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ABSTRACT

The effect of rotation on the nonlinear reflection of internal waves from a sloping boundary is examined. The
waves propagate at an angle b to the horizontal in an ocean of locally uniform buoyancy frequency N, and the
boundary slopes at angle a to the horizontal. The following modifications are found when rotation is taken into
account: 1) The modulus of the Lagrangian alongslope drift caused by the waves may be increased by an order
of magnitude, and the level above the boundary at which the greatest drift is generated is no longer at z 5 0,
but depends on f/N where f is the Coriolis frequency, and the direction of the drift close to the boundary may
be reversed. 2) Eulerian upslope currents associated with reflection are increased by a factor O(2). Particularly
large currents are found to be generated for incident waves travelling almost directly downslope and when b
. a. 3) The mean density and the vertical displacement of isopycnals caused by the waves are increased, possibly
by factors O(2). 4) The generation of density fronts near the boundary is only slightly affected, except possibly
when the incident wave direction b is close to values at which the second-order wave components are near
critical when f/N 5 0. Here rotation reduces the tendency for fronts to form.

1. Introduction

Present interest in the interaction of internal waves
and topography stems from observations of enhanced
mixing near topography and speculation that processes
involving internal waves may be its cause (Polzin et al.
1997; Eriksen 1998, Toole et al. 1997). The work re-
ported here derives from a conjecture that rotation may
be of importance, particularly that near-inertial internal
gravity waves reflecting from sloping boundaries may
result in nonlinear effects that have different conse-
quences and perhaps are of greater magnitude than for
relatively short period waves in which the effects of
rotation are negligible.

There are several processes that are known to result
from the nonlinear interaction between internal waves
incident on a sloping boundary and their reflected com-
ponents. In the case considered here the waves propa-
gate toward the sloping boundary through a fluid with
constant buoyancy frequency N, and the boundary is
plane. This simplistic representation includes much of
the essential physics and is sufficient for a quantified
study of wave effects, including (i) a local increase or
decrease in the mean density field at points fixed in
space, or equivalently a setup or setdown, respectively,
of isopycnal surfaces (Wunsch 1971; Thorpe 1987); (ii)

Corresponding author address: Dr. Steve A. Thorpe, Bodfryn,
Glanrafon, Llangoed, Anglesey LL58 8PH, United Kingdom.
E-mail: oss413@sos.bangor.ac.uk

the generation of upslope Eulerian currents that, al-
though they contribute to the currents which might be
measured by a moored current meter, are balanced by
an equal and opposite Stokes drift so that the resulting
Lagrangian flow is zero (Thorpe 1987); (iii) the gen-
eration of alongslope Lagrangian flows when the inci-
dent waves approach the slope obliquely but do not
loose energy (Thorpe 1997), or Eulerian flows when the
waves break or loose energy (Hogg 1971; Thorpe
1998a; Dunkerton et al. 1998); (iv) the generation of
density fronts that travel up the slope with the speed of
wave phase advance (Thorpe 1992, 1999; Dunkerton et
al. 1998); and (v) resonant interaction, which in some
circumstances may lead to breaking (Thorpe 1987). Res-
onant interaction at second and higher orders occurs
when particular relations are satisfied between the angle
of the sloping boundary to the horizontal, a, and the
angle which the group velocity vector makes with the
horizontal, b (Thorpe 1997, 1998b).

In cases (i)–(iv) nonlinear, as well as linear, effects
are found to increase when the internal waves are close
to ‘‘critical’’ (Phillips 1966; Eriksen 1982, 1985), that
is, when a is close to b. The upslope Eulerian current
(ii), and Lagrangian flow (iii), are however generally
small, order 1 cm s21 or less, in the absence of rotation.

