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ABSTRACT

What drives the equatorial deep jets is a puzzle because of their isolation from surface forcing by the intervening
main pycnocline and the Equatorial Undercurrent, and from lateral boundaries by distances of tens of thousands
of kilometers. It would take decades for energy to propagate to the jets’ midbasin location from boundary
sources. Their persistence points to some mechanism maintaining them in situ. The authors hypothesize that the
ambient internal wave field deposits momentum fluxes at critical layers within the deep jets and, using calculated
momentum- and energy-flux divergences as forcing, estimate acceleration of the mean zonal flow in the deep
jets. Internal wave momentum-flux divergences are more than sufficient to sustain the jets, acting to sharpen
the shear between the jets on timescales of months to years. Predicted energy-flux divergences produce turbulent
dissipation rates compatible with those observed.

1. Introduction

Some basic characteristics of the Pacific equatorial
deep jets are well established (Firing 1987; Ponte and
Luyten 1989; Muench et al. 1994). The jets form ver-
tically alternating layers of 65 cm s21 zonal flow with
vertical wavelengths of 300–500 m straddling 628 of
the equator. They span the depth range 500–3000 m,
insulated from the surface by the Equatorial Undercur-
rent and the main pycnocline. In the Pacific, where they
have been best measured, they are zonally coherent over
at least 108 longitude (Ponte and Luyten 1989) and
steady on timescales of at least two years (Eriksen
1985). Their zonal velocity reverses at 61.58 latitude
and potential vorticity anomalies are associated with
them, properties of first-meridional-mode equatorially
trapped long Rossby waves with zonal group velocities
Cgx 5 N/[(2n 1 1)kz] (O’Neill and Luyten 1984;
Muench et al. 1994) rather than long Kelvin waves (Er-
iksen 1980; McCreary and Lukas 1986; Ponte and Luy-
ten 1989).

However, what generates or maintains the deep jets
is still unknown. Wind forcing (Wunsch 1977) cannot
explain their deep penetration (McCreary 1984; Mc-
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Creary and Lukas 1986), which would require multiple
reflections off the eastern and western boundaries, tak-
ing decades to set up (Ponte and Luyten 1989). Even
waves generated on the eastern boundary (Ponte 1989)
would take a decade to reach the central equatorial Pa-
cific where jets have been observed. Neither can these
sources explain the jets’ narrow vertical wavenumber
band. The isolation from plausible external forces sug-
gests that there must be some local mechanism sustain-
ing the jets.

Various modes of instability have been investigated
(L. M. Rothstein 1999, personal communication; Rowe
1996). Hua et al. (1997) showed that structure closely
resembling the jets is a natural outcome of equatorial
inertial instability, fP # 0 (where P is the potential
vorticity) and that energy will cascade from smaller in-
stability scales to deep-jet wavelengths. They also ar-
gued that the meridional shear Uy . 0 across the equator
was unstable using data from Firing (1987). However,
as shown by Muench et al. (1994), the deep jets dom-
inate potential vorticity anomalies and Uy on the equator.

High dissipation rates found in the shear zones be-
tween the jets would erode the jets in Dt 5 E/« 5 6–10
yr, where E is the jet energy and « the observed turbulent
kinetic energy dissipation rate (Gregg et al. 1995). This
is an underestimate of Dt if the jets are not the source
of the turbulence as argued here.

Muench and Kunze (1999, referred to as Part I) pos-
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tulate that the elevated dissipation rates between the
deep jets arose from internal wave critical layers. They
quantify the magnitude and structure of the momentum-
and energy-flux divergences due to an isotropic Garrett
and Munk internal wave field set at 38 latitude (Munk
1981) and encountering critical layers within the jets
(their Fig. 8, reproduced here in Fig. 2). Crude estimates
suggest that the magnitude of the momentum-flux di-
vergence is sufficient to significantly accelerate the deep
jets.

In this paper, we examine the forced response more
rigorously by applying the Muench and Kunze (1999)
estimates for momentum-flux divergences that take into
account shadowing by adjacent jets and spectral re-
plenishment within and between the jets to an analytic
model for the acceleration and cross-stream circulation
of a jet. We also investigate the sensitivity of the model
to plausible changes in the momentum-flux divergence.

a. Theoretical background

Central to understanding how waves interact with a
mean flow is the ‘‘noninteraction’’ theorem. This the-
orem was proven more than 35 years ago for planetary
Rossby waves in geostrophic shear (Eliassen and Palm
1961) and since then generalized to other wave–mean
flow systems (Charney and Drazin 1961; Holton 1974;
Andrews and McIntyre 1976; Boyd 1976; Dunkerton
1980). It states that, given a linear inviscid harmonic
wave field, there is no net acceleration of the mean flow,
and no net change of the mean background density struc-
ture, in the absence of forcing, damping, or critical lay-
ers. The wave field may drive an Eulerian circulation
but, in the absence of irreversible processes, Eulerian
and wave transports exactly balance (Boyd 1976) so that
no net Lagrangian transport of properties occurs. This
theorem imposes important restrictions on the impact of
a wave field on a background flow.

