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Recent calculations by Lin and Perrie (1997) on the
surface wave spectral energy fluxes due to the wave
nonlinearity in deep and shallow water appeared after
previously published works by Krasitski (1993), Shri-
ra et al. (1996), and Kalmykov (1993, 1995, 1997),
while presenting results that are qualitatively different
from those obtained previously. This comment is on
these obvious differences and why it appears that the
conclusions of Lin and Perrie cannot be justified.

Surface waves in deep water as well as in shallow
water are very well described by the four-wave kinetic
equation as shown by Hasselmann and Hasselmann
(1985) and Herterich and Hasselmann (1980). Anal-
ogous computation of the five-wave kinetic equation
for deep and shallow water show that a five-wave
contribution is very small: only 3%–5% of the four-
wave one (Kalmykov 1998). Therefore we can con-
clude that the four-wave kinetic equation still remains
dominant for the shallow and deep water wave mod-
eling and that all this discussion is of only academical
interest.

During the past 15 years many studies have been
made in this area, some of which are not cited by Lin
and Perrie (1997), including Parts I and II of the series
leading to the present article under discussion (Part III).
They present results of their own calculations of the
spectral transfer rates in a JONSWAP spectrum, which
are qualitatively different from various previously pub-
lished results, while offering no explanation for the dif-
ferences found.

The subject of five wave–wave interactions among
surface gravity waves is not new. First discussions con-
cerning the energy transfer by five-wave interactions
in wave spectra took place at Zakharov’s seminar in
1993 in Moscow, where the present author made a
report (Kalmykov 1993). In experiments, it was first
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noticed by Su (1982) in the form of a horseshoe pattern
existing in two-dimensional waves. Then McLean
(1982a,b) found theoretically that instability II was a
possible reason for these three-dimensional patterns.
At the same time, this topic was developed by Meiron
et al. (1982). They found good agreement between the
Su (1982) experiment and the theory and were able to
give an exact answer: it was a three-dimensional in-
stability II making these 3D wave patterns. Later, this
theme was continued by Stiassnie and Shemer (1984,
1987). They derived the five-wave Zakharov’s equation
and found that the most unstable 3D wave segments
were just those observed by Su (1982) and by other
authors. This instability II (3D) was triggered by in-
stability I (2D), or the Benjamen–Feyer instability. Su
(1982) observed the wave segments with the scales L 2

5 2l 0 , where l 0 is the wavelength from the spectral
peak. McLean (1982a,b) found the coordinate of the
most unstable lateral perturbation k1 5 (p, q), where
p 5 0.5 and q 5 1.2; that gives |k1| 5 1.3 (v1 5 1.7)
and angle to the x axis of u1 5 678. Recently, the five-
wave Zakharov’s equation in Hamiltonian form was
derived by Krasitski (1993, 1994). In recent works
(Kalmykov 1993, 1995, 1997), numerical estimates of
the nonlinear transfer of wave energy by five-wave
interactions in the wave spectra were first performed.
This transfer was directed from the spectral peak (v 0

5 1, u 0 5 0) to the waves of frequency v1 5 1.7–2.0
and angles u1 5 6(608–708) from the main direction
for different depths. As can be seen in each of the
works cited above except for Lin and Perrie (1997),
we have energy flux from low to high frequency, but
not an inverse cascade. In some sense this is evident
because five-wave interactions do not conserve action,
only energy. The most recent paper devoted to this
theme is that of Shrira et al. (1996), where energy by
five-wave interactions is also transferred from low
wavenumbers to the higher ones.

Now let us see the equation in more detail. For the
estimation of the nonlinear transfer of energy by five-
wave resonant interactions, we will use the kinetic equa-
tion derived by Krasitski (1993):
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FIG. 1. Nonlinear transfer of energy (two-dimensional) (3) for Pier-
son-Moscovitz spectrum (g 5 1, m 5 2); units are nondinemsional
(g 5 k0 5 v0 5 1): I51 dotted line, I52 dashed line, and I51 1 I52 solid
line.

FIG. 2. Nonlinear transfer of energy (three-dimensional) (3).
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in which k is the wavenumber vector, and k 5 |k|; v
5 [gk tanh(kh)]1/2 is the dispersion relation; g 5 9.81
m s22 is the gravitational acceleration; h is the depth;
W1,2,3,4,5 5 W(k1, k2, k3, k4, k5) is the kernel function
for arbitrary depth; d( · · · ) is the Dirac delta function;

24p g
n 5 n(k ) 5 S(k ) (2)1 1 1 v1

is the spectrum of wave action; and S(k) is the wave-
number spectrum of the surface waves. In order to sim-
plify our presentation, we split the integral in Eq. (1)
into two parts as follows:

]n1 5 I 5 I 1 I , (3)5 51 52]t

where I51 is the first term in Eq. (1) and I52 is the second
one. All computations are performed in nondimensional
form. Thus without loss of generality, we take g 5 k0

5 v0 5 1, with k0 and v0 as the wavenumber and the
frequency at the spectral peak in deep water [in shallow
water g 5 v0 5 1, k0 5 k0(v0(h))].