In the case (iv) of density front formation, it has re-
cently been noticed that, in the absence of rotation, non-
linear effects are also large when harmonics of the in-
cident wave frequency, generated by the interaction of
the incident and reflected wave, are themselves critical
(Thorpe 1999). Neglecting rotation, the wave frequency
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FIG. 1. The reflection of an incident internal wave with constant
phase surface ABCD inclined at angle b to the horizontal, from a
sloping plane boundary AOEB (stippled), inclined at angle a. The
group velocity of the internal wave, CgI lies in the constant phase
plane directed down its line of steepest descent, and is therefore also
inclined at angle b to the horizontal. Its projection onto the horizontal
makes an angle u to the horizontal line in a plane normal to isobaths
AO; u defines the azimuthal angle of incidence of the wave to the
slope. A constant phase surface of the reflected wave with group
velocity CgR is shown, also inclined at angle b to the horizontal and
intersecting the plane boundary at AB, but with a reflected angle uR.
In the case shown, with u , p/2, the angle of the reflected wave uR

is , u (see Eriksen 1985) and, on reflection, the wave direction turns
toward the line of greatest slope up the plane boundary. The incident
phase plane advances upward so that its intersection AB with the
plane moves up and along the slope toward E and, correspondingly,
the constant phase plane of the reflected wave moves downward. The
axes have origin O on the plane boundary, and are x up a line of
greatest slope, y horizontal along a constant depth contour on the
boundary, and z upward and normal to the sloping boundary.

FIG. 2. The variation of s/N with propagation angle, b, for f/N 5
0 and 0.1.

s is related to the wave group propagation direction b
by the relation s 5 Nsb; that is, the direction is b 5
sin21(s/N). (Here and later sb, ca, etc., stand for sinb,
cosa, etc., respectively.) The first harmonic, frequency
2s, therefore travels in direction sin21 (2s /N ), or
sin21(2sb), which is the same as that of the slope if 2sb

5 sa, or when b 5 sin21[(sa)/2]. Higher harmonics will
be critical if b 5 sin21[(sa)/n], n 5 3, 4, · · · .

Such angles of wave propagation, b, and therefore
incident waves, are possible whatever the slope angle
a. This is not true in a rotating system. Then

s 2 5 N 2 1 f 2 ,2 2s cb b (1)

(Gill 1982), where f is the Coriolis frequency, which,
for sake of argument and because it is generally so in
the ocean, is taken to be less than N. The first harmonics
travel in a direction equal to a if (2s)2 5 N 2 12sa

f 2 or, from (1), when b 5 sin21{[ 2 3 f 2/(N 2 22 2c sa a

f 2)]1/2/2}. Solutions are only possible when

a . sin21{[3 f 2/(N 2 2 f 2)]1/2}. (2)

There is therefore a minimum slope at which such har-
monic, nonlinear, critical slope effects may be expected.
For example, if f/N 5 0.1, the minimum slope of the
boundary is 10.028; rotation may have significant phys-
ical consequences, even if f/N K 1.

The effects of rotation have already been considered

and quantified in case (v) (Thorpe 1997). Previous re-
sults for cases (i) to (iv) are extended here to quantify
the effects of rotation in the simplest case in which the
waves do not break and lose momentum at the boundary
but reflect perfectly, retaining their frequency but chang-
ing their wavenumber and amplitude to produce the ef-
fects described below.

2. Analysis

The ocean is characterized here by N, f, and its bound-
ary slope a. The incident waves have downward prop-
agation direction b, amplitude A (the amplitude of is-
opycnal disturbances), horizontal and vertical wave-
numbers K and M (with tanb 5 K/M), steepness s 5
AM, and azimuthal direction relative to the slope, u (i.e.,
the angle between the projection of the group velocity
vector onto the horizontal and a horizontal line normal
to isobaths on the slope; Fig. 1). The angle u is zero
when the incident waves propagate in a plane normal
to the slope, and 908 when the waves travel in a vertical
plane parallel to contour lines on the slope. Equation
(1) shows that s/N varies with b when f/N is held
constant. Figure 2 shows this variation for f/N 5 0 and
0.1. The frequency s tends to f as b tends to zero. The
angle b, rather than the wave frequency s, is used to
characterize the waves since it is the angle ratio (a 2
b)/b, which provides a measure of how close the waves
are to being critical and which is crucial in determining
the magnitude of many nonlinear effects. If s is held
constant, then b will vary with f/N and so too will (a
2 b).

a. First-order solution

The (x, y, z) axes are chosen with z 5 0 on the sloping
boundary, x up the line of greatest slope, and y hori-
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zontally along the slope (Fig. 1). The analysis follows
that described by Thorpe (1997). The governing equa-
tions are given in appendix A and a pair of exact so-
lutions of the equations of motion and continuity are
presented in appendix B. Together these satisfy the
boundary condition w 5 0 at z 5 0, and individually
they represent the incident and reflected waves. The
solutions are for the (x, y, z) velocity components,
(u, y , w), and for density r, with subscripts I and R to
indicate the incident and reflected waves, respectively.
The density and velocity components are composed of
sin(kx 1 ly 1 miz 2 st) and cos(kx 1 ly 1 miz 2 st)
terms, with mi 5 mI or mR, the coefficients of which
are written as rcI, rsI, etc., where s and c stand for sin
and cos, respectively. All are linearly proportional to
the incident wave amplitude A.