Other studies of wave–mean flow interactions have
considered damping by Rayleigh friction and Newtonian
cooling so that wave fluxes are no longer conserved
(Andrews and McIntyre 1976; Boyd 1976; McPhaden
et al. 1986; Proehl 1990). In this paper, we will conserve
wave fluxes except at critical layers; that is, we assume
that conditions for the noninteraction theorem are vio-
lated only at critical layers. Critical-layer interactions
produce (i) acceleration or deceleration of the mean flow
through deposition of internal wave momentum flux, as
well as (ii) possible frictional deceleration due to mixing
of momentum arising from turbulence generated by en-
ergy-flux divergences.

b. Prior results

Previous oceanographic investigations of wave–mean
flow interactions have focused on acceleration by a sin-
gle forcing term in the momentum equations. Following
an atmosphere model by Jones and Houghton (1971),

Ruddick (1980) balanced the vertical momentum-flux
divergence with acceleration of the mean flow,

]U ]^u9w9&
5 2 ,

]t ]z

where the angle brackets denote a time mean, primes
are second-order wave quantities, and the ]U/]t refers
to wave-driven mean acceleration. Kunze and Müller
(1989) argued that, by analogy to surface wind stress
forcing, the momentum-flux divergence is directly bal-
anced by the Coriolis term,

]^u9w9&
f ỹ 5 .

]z

This result requires that there are no horizontal gradients
to the momentum-flux divergence, so no Ekman pump-
ing. A more complete scale analysis (e.g., Charney
1973) reveals that forcing of a mean flow of finite extent
by momentum-flux divergences requires consideration
of more complete equations of motion. The Ruddick
(1980) balance holds in the limit of tall narrow jets
(aspect ratios H/L k f/N), and the Kunze and Müller
balance in the limit of very broad flow.

The complete equations of motion are necessary here.
Our approach is shown to be identical to the transformed
Eulerian mean equations and the Eliassen–Palm for-
malism (Andrews et al. 1987) in the appendix. The
Eliassen–Palm flux was developed in conjunction with
the noninteraction theorem. It is often used as a diag-
nostic for wave–mean flow interactions in quasigeo-
strophic problems because of its unique definition under
that scaling which links the momentum fluxes of a qua-
sigeostrophic forcing eddy field to the meridional flux
of potential vorticity, = · F 5 ^y9q9&. No such link exists
for internal gravity wave forcing (which has zero po-
tential vorticity fluxes). Therefore, to keep the number
of variables to a minimum, it is preferable to use mo-
mentum- and buoyancy-fluxes rather than Eliassen–
Palm fluxes for our problem.

Separate forced equations are produced for the ac-
celeration of the mean zonal flow and the cross-stream
circulation induced by momentum-flux divergences of
the internal wave field (section 2). We will use flux-
divergence forcing from Muench and Kunze (1999),
summarized in section 3. The first-order solution is pre-
sented first (section 4a). Solutions including O(Ro)
terms (section 4b), and the effects of turbulent viscosity
and diffusion (section 4c), are shown to differ little from
the first-order solution. The resulting alongstream ac-
celeration and across-stream circulation, as well as their
implications, are discussed in the conclusions (section
5).

2. Method

a. Equations of motion

We begin our analysis by deriving the appropriate
equations of motion. Observations of the deep jets show
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that they are zonally coherent over at least 108 of lati-
tude, implying a zonal wavelength Lx in excess of
10 000 km (Ponte and Luyten 1989). Therefore, we as-
sume the background flow associated with the equatorial
deep jets is unidirectional with ]/]x 5 0 and slowly
varying in time, that is, U(y, z, t).

We define a cross-stream mean circulation in-(ỹ , w̃)
duced by second-order fluctuating wave quantities, for
example, y9 such that ^y9& 5 0 where the angle brackets
denote a long-time average. Then, the equations of mo-
tion for mean background zonal velocity U, meridional
velocity vertical velocity w̃, buoyancy B, and reducedỹ ,
pressure P are

]U ]^u9y9& ]^u9w9&
2 (by 2 U )ỹ 1 U w̃ 5 2 2y z]t ]y ]z

][n (y, z)U ]e z1 (1)
]z

2]ỹ ]ỹ ]ỹ ]P ]^y9 & ]^y9w9&
1 ỹ 1 w̃ 1 byU 5 2 2 2

]t ]y ]z ]y ]y ]z
| |}}}}}}z

(2)

]P
0 5 2 1 B (3)

]z

]B 2 ]^y9b9& ][k (y, z)B ]e z1 B ỹ 1 N w̃ 5 2 1y]t ]y ]z

(4)

]ỹ ]w̃
1 5 0,

]y ]z
(5)

where ne(y, z) and ke(y, z) represent turbulent eddy vis-
cosities and diffusivities. We assume that the meridional
y-momentum equation remains in equatorial geostroph-
ic balance [braced terms in (2)] (Lukas and Firing 1984)
and the vertical w-momentum equation in hydrostatic
balance (3), allowing us to relate deep equatorial jet
zonal velocity U and buoyancy B through the equatorial
thermal wind

byUz 5 2By.

This requires that the deep equatorial jets’ timescale

t k (by)21 ; (bL)21 ; 10 days,

where the equatorial radius of deformation L 5
NLz/(2pb) 5 68 km. The observed jets have time-Ï

scales exceeding 15 months (Firing 1987; Fig. 3 of
Muench et al. 1994), justifying this assumption.

While, like midlatitude internal waves, the forcing
equatorial internal wave field has been observed both
to be invariant (Blumenthal 1987) and varying by a
factor of 3 (Hayes 1981) on seasonal timescales, it seems
likely that, averaged over a year, the equatorial internal
wave field can be taken as invariant. Muench and Kunze
(1999) use the Garrett and Munk (Munk 1981) internal

wave field set at 38 latitude to impinge upon the jets.
This model is horizontally isotropic. Unlike the GM76
model (Garrett and Munk 1975; Cairns and Williams
1976), its spectral level varies as f 21. Additional dis-
cussion of variability in the equatorial internal wave
field and its effect on the momentum-flux divergences
can be found in the conclusions of Muench and Kunze
(1999).