We treat the wave vector in polar coordinates; thus,

k 5 (v2, u) is a vector with amplitude v2 and angle u
to the x axis. According to Eq. (1), it is necessary to
satisfy the following resonant conditions for five vectors
and frequencies:

k 1 k 1 k 5 k 1 k , (4a)1 2 3 4 5

v 1 v 1 v 5 v 1 v . (4b)1 2 3 4 5

We adopt the JONSWAP wave spectrum here as the
frequency function and angular distribution in the form
of K(u) ; cosm(u).

Figure 1 shows the two-dimensional energy transfer
from (3) versus frequency. One can see that energy cas-
cades from the spectral peak to higher frequencies. Here
the first term from (3) is positive and the second term
is negative, while their sum gives the energy flux from
the spectral peak to the high frequency: a direct cascade.
Figure 2 shows the same three-dimensional energy
transfer versus frequency and angle.

It follows that when the wave energy is transferred
by five-wave interactions, it is from the spectral max-
imum to the higher harmonics propagating at angles
6708 from the main direction. For any odd number of
wave interactions, the energy transfer is a direct cascade
from low frequency to high, while for any even number
we get an inverse cascade (Zakharov 1997). The only
exception is the case when the waves are almostly co-
linear (Dychenko et al. 1994), in which case the energy
transfer could be represented by an inverse cascade.
Those cases can only be realized for swell propagation,
but they are unstable to any cross-wave perturbations.
It follows from the previous discussion where it was
concluded that five-wave interactions are rather three-
dimensional than colinear (four-wave interactions). For
example, let us take three of the five participating waves
to be at the spectral peak with frequency and wave-
number as v0 and k0; a perturbation consequently will
be v1 and k1. Then, from (4), we have 3v0 5 2v1;
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therefore v1 5 (3/2)v0, a direct cascade. Furthermore,
3k0 5 2k1 cos(b), thus b will have to be around 508,
an off-main direction propagation. This is very close to
what we have obtained and the results of other authors
cited above. The energy transfer rate for the five-wave
interactions will only consist of a few percent of four-
wave interactions because a 5 I5/I4 5 e2, where e 5
k0a0 is the wave steepness, and I4, I5 are four- and five-
wave interactions, respectively. It is reasonable to con-
clude that four-wave interactions remains dominant ex-
cept maybe for very steep breaking waves or for ex-
tremely shallow depth, where the kinetic equation (3)
is not valid and the KdV equation must be used. As a
function of the depth, it is easy to find that a 5 [12e`

1 2x/sinh(2x)]21 tanh22(x) ; /2x2, where x 5 kh K2e`

1 and e` is wave steepness in deep water. For x 5 3.6
(practically deep water) from Lin and Perrie (1997),
wave steepness e` 5 0.3 (for the sea is typical e` #
0.1), and a ; 0.10, only 10%. It contradicts the con-
clusion of Lin and Perrie (1997) that five-wave inter-
actions have the same value or even dominate over four-
wave ones. For example, take x 5 0.5 from Kalmykov
(1995) and assume e` 5 0.3, a ; 0.2. So, even for such
large wave steepness of 0.3 and small depth 1.4 m [for
f 0 5 0.3 Hz (Lin and Perrie 1997) and kh 5 0.5 (Kal-
mykov 1995)] five-wave interactions consist of only
20% of the four-wave ones. That five-wave interactions
are much smaller than four-wave ones is reasonable and
is in accordance with the perturbation theory where the
higher order terms are less than lower ones. If some-
where higher-order terms become equal or greater than
lower ones, it means that the equation in this case is
not valid. A few words about units: The method of
computing Eq. (3) is the same as the one in Masuda
(1980) for four-wave energy transfer. To get units of
meters squared for dS/dt one has to multiply nondi-
mensional values of the five-wave energy transfer on
the figures by the factor:

c5 5 S 4(v0) g26,16v0 (5)

and do the same for four-wave case (Masuda 1980):

c4 5 S 3(v0) g24;11v0 (6)

that is why a 5 c5/c4 5 e2. Furthermore, values of
dS/dt for different g are different, as, for example in
Masuda (1980). Figure 2 shows dS/dt as a symmetrical
and smooth function due to the fine grid used later in
computation and the contribution of singular points,
contrary to the first 1993–95 its estimates on coarse grid
and without singularities, but the general outlook and

orders of values remains the same. The complete version
of this paper is not cited because it is in review (sub-
mitted to Global Atmosphere and Ocean System). In
conclusion, it must be said that it appears that the results
presented by Lin and Perrie (1997) cannot be justified.
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