The sum of this pair of solutions gives the first-order
motion and density fields. At z 5 0, the density is r0(1
2 N 2xsa/g) 1 q1 sin(kx 1 ly 2 st 1 f r1), where q1 5
[(rcI 1 rcR)2 1 (rsI 1 rsR)2] and tanf r1 5 (rcI 1 rcR)/
(rsI 1 rsR); f r1 5 0 if f/N 5 0 (appendix B). It is
readily shown that there are no mean drifts associated
with the exact solutions separately; only when the in-
cident and reflected waves coexist, as they must near
the boundary, are Lagrangian drifts generated through
their interaction.

b. Second-order solution

The first-order velocity components can be used to
obtain the alongslope Lagrangian drift VL, for which an
expression is given in Thorpe (1997; appendix C). This
is described in section 3a. The second-order components
of velocity (u2, y 2, w2) and density r2 are found in the
conventional way by solving the vorticity and continuity
equations with the first order solutions substituted into
the nonlinear terms, as outlined in appendix C. The II
and RR product terms vanish exactly leaving terms si-
nusoidal in x1 5 [2(kx 1 ly 2 st) 1 (mI 1 mR)z] or
in x2 5 (mR 2 mI)z. The x components are steady
Eulerian current components or density perturbations,
which vary sinusoidally with distance z from the slope
with scale 2p/(mI 2 mR). Three second-order terms are
found and discussed in section 3b–d. These are, re-
spectively, the steady Eulerian upslope component of
current U, the mean density perturbation II (proportional
to the setup of isopycnals), and the periodic density
fluctuation r2.

3. Results

The results described below have been computed nu-
merically from the second-order solutions and are
shown graphically for the bottom slope angle, a 5 58,
a value typical of oceanic slopes, and at f/N 5 0 and
0.1 so that the effects of including rotation may be as-
sessed.

a. Lagrangian alongslope drift, VL

The alongslope Lagrangian drift is nondimensional-
ized with N/K and scaled with s2 so that VL/[s2(N/K)]
5 ^VL& sin[(mR 2 mI)z 1 f L]. The variation of ^VL&
with u at various b and f/N 5 0 is shown in Fig. 3a.
Here ^VL& is zero at u 5 0 and p and has a maximum
(when a , b) or minimum (when a . b) at z 5 0;
^VL& tends to 0 as u tends to 2cos21(sbca/sacb), possible
only when b , a. In this u limit the internal wave group
velocity vector becomes parallel and tangential to the
sloping boundary (Thorpe 1999). For comparison, Fig.
3b shows ^VL& at f/N 5 0.1. Here ^VL& has a maximum
at u 5 0 and values that are an order of magnitude
greater than those found when f/N 5 0 (Fig. 3a). When
f/N 5 0, the phase angles, f L, equal p/2 if b . a or
p/2 if b , a (Thorpe 1997). For comparison, Fig. 3c
shows the phase angles f L when f/N 5 0.1. The vertical
arrows mark the values of u at which, for the specified
b, the group velocity vector is parallel to the slope
(where ^VL& 5 0 when a . b, see above) or, when a
, b, where the lines of constant wave phase on the
slope are parallel to a line of greatest slope. Here u 5
2cos21(sacb/casb), the alongslope wavelength tends to
zero, and k/l tends to infinity; the limit is one in which
^VL& tends to a finite, nonzero, limit. When f/N ± 0,
the phase f L is generally such that the position of the
maximum drift is no longer at z 5 0 but above the
boundary at height zmax 5 (p/2 2 f L)/(mR 2 mI). Fig-
ures 3a,b show that, as u tends to zero, the behavior of
^VL& depends on f/N. At b 5 68, ^VL& has a minimum
value at u 5 0 when f/N is less than about 0.015. There
is however a maximum at u 5 0 for values of f/N .
0.02 (at least up to f/N 5 0.1).