The buoyancy is defined as B(z) 1 B(y, z, t) 1 b9 5
2 gdr/ro, where ]B /]z 5 B z 5 N 2 represents the back-
ground stratification, the overbar denotes a spatial av-
erage over the region of interest, B(y, z, t) perturbations
are due to the deep equatorial jets including the wave-
induced background buoyancy perturbation, and b9 is
the fluctuating wave buoyancy anomalies. The local
buoyancy frequency N can be taken as constant in time
and space in the vicinity of the deep jets (Muench et
al. 1994), the jets inducing only weak perturbations to
the background stratification.

We explicitly distinguish between momentum-flux
deposition by internal waves at critical layers and mix-
ing of momentum by turbulence generated by internal
wave breaking at critical layers. The turbulent eddy vis-
cosity ne(y, z) in (1) and eddy diffusivity ke(y, z) in (4)
arise from elevated turbulence generated at internal
wave critical layers between the jets due to energy-flux
divergences « 5 |= · (y9p9)|. The turbulent eddy vis-
cosity can be estimated as

^u0w0& «(y, z) «(y, z)
n (y, z) 5 2 . # (6)e 2 2 22 2 u9 1 y9 4NÏu9 1 y9 z zz z

from the turbulent kinetic energy equation (Osborn
1980) since only wave shears ( 2 1 2) . 2N areu9 y9z z

large enough to give rise to turbulence (Miles and How-
ard 1961); shear associated with the equatorial jets Uz

is far too weak to induce shear instability (Gregg et al.
1995), so cannot be directly responsible for the observed
turbulence. The double-primed quantities are turbulent.
The eddy diffusivity can be parameterized as

^w0b0& g«(y, z) 0.2«(y, z)
k (y, z) 5 2 5 # (7)e 2 2 2N N N

where the ‘‘mixing efficiency’’ g # 0.2 (Osborn 1980).
Approximating the vertical shear by a critical Richard-
son number criterion Ric in (6) may overestimate the
turbulent eddy viscosities since Ri , Ric 5 0.25 for
shear instability (Miles and Howard 1961). The turbu-
lent kinetic energy dissipation rate «(y, z) is equated to
the vertical energy-flux divergence at critical layers
(Fig. 2a)

]^w9p9&
« 5 , (8)) )]z

consistent with observations (Fig. 17 of Kunze et al.
1995). Parameterizations (6)–(8) capture the basic phys-
ics of turbulent mixing, if not the exact eddy viscosities
and diffusivities.
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b. Cross-stream streamfunction and alongstream
acceleration

Some manipulation of (1)–(5) is necessary to deter-
mine how the momentum-flux divergences influence the
zonal mean flow U. If the wave-induced accelerations
of the mean zonal velocity U remain in thermal-wind
balance (2), then we can define a geostrophic acceler-
ation potential F such that

]U 1 ]F ]B ]F
5 , 5 2 (9)

]t by ]y ]t ]z

and, from continuity (5), a cross-stream circulation
streamfunction c can be defined such that

]c ]c
ỹ 5 w̃ 5 2 . (10)

]z ]y

While an acceleration potential is the simplest way to
reduce the equations of motion into two governing equa-
tions in terms of F and c on a midlatitude f plane, the
geometry of the equator adds an essential singularity to
the partial differential equation for the acceleration po-
tential F, making a solution using this approach prob-
lematic.

Instead, following McPhaden et al. (1986), a conser-
vation equation for the cross-stream streamfunction c
and a diagnostic equation for the alongstream acceler-
ation ]U/]t can be formulated. Solving (1) and (4) for
the cross-stream streamfunction c gives

2 2 22 ] c ] c ] c ]c
N 1 by(by 2 U ) 1 2byU 1 bUy z z2 2]y ]z ]y]z ]z

2 2 2] ^u9y9& ] ^u9w9& ] ^y9b9&
5 by 1 by 1

2 2]y]z ]z ]y
2 2] [n U ] ] [k B ]e z e z2 by 2 ,

2]z ]y]z
(11)

where flow curvatures, Uyy, Uyz, and Uzz, have been
neglected. Should vertical and meridional shear terms
prove significant, neglect of flow curvatures would have
to be reevaluated. However, the O(Ro) terms prove to
have little impact (section 4b), justifying their neglect.
Assuming momentum-flux divergences are significant
only in the vicinity of critical layers within the equa-
torial deep jets (Muench and Kunze 1999) implies that
the cross-stream streamfunction is bounded in the far
field (]c/]y 5 ]c/]z → 0 as y → `). With the jets
roughly symmetric about the equator and assuming sym-
metric forcing by the internal wave field, there is no
reason to expect any cross-equatorial flow, so 5 ]c/]zỹ
5 0 at y 5 0. Asymmetric forcing by internal waves,
as might arise from asymmetry in atmospheric forcing
(such as the tendency for the intertropical convergence
zone to lie in the Northern Hemisphere), would inval-
idate this condition, but there is insufficient data at pre-
sent to prescribe asymmetric forcing. Symmetric forcing
is more appropriate, given our limited knowledge of the
equatorial internal wave field.

