse cascades
occur, transferring energy from high to low frequencies,
then waves can only grow and the coupling of four- and
five-wave interactions can occur.

The analysis of Long et al. (1994) considers three sets
of observed wave spectra in shallow water. The domi-
nant directions of the wave spectra distributions are
about 608 from the downwind direction. The wave am-
plitudes are about 4 m high. These are finite-amplitude
waves. While LP can provide a good explanation for
these wave spectra phenomena, because their transfer
to lateral waves by the five-wave interactions is at 6608,
other mechanisms such as the Phillips mechanism for
wave generation or the five-wave interactions of Kal-
mykov (1993, 1995, 1997, 1998), cannot explain these
phenomena.

Kalmykov (1999) states, ‘‘For any odd number of the
wave interactions, the energy transfer is a direct cascade:
from low frequency to high, while for any even number
we get an inverse cascade (Zakharov 1998).’’ We could
not find this stated or implied in Zakharov (1998). Both
direct and inverse cascades are computed in Resio and
Perrie (1991) for four-wave interactions, in accord with
the theoretical study by Zakharov (1991). Moreover,
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Prof. Zakharov has discussed the nonlinear wave–wave
interactions of LP several times with us: he has never
suggested that odd (even) number wave–wave interac-
tions should have only a direct (inverse) cascade.

5. Summary

We have shown that five-wave interactions should
include both direct and indirect cascades, depending on
the spectral spreading. This follows from the existence
of the finite-amplitude long-lived, three-dimensional
patterns, as observed by Su (1982a,b), and the associ-
ated analysis of McLean (1982a,b). Therefore, follow-
ing Zakharov (1991), these features should be generated
by inverse cascades, not direct cascades, as presented
by LP. In this sense, we have shown that Kalmykov’s
results contradict the instability analysis of McLean
(1982a,b) and the observational data of Su (1982a,b).

Kalmykov’s (1993, 1995, 1997) earlier results are
strongly asymmetrical whereas his most recent results,
shown in Kalmykov (1998), are symmetrical. The for-
mer are unphysical, because there is is no obvious rea-
son for asymmetry. Kalmykov gives no apparent dis-
cussion of this asymmetry/symmetry.

When the spectrum is broad, such as cosmu, and when
peakedness g is small, the direct cascade tends to be
more dominant, as suggested by Kalmykov (1998) and
presented in Fig. 1b. When the spectrum is narrower,
as parameterized by the Hasselmann–Mitsuasyu spread-
ing and when g is large, the inverse cascade tends to
dominate, as shown in Fig. 1a and in LP.
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