Figure 4 shows how ^VL& and f L vary with f/N when
u 5 408. The phase changes rapidly as f/N increases
from 0 and ^VL& increases monotonically with f/N. The
Lagrangian drift at z 5 0, ^VL& sinf L, changes sign at
about f/N 5 0.05 for b 5 48 (Fig. 4a). Figure 5 shows
the maximum drift at z 5 0, max^VL&, as a function of
b. When f/N 5 0, the largest drifts at z 5 0 occur at
increasing values of u as b increases; max^VL& is at u
5 418 when b 5 28 and u 5 548 when b 5 88. When
f/N 5 0.1, however, the largest values are at slowly
decreasing u when b increases and is less than a (the
max^VL& is at u 5 568 when b 5 28 and at u 5 548
when b 5 48), but at slowly increasing u when b in-
creases and is greater than a (max^VL& is at u 5 528
when b 5 68 and at u 5 548 when b 5 88.) Figure 5
shows that larger values of max^VL& are found for f/N
5 0.1 than at f/N 5 0; the angular range in b of the
region of large drift near the critical slope, b 5 a, is
expanded. Comparison with Fig. 2 shows that the range
of frequencies, s/N, in which a particular value of
max^VL& may be found, also increases as f/N increases
from 0 to 0.1.
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FIG. 3. The variation of the nondimensionalized Lagrang-
ian drift VL/[s2(N/K )] with u for a 5 58 and (labeled)
values of b from 28 to 88: (a) ^VL& when f/N 5 0, and (b)
^VL& when f/N 5 0.1. (c) The corresponding variation in
z-phase, f L, when f/N 5 0.1. The arrows mark angles of
u when the points at which the incident wave becomes
tangential to the slope when b , a, or, when b . a, when
the line of constant phase on the sloping boundary is nor-
mal to isobaths.

b. Upslope Eulerian current, U

The mean Eulerian upslope current component is
scaled and nondimensionalized in the same way as VL

so that U/(s2N/K) 5 ^U& sin[(mR 2 mI)z 1 f U]. At
f/N 5 0, ^U& 5 /(rsbca 2 sacb)3 and f U 5222rgsb

2p/2, where r 5 (casb 1 cucbsa)/(cusbca 1 sacb)
(Thorpe 1997). Figure 6a shows ^U& plotted as a func-
tion of u for various b at f/N 5 0.1 (full lines) and f/N
5 0 (dashed), and Fig. 6b shows the corresponding z
phase. The effect of rotation is to produce only modest
increases in the current magnitude and in the height of
the maximum current above the boundary (i.e., f U is

close to the nonrotating value, 2p/2) except where the
current is very small. Large currents are generated when
the internal waves are propagating down the slope, near
u 5 p. Then ^U& tends to zero at the values of u equal
to the values 2cos21(sbca/sacb) when b , a, or
2cos21(sacb/casb) when a , b, discussed in section 3a
and indicated by arrows in Fig. 3c. (These values are
when r is 0 or tends to infinity, respectively.)

c. Mean density, P

The time-averaged second-order density term is made
nondimensional using the amplitude of the density var-
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FIG. 4. The variation of the nondimensional magnitude of the alongslope Lagrangian drift ^VL& and the corresponding z-
phase, f L, and drift speed at z 5 0, ^VL& sinf L, with f/N at a 5 58 and u 5 408, and (a) b 5 48 and (b) b 5 68.

FIG. 5. The variation of the maximum nondimensional alongslope
Lagrangian drift, max^VL&, at z 5 0 when a 5 58 and when f/N 5
0 or 0.1, as indicated by labels.

iations induced by the incident wave, AN 2/g, and scaled
with s so that P/(sAN 2/g) 5 ^P& sin[(mR 2 mI)z 1 f P].
If f/N 5 0, ^P& 5 2casbr3(sbcacu 1 sacb)/sbcar 2 sacb)2

and f P 5 0 (Thorpe 1997). Figures 7a,b show the var-
iations of the magnitude and phase of ^P& with u and
b. The effect of rotation is to increase the magnitude
of P and to change the z location, zmax, at which the
maximum density changes occur. Here ^P& tends to zero
at the values of u for which the incident wave becomes
tangential to the slope and has a minimum where the
lines of constant phase on the slope are parallel to the
lines of greatest slope.