Solving (11) for the cross-stream streamfunction c
provides the wave-induced cross-stream circulation

. Then, from (1), the zonal acceleration due to the(ỹ , w̃)
momentum-flux divergences is given by

]U ]c ]c ]^u9y9& ]^u9w9& ](n U )e z5 U 1 (by 2 U ) 2 2 1 . (12)z y]t ]y ]z ]y ]z ]z
| |]}}}}}}}}}}}}}}}}}}}}}}}}}}}}z

c. Application to the equatorial deep jets

The model background jets used in this study
(Muench and Kunze 1999) are vertically sinusoidal and
meridionally Gaussian:

22y 2pz
U(y, z) 5 U exp cos0 2 1 2[ ]2L Lz

(Fig. 1), where L 5 68 km is the equatorial radius of
deformation (Table 1). A Gaussian meridional structure
incorrectly implies Kelvin wave dynamics, while
Muench et al. (1994) demonstrated that the jets are bet-
ter described as equatorially trapped long Rossby waves
with off-equator flow reversals. However, momentum-
flux divergences near the equator were found to be com-

parable when more realistic meridional structures were
used in the simulations (Muench and Kunze 1999).

d. Scaling

Scaling arguments will help identify dominant terms
in (11). We define a height scale Lz/2p, where Lz 5
330 m is the vertical wavelength of Pacific jets (Table
1; Muench et al. 1994); vertical wavelengths of up to
500 m have been observed in the Indian (Luyten and
Swallow 1976; Dengler and Quadfasel 2000, manuscript
submitted to J. Phys. Oceanogr.) and Atlantic (Eriksen
1985; Ponte et al. 1990; Gouriou et al. 1999) oceans.
A meridional lengthscale L 5 NLz/(2pb) 5 68 kmÏ
corresponds to the equatorial radius of deformation, and
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FIG. 1. The meridional and vertical structure of the zonal velocity
for the model deep equatorial jets with vertical wavelength Lz 5 330
m, meridional scale L 5 68 km, and maximum zonal velocity U 5
5 cm s21.

TABLE 1. Parameter values for the equatorial deep jets.

U
N̄
Lx

Lz

L
Ro 5 U/bL2

Fr 5 Uz/N

0.05 m s21

2 3 1023 rad s21

.10 000 km
330 km

68 km
0.5
0.5

a zonal velocity scale U 5 0.05 m s21 (Table 1) is
consistent with observations (Firing 1987). The back-
ground buoyancy frequency N 5 2 3 1023 rad s21 can
be taken as constant. Separating the effective Coriolis
term into two parts, terms on the lefthand side of (11)
scale as

U U U
1 : 1 : : : .

2 2 2bL bL bL

The last three terms are of order Rossby number U/bL2,
which is 0.5 in parts of the deep jets, so not small. Terms
containing vertical shear Uz scale identically to those
with meridional shear because the Froude number Uz/N
and Rossby number Uy/(by) for the deep jets are iden-
tical,

UU 2pU U yz ; 5 ; .
2N NL bL byz

This scaling is robust at the equator because Uy → 0 at
the same rate as y → 0.

To scale the relative magnitudes of the momentum-
flux terms on the righthand side of (11), we assume that
momentum-flux divergences are proportional to gradi-
ents of the mean flow,

]^u9w9& ]^u9y9&
; 2C U ; ; 2C U ;uw z uy y]z ]y

]^y9b9&
; 2C U ,yb y]y

where the method of derivation of the constants of pro-
portionality Cab is described by Eqs. (10) and (11) of
Muench and Kunze (1999). These parameterizations are
developed for scaling purposes only and cannot be used
to solve the complete problem because they do not ac-
curately capture the degree of localization of the forcing
terms (Fig. 2a). If scales appropriate for the deep jets
are used (Table 1), then

2pL CybC k C , .uw uyL N

The ^y9b9& correction to the residual streamfunction is
^y9b9&/N 2 ; O(CybU/N 2) 5 8 3 1027 L 5 4 3 1022

m2 s21, implying a correction to the residual meridional
circulation of O(0.1 cm s21) as compared to O(1 cmỹ
s21) due to ]^u9w9&/]z. Therefore, the only forcing term
that needs to be considered in this problem is divergence
of the vertical flux of zonal momentum, ]^u9w9&/]z. This
implies that the jets are broad.

3. Flux-divergence forcing

The momentum- and energy-flux divergences that
arise from internal waves encountering critical layers in
the equatorial deep jets were estimated by Muench and
Kunze (1999) and are summarized here in Fig. 2.
Muench and Kunze found jet geometry to be important
for the structure and magnitude of the momentum-flux
divergence. Jets of both longer and shorter vertical
wavelengths were found to have weaker momentum-
flux divergences (section 4d of Muench and Kunze)—
longer wavelengths because there is more time for
wave–wave interactions to spectrally replenish that part
of the internal wave spectrum depleted by critical-layer
interactions between and within the jets (thus restoring
vertical symmetry and the tendency for up- and down-
going waves encountering critical layers to cancel each
other)—shorter wavelengths because of greater shad-
owing. However, there are numerous assumptions and
uncertainties in the flux divergences so they should be
taken as order-of-magnitude estimates only.

Muench and Kunze’s (1999) estimates of the vertical
divergence of vertical momentum flux are reproduced
in Fig. 2a. The divergence vanishes at jet centers and
between the jets. Arms of positive momentum-flux di-
vergence encircle westward jets while arms of negative
flux divergence embrace eastward jets. Maximum flux-
divergence magnitudes are found at 60.88 latitude
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FIG. 2. Momentum-flux divergence ]^u9w9&/]z (a) and energy-flux divergence |]^w9p9&/]z| 5 « (b) estimates assuming
the influence of shadow effects between the jets and allowing spectral replenishment of shadowed ray paths within each
jet (from Muench and Kunze 1999).

above and below jet centers. The magnitude is sensitive
to the spectral replenishment rate and the internal wave
spectral level (section 4a), but the localized structure in
Fig. 2a is a robust feature of the meridional and vertical
structure of the jets.

The energy-flux divergence (Fig. 2b), equivalent to
the turbulent dissipation rate « (8), reaches a maximum
of 5 3 1029 W kg21 localized in the high-shear layers
between the jets. These values are consistent with ob-
servations (Gregg et al. 1995; K. Polzin 1999, personal
communication). Energy-flux divergences are less pro-
nounced on the lateral edges of the jets at 618 latitude.

4. Forcing with realistic estimates of ^u9w9&

For greater physical insight, we start with the first-
order solutions of the cross-stream streamfunction c
(11) and zonal acceleration ]U/]t (12). The O(Ro) terms
will be included in section 4b. The first-order cross-
stream streamfunction c is found by neglecting order-
Rossby-number and turbulent viscous/diffusion terms in
(11)

2 2 2 2] c (by) ] c by ] ^u9w9&
1 5 , (13)

2 2 2 2 2]y N ]z N ]z

which may be solved analytically if the momentum-flux
divergence forcing is known and is of simple form
(Muench 1995). Likewise, the u-momentum in Eq. (12)
reduces to a simple balance between acceleration of the

mean zonal flow ]U/]t, meridional velocity and theỹ ,
vertical momentum-flux divergence

]U ]^u9w9&
2 byỹ 5 2 . (14)

]t ]z

Equations (13) and (14) were solved using a simulta-
neous overrelaxation algorithm (Press et al. 1987).

a. Momentum-flux divergences with spectral
replenishment

The cross-stream circulation is shown in Fig. 3b for
the momentum-flux divergences from Muench and Kun-
ze (1999), which include shadowing of rays by adjacent
jets and spectral replenishment through internal wave–
wave interactions between and within the jets (Fig. 2a).
Maximum momentum-flux divergences are 1.6 cm s21/
month (Fig. 2b). Comparison of Figs. 2a, 3a, and 3b
shows that cross-stream flow tends to balance the flux-
divergence off the equator, while zonal acceleration
dominates on the equator. The circulation is localized
and strongest on the edges of the jets, with maximum
meridional velocities of 5 0.5 cm s21 carrying fluidỹ
into the upper and lower edges of westward jets and
out of the upper and lower edges of eastward jets. These
Eulerian flows largely compensate the transport asso-
ciated with the vertical divergence of vertical momen-
tum-flux ]^u9w9&/]z (Fig. 2a) off the equator. Approach-
ing the equator, the Coriolis frequency by → 0 while
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FIG. 3. Zonal acceleration ]U/]t (a) and residual cross-stream circulation forced by the momentum-flux di-(ỹ , w̃)
vergences shown in Fig. 2. Order-Rossby-number terms in (11) have been ignored. Contour intervals for zonal accel-
eration are 0.2 3 1028 m s22. The tops and bottoms of the jets are accelerated in the sense of the jet flow so as to
make the vertical structure more square-wave-like (Fig. 4). The cross-stream circulation carries water equatorward on
the upper and lower edges of westward jets, poleward on the upper and lower edges of eastward jets. Vertical motion
w̃ is into (out of ) eastward (westward) jets on the equator but very weak because vertical scales for the momentum-
flux divergence (Fig. 2a) are much smaller than the jet wavelengths Lz.

FIG. 4. Time evolution of vertical profiles of deep-jet zonal velocity
U(z) accelerated by internal wave momentum-flux divergences. The
vertical structure of the jets goes from being sinusoidal to square-
wave-like with intensified shear between the jets. If the accelerations
shown in Fig. 3a are used, the time series spans one month with 7
days between profiles. If jet accelerations are reduced due to lower
internal wave spectra and losses to other zonal shears on the equator
(section 4d), the time series spans 1–2 years with 3–6 months between
profiles.

remains finite, so the Coriolis term in (14) becomesỹ
negligible, leaving only the zonal acceleration ]U/]t to
balance ]^u9w9&/]z.

The double-lobed acceleration structure (Fig. 3a) acts
on the zonal velocity structure straddling the equator by
accelerating the upper and lower edges of the jets at
maximum rates of 1.6 cm s21/month. The upper and
lower edges of westward jets accelerate westward, upper
and lower edges of eastward jets eastward (Fig. 3a). The
net effect is to sharpen the shear between the jets and
make the vertical structure more square-wave-like (Fig.
4). Jet centers do not intensify or migrate. The maximum
acceleration of 1.6 cm s21/month is large and compa-
rable to 5 1.5 cm s21/month for 5 0.5 cm s21byỹ ỹ
off the equator (Fig. 3b). By comparison, McPhaden et
al. (1986) found accelerations of less 0.1 cm s21/month
due to wind-forced Kelvin waves encountering critical
layers in the equatorial undercurrent. Kelvin waves are
not physically analogous to the problem described here
because they are equatorially trapped and so blocked
from interacting with interior jets by jets above and
below. Internal waves overcome this by propagating me-
ridionally as well as zonally.