d. Periodic density variations, r2: Fronts

The sum of the first and second order periodic terms
that arise in the density at z 5 0 can be written as q1

sin(kx 1 ly 2 st 1 f r1) 1 q2 sin[2(kx 1 ly 2 st) 1
f r2], where the first-order term, q1, is proportional to
s, and q2 is proportional to s2. The ratio, R 5 q2/sq1,
is a measure of the relative size of the second and first
order terms. Their relative phase determines how they
combine to contribute to distort the wave form from
sinusoidal, perhaps with the formation of large density
gradients or fronts. The density gradient parallel to the
slope is found by taking spatial derivatives of density,
while the temporal gradients are found by time deriv-
atives. Derivatives of second-order terms introduce a
multiplicative factor 2 to the ratio of relative importance,
R. When the phase of the first-order term, (kx 1 ly 2
st 1 f r1), is zero, the phase of the second-order term
is f r 5 f r2 2 2f r1. This is an indicator of the relative
contribution of the second and first order density gra-
dients. When f/N 5 0, f r 5 p (Thorpe 1999) so that
the first and second order terms are 1808 out of phase.

The second-order terms then produce an asymmetry in
which, during a wave cycle, the density increases more
rapidly than it falls, with the formation of fronts during
the upslope phase of motion. These are observed in the
ocean and in laboratory experiments (Thorpe 1992;
Dunkerton et al. 1998). They are most intense when the
relative contribution of the second-order terms is large,
that is, when R is large.

Figures 8a,b show the variation of R with u at f/N
5 0 and 0.1, respectively, and Fig. 8c shows f r when
f/N 5 0.1. When b , a, R decreases to zero as u
increases to about u 5 1508. If b . a, R has a minimum
near u 5 1508, increasing rapidly with u for larger u.
Comparison of Figs. 8a and 8b shows that generally
increasing f/N from zero has only a minor effect. At
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FIG. 6. The variation of the nondimensionalized upslope component
of the Eulerian velocity, U/[s2(N/K )], with u at a 5 58 and for various
values of b (labeled): (a) the modulus of the component ^U&. The
full curves are for f/N 5 0.1 and the dashed curves are for f/N 5
0. (b) The corresponding z-phases, f U, when f/N 5 0.1. The phase
is 2p/2 when f/N 5 0 (dashed).

FIG. 7. The variation of the nondimensionalized mean density
changes, P/(AN 2/g), with u at a 5 58 and at various b (labeled): (a)
^P&, the modulus of the density variation. The full curves are for f/N
5 0.1 and the dashed curves are for f/N 5 0. (b) The corresponding
z-phases, f P, when f/N 5 0.1. The phase is p when f/N 5 0.

b 5 48, however, the values of R when f/N 5 0 exceed
those when f/N 5 0.1. The reason for this is apparent
in Fig. 9, which shows the variation of R with b at f/N
5 0 and 0.1, and at the fixed angle of incidence, u 5

208. When f/N 5 0, R tends to infinity for values of b
near 2.58, but there is no corresponding singularity in
R when f/N 5 0.1. This is in accord with the conclusion
in section 1 that, in the absence of rotation, nonlinear
effects are large near b 5 sin21(sa/2) (or, if a is small,
when b is approximately equal to a/2), whereas no cor-
responding singularity is possible when f/N 5 0.1 un-
less a . 10.028. Large values of R are found for values
of b ø a when u is near 08 and, when b . a, for u
near 1808. In the range of u for which R attains these
large values and when f/N 5 0.1, Fig. 8c shows that
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FIG. 8. The variation of the scaled second-order density variations
at a 5 58 and at various b (labeled): (a) The ratio R 5 q2/sq1, when
f/N 5 0; (b) the same when f/N 5 0.1. (c) The phase difference f r

when f/N 5 0.1. When f/N 5 0, the corresponding phase difference
is p (dashed).

f r is near p, the same value of f r as when f/N 5 0.
In general, therefore, the effect of rotation does not sig-
nificantly effect either the enhancement of the negative
density gradients by the second-order terms or the con-
sequent formation of fronts. The exception is when har-
monics are near their critical slopes.