Under the influence of internal-wave-induced accel-
eration, the jets become square-wave-like (Figs. 4 and
5). Sharpening is most pronounced on the equator (cf.
Figs. 1 and 5). Based on the momentum-flux divergence
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FIG. 5. Meridional/vertical structure of the deep-jet zonal velocity
U(y, z) after being accelerated for 2 days (one month) by the rate
shown in Fig. 3a (1/15th the Fig. 3a rate, section 4d). The maximum
zonal velocity does not change but the upper and lower edges of the
jets accelerate on the equator, intensifying vertical shear between the
jets.

in Fig. 2 (Muench and Kunze 1999), the jet vertical
shear should become unstable, Uz/N . 2, in less than
a month. This seems unrealistic given the observed
steady nature of the jets.

Several factors could diminish the magnitude of forc-
ing by momentum-flux divergences:

R reducing the internal wave spectral levels. We have
used the Munk (1981) model for the GM spectrum
with its f 21 dependence for variance as compared to
the GM76 (Cairns and Williams 1976; Gregg and
Kunze 1991) model with variance independent of f.
Measurements of the finescale vertical wavenumber
spectrum across the equator at 1408W and 1568E
(Gregg et al. 1995) find spectral levels elevated above
GM76 levels by factors of 2–3 at 38N (where we set
our impinging wave field), but smaller than the Munk
(1981) level by factors of 3–5, so would reduce the
momentum-flux divergences by the same amount.

R higher spectral replenishment rates would restore the
depleted part of the internal wave field more rapidly,
making it more symmetric and so diminishing the net
momentum-flux divergences through compensation
between up- and downgoing waves, particularly be-
tween the jets. Our replenishment rates are based on
midlatitude studies (Müller et al. 1986), which may
not be valid on the equator.

R erosion by turbulent friction and diffusion.
R other equatorial zonal shears depleting internal wave

momentum fluxes at critical layers, leaving only a
fraction available to interact with the jets.

These factors would impact the magnitude of the mo-
mentum-flux divergences but not their general structure.
In the following sections, we explore some of the as-
sumptions (Rossby number, turbulent mixing, spectral
replenishment rates, other background shears) that went
into our estimate of the momentum-flux divergence
forcing and how these assumptions influence the mag-
nitude of the acceleration. Only the first and last factors
listed above will remain viable candidates for reducing
the momentum-flux divergence to reasonable levels.

b. Including O(Ro) terms

Although the Rossby number for the jets is not small
(Ro ; 0.5), inclusion of O(Ro) terms—that is, solving
(11) and (12) rather than (13) and (14)—does not sig-
nificantly alter the residual meridional velocity. Includ-
ing O(Ro) terms [(11) rather than (13)] reduces the max-
imum meridional velocity by only 7% and does not shift
the region of strongest cross-stream circulation. Using
(12) rather than (14) to estimate the acceleration like-
wise produces no major changes; the acceleration in-
creases by less than 1% because O(Ro) terms are only
significant in 30-m-thick layers (one-tenth of a jet wave-
length) between the jets in a limited 60.58 latitudinal
band about the equator. Therefore, advection of the
background shear by the cross-stream circulation is not
important and the O(Ro) terms do not significantly alter
the spatial structure of the zonal acceleration. Likewise,
neglected nonlinear advection terms in the y-momentum
equation (2) are only comparable to the retained geo-
strophic terms in small localized regions of the domain,
so do not affect the overall balance significantly.

c. Including turbulent friction and diffusion

Viscous effects due to internal waves breaking and
producing turbulence at critical layers will also influence
the mean flow [(1)–(5)]. Using our estimate of a max-
imum dissipation rate of « 5 1028 W kg21 (Fig. 2b),
the maximum viscosity/diffusivity is ne ; ke ; «/4N 2

; 6 3 1024 m2 s21 from (6) and (7), respectively. If,
for the sake of argument, deceleration of the mean flow
by turbulent friction is taken to be a first-order balance,
we estimate a viscous decay rate /(4p 2n e ) 52Lz

N 2 /(p2«2) ; 2–3 months for the jets, comparable to2Lz

the rate at which internal wave momentum-flux diver-
gences sharpen the jets. This is a gross underestimate
because high dissipation rates are localized to small re-
gions between the jets as shown in the next paragraph.
Gregg et al. (1995) estimated a decay timescale on en-
ergetic grounds of E/« ; 6–10 yr. This is also an un-
derestimate since the jets are not the source of the tur-
bulence.

The effect of the internal-wave-driven turbulent mix-
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ing on the jets can be treated more rigorously by in-
cluding the spatially variable diffusion coefficients in
(14) as

]U ]^u9w9& ](n U )e z5 byỹ 2 1 (15)
]t ]z ]z

| |]}}}z

and in (13) as

2 2 2 2] c (by) ] c by ] ^u9w9&
1 5

2 2 2 2 2]y N ]z N ]z
2 2by ] (n U ) 1 ] (k B )e z e z2 2 , (16)

2 2 2N ]z N ]y]z
| |}}}}}}}}}}}}z

where ne(y, z) and ke(y, z) are given by (6) and (7),
respectively, using Fig. 2b energy-flux divergences. Tur-
bulent viscosities and diffusivities will also influence
the structure of the internal wave momentum-flux di-
vergence, but this is a still higher-order effect that is
neglected here. Inclusion of turbulent viscous and dif-
fusion terms, that is, solving (15) and (16), does not
visibly alter the zonal acceleration. While the dissipation
rate is large between the jets, the velocity and energy
there is small. Dissipation rates are small in the jet cen-
ters. Thus, inclusion of turbulent friction drains little
energy from the jets. Decay times are O(100 yr).

Elevated turbulent dissipation rates observed in other
equatorial shears (Gregg et al. 1995) will increase the
overall background dissipation rate. Scale analysis sug-
gests that decelerations produced by these increased dis-
sipation rates are ;O(3 3 1023 cm s21/month), corre-
sponding to decay times of 300 years. Therefore, the
effects of turbulent friction and mixing are insignificant
compared to the momentum-flux divergence.

d. Interactions with other shears

Muench and Kunze (1999) discuss interactions be-
tween the internal gravity wave field and background
equatorial shears other than the deep jets in their con-
clusions. High dissipation rates are found in all regions
of high local shear, not just shear associated with the
deep jets (Gregg et al. 1995). Unlike the steady deep
jets, the random isotropic nature of these other shears
will produce no net mean momentum-flux divergence.
Nevertheless, these localized events will deplete the in-
ternal wave momentum-flux available to interact with
the jets.

According to Ponte and Luyten (1989), the deep jets
account for about 20% of the total variance in the zonal
velocity vertical wavenumber spectrum over the depth
range of the jets. The other dominant spectral peak was
at a vertical wavelength of 560 m. This peak was as-
sociated with motions of 3–6 yr period and 10 000-km
zonal wavelength that they attributed to meridionally
symmetric long Rossby waves. If shears other than the

deep jets provide a sink for 80% of the internal wave
energy, then momentum-flux divergences in the deep
jets will be reduced by a factor of 5 from those shown
in Fig. 2a. Taken together with the factor of 3–5 over-
estimation of internal wave forcing using the Munk
(1981) internal wave model (section 4a), acceleration
of the jets could be reduced by over an order of mag-
nitude, approaching more reasonable values of 1 cm s21/
yr (Figs. 4 and 5).

5. Conclusions

We have explored deposition of internal wave mo-
mentum at critical layers in the jets as a possible mech-
anism for maintaining the equatorial deep jets. In Part
I, Muench and Kunze (1999) quantify the momentum-
and energy-flux divergences expected from a Garrett
and Munk internal wave field (Munk 1981) propagating
equatorward from 638 latitude and encountering critical
layers within the jets (Fig. 2a). Account was made for
shadowing by neighboring jets and spectral replenish-
ment of the internal wave spectrum through wave–wave
interactions (Müller et al. 1986) between and within the
jets.

Equating energy-flux divergences to turbulence pro-
duction rates implies maximum turbulence dissipation
rates of 5 3 1029 W kg21 (Fig. 2b), consistent with
microstructure measurements. Turbulent friction and
mixing have negligible impact on the deep jets because
they are confined to thin layers in the shear zones be-
tween the jets. As energy-flux divergences would arise
even in the presence of perfectly compensating up- and
downgoing momentum fluxes, they only provide an up-
per bound constraint on the momentum-flux divergenc-
es.

Momentum-flux divergences due to internal wave
critical layers within the equatorial deep jets are more
than sufficient to maintain the jets. These accelerations
act to make the vertical structure on the equator more
square-wave-like (Fig. 4). Jet centers do not intensify
or migrate, but shear between the jets sharpens (Figs.
4 and 5). These intensifying shears might ultimately
break down into turbulence through shear instability
(Uz/N . 2), weakening the background shear, or cascade
upscale to jet wavelengths as argued by Hua et al.
(1997). The O(Ro) terms in (11) and (12) were found
to have negligible impact on acceleration of the jets.
This implies that terms involving background flow cur-
vature can be neglected as well so that the simpler di-
agnostic equations for cross-stream streamfunction (13)
and geostrophic acceleration (14) can be used.

The magnitude of the inferred accelerations indicates
that this forcing mechanism cannot be ignored despite
its uncertainties. In fact, the 1.6 cm s21/month accel-
erations of the upper and lower edges of the jets based
on the momentum-flux divergences in Fig. 2a are clearly
excessive given the steady nature of the jets in two years
of observations (Firing 1987). Several processes could
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reduce the momentum-flux divergences and geostrophic
acceleration to more plausible levels:

(i) observed internal wave levels at 38N (Gregg et al.
1995) are a factor of 3–5 weaker than predicted by
the Munk (1981) internal wave spectral model used
by Muench and Kunze (1999). This would reduce
the momentum-flux divergences by a comparable
amount.

(ii) critical-layer interactions with the other back-
ground shears that account for 80% of the zonal
flows at the equator (Ponte and Luyten 1989)
would deplete the internal wave field and reduce
momentum-flux divergences in the deep jets by a
factor of 5.

(iii) higher spectral replenishment rates would diminish
the difference between up- and downgoing waves
encountering critical layers, thus reducing the net
momentum-flux divergences; if spectral replenish-
ment was complete and instantaneous, there would
be no net momentum-flux divergence and no ac-
celeration of the mean flow. It has been suggested
that spectral replenishment rates at the equator are
lower than the midlatitude rates we have used (M.
C. Gregg 1999, personal communication) but this
has not yet been tested rigorously.

Taken together, (i) and (ii) would reduce internal wave
momentum-flux divergences (Fig. 2a) and geostrophic
accelerations (Fig. 3a) by more than an order of mag-
nitude to more reasonable values of 0.5–1 cm s21/yr.
Thus, shear between the jets is sharpening at a sufficient
rate to produce shear instability Uz . 2N in 1–2 years.
Both longer and shorter jet wavelengths were found to
have diminished momentum-flux divergences (section
4d of Muench and Kunze), possibly insufficient to main-
tain scales other than those observed against turbulent
erosion. Longer wavelengths allow more spectral re-
plenishment between critical layers which symmetrizes
the up- and downgoing internal wave fields. Shorter
wavelengths have reduced momentum-flux divergences
because of greater shadowing. Alternatively, Hua et al.
(1997) argued that equatorial instabilities on scales
shorter than those of the jets cascade energy upscale to
jet wavelengths.

With this picture of how the equatorial deep jets might
persist, questions remain about the origin of these giant
coherent structures. Given their long Rossby wave char-
acter (Muench et al. 1994), implying westward energy
propagation, clues might be found on the eastern bound-
ary along the continental slope of South America. How-
ever, the strong positive feedback associated with in-
ternal wave momentum-flux divergences maintaining
existing jets may obscure such origins. Alternatively,
Hua et al.’s (1997) work suggests that structure like that
of the equatorial deep jets is a natural outcome of in-
stability on the equator, so could arise in situ from forc-
ing by a variety of sources including but not limited to

the deposition of momentum-flux at the internal wave
critical layers described here.
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APPENDIX

Equivalence to the Eliassen–Palm Flux Approach

Atmospheric scientists and some equatorial ocean-
ographers have approached the question of wave–mean
flow interaction using Eliassen–Palm fluxes in the trans-
formed Eulerian-mean equations (Andrews and Mc-
Intyre 1976; McPhaden et al. 1986; Proehl 1990). While
appropriate for the atmosphere, some of the approxi-
mations made to the transformed Eulerian-mean equa-
tions by these authors are not appropriate for our ap-
plication. However, with approximations appropriate for
the deep jets, the two approaches will be shown to be
equivalent in this appendix.

We first define a residual wave-induced mean merid-
ional circulation

1 ]^y9b9&
ỹ* 5 ỹ 2 (A1)

2N ]z

1 ]^y9b9&
w̃* 5 w̃ 1 . (A2)

2N ]y

This transformation removes meridional and vertical ve-
locities associated with compensating Eulerian mean
and wave-induced transports. These effects are small
for the deep jets but are included here to illustrate the
development of this method. Substituting (A1) and (A2)
into (1)–(5), the transformed Eulerian-mean (TEM)
equations are

]U
2 (by 2 U )ỹ* 1 U w̃* 5 = · F (A3)y z]t

]P
byU 5 2 (A4)

]y

]P
0 5 2 1 B (A5)

]z

B]B 2 ]^y9b9&y
1 B ỹ* 1 N w̃* 5 2 (A6)y 2]t N ]z

]ỹ* ]w̃*
1 5 0, (A7)

]y ]z
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where the Eliassen–Palm flux vector (0, Fy , Fz) is giv-
en by

UzF 5 ^y9b9& 2 ^u9y9& (A8)y 2
N

(by 2 U )y
F 5 ^y9b9& 2 ^u9w9&. (A9)z 2

N

The jet zonal velocity U, including the wave-induced
mean perturbation, is assumed to remain in thermal-
wind balance with the buoyancy to leading order (A4);
that is, accelerations are assumed to be weak.

We define a residual cross-stream streamfunction x
such that

]x ]x
ỹ* 5 , w̃* 5 2 , (A10)

]z ]y

which represents the cross-stream circulation not com-
pensated for by wave-induced momentum fluxes, that
is, the net cross-stream transport. The equations of mo-
tion then become

]U ]x ]x
2 (by 2 U ) 2 U 5 = · F (A11)y z]t ]z ]y

B]B ]x ]x ]^y9b9&y22 byU 2 N 5 2 . (A12)z 2]t ]z ]y N ]z

Using the assumed geostrophic nature of the residual
zonal flow, a governing equation for the cross-stream
streamfunction may be found:

2 2 2] x ] x ] x ]x
2N 1 by(by 2 U ) 1 2byU 1 bUy z z2 2]y ]z ]y]z ]z

2](= · F) byU ] ^y9b9& bU ]^y9b9&z z5 2by 2 2 ,
2 2]z N ]y]z N ]z

(A13)

where By 5 2byUz. With the transformation, x 5 c 2
^y9b9&/N 2, and neglecting turbulent friction and diffu-
sion, this equation is identical to (11). The induced ac-
celeration of the zonal flow may now be found by solv-
ing for x in (A13) and using (A11) to obtain ]U/]t. The
scaling for the left-hand side of (A13) is identical to
that of (8) and implies that x . c.

Were the induced cross-stream circulation small, al-
lowing neglect of the residual meridional and vertical
velocities in (A3), a simple balance between the accel-
eration of the zonal flow and the Eliassen–Palm flux
divergence would be possible. Under these conditions,
the Eliassen–Palm flux approach is useful because it
allows for direct estimate of the acceleration from the
momentum-flux divergences. Andrews and McIntyre
(1976) showed that this was appropriate in the limit of
high background Richardson number (Ri k 1). How-
ever, this is not an appropriate scaling for our problem
where momentum-flux diverences act both to accelerate
the mean zonal flow and form a cross-stream circulation.

The Eliassen–Palm approach removes compensating
Lagrangian transports from the residual mean cross-
stream circulation when those effects are large and re-
veals when cancellation between flux-divergence terms
occurs due to the nonacceleration theorem. However,
for our problem, in which Lagrangian transports are
small, using the Eliassen–Palm flux divergence to rep-
resent the forcing obscures the fact that only the vertical
momentum-flux divergence contributes significantly to
the acceleration of the zonal jets, so neither simplifies
the physics nor provides insight into the problem.
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