4. Discussion

The main conclusions of this study of the effects of
rotation on processes associated with internal wave re-
flection from a uniform sloping boundary are that, as a
consequence of rotation,

1) the modulus of the Lagrangian alongslope drift, VL,
may be increased by an order of magnitude, the level
above the boundary at which the maxima in the drift
are found is no longer at z 5 0, but depends on f/N,
and the direction of the drift close to the boundary
may be reversed (section 3a);

2) the Eulerian upslope currents, U, may be increased
by a factor O(2). Large currents are generated for
incident waves in direction u near 1808 when b .
a (section 3b);

3) the mean density and the setup of isopycnals are
increased, possibly by factors O(2) (section 3c); but

4) the generation of density fronts near the boundary
is little affected, except near the incident wave di-
rections, b, where, if f/N 5 0, the second-order terms
are near-critical (section 3d).

Of these, the most significant consequence of rotation
is the enhancement of the Lagrangian alongslope drift
resulting from wave reflection. A drift is generated even
when the angle of incidence u is zero, that is, when the
waves approach the slope normally. Values of the non-
dimensional drift, ^VL& 5 |VL |/[s2(N/K)] of order 10 are
found when u is less than 308 and b within one degree
of the slope inclination, a (Fig. 3b). When a 5 58 and
f/N 5 0.1 (as in Fig. 3b), s/N is about 0.13 (Fig. 2),
so |VL | is about 80 s2s/K. This is about a tenth of the
horizontal speed of phase propagation, s/K, if s 5
0.035, for example, drift speeds of about 0.03 m s21

will be produced by the reflection of a wave with length
2p/K 5 10 km and period 10 h with horizontal speed,
5 length/period, of about 0.3 m s21. In addition to the
Lagrangian drift, the Eulerian upslope currents may be
significant when u is near 1808, for example when an
internal tide generated at the shelf break first reflects
from the continental rise.

This study identifies several processes associated with
internal wave reflection from sloping boundaries, and
places bounds on the likely magnitude of the effects of
rotation, which are particularly important for internal
waves with near-inertial frequency. Many effects not
easily studied analytically are however ignored, partic-
ularly the nonuniformity of wave trains, of the topog-
raphy, and of the density field, as well as wave breaking,
which in practice may prevail, if not dominate, in the

process of internal wave reflection. These deserve fur-
ther study, perhaps using numerical techniques (e.g., see
Slinn and Riley 1998).
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FIG. 9. The variation of the scaled ratio of second and first order
density variations, R, with b when a 5 58 and u 5 208, for f/N 5
0 (full line) and f/N 5 0.1 (dashed). The lines overlap at b . 4.58.
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APPENDIX A

The Equations of Motion

The governing equations in the (x, y, z) coordinates
may be written as

(i) the vorticity equations in the y direction,

]/]t(]u /]z 2 ]w /]x) 2 f (ca]y /]z 1 sa]y /]x)

1 g /r0(sa]r /]z 2 ca]r /]x) 5 ]I3 /]x 2 ]I1 /]z, (A1)

and in the z direction,

]/]t(]u /]y 2 ]y /]x) 1 fca]w /]z 1 fsa]w /]x

1 (g /r0)sa]r /]y 5 ]I2 /]x 2 ]I1 /]y. (A2)

(These equations are used in preference to the momen-
tum equations to avoid the necessity to deal with pres-
sure. It is assumed that the Boussinesq approximation
is valid. This is not always so; see for example Thorpe
1968);

(ii) the equation of density conservation

]r/]t 2 (N 2/g)r0sau 2 (N 2/g)r0caw 5 2I4, (A3)

and (iii) the volume conservation equation

]u/]x 1 ]y /]y 1 ]w/]z 5 0, (A4)

where I1 5 F(u), I2 5 F(y), I3 5 F(w) and I4 5 F(r),
and F is the operator {u]/]x 1 y ]/]y 1 w]/]z} so that
each of the I terms is proportional to A2. The density
is r0[1 2 N 2(xsa 1 zca)/g] 1 r, and (u, y , w) are the
velocity components in the (x, y, z) coordinates.

APPENDIX B

The First-Order Solution

The solutions for the (x, y, z) velocity components
(u, y , w) and density r, with subscripts I and R to in-
dicate the incident and reflected waves, respectively, can
be written uI 5 usIsI 1 ucIcI, y R 5 y aRsR 1 y sRcR, etc.,
where cI 5 cos(kx 1 ly 1 mIz 2 st), cR 5 cos(kx 1
ly 1 mRz 2 st), and

u 5 (ak/g)(s c 2 s c r), u 5 2al(c c /s )( f /s),cI b b a a sI a b b

y 5 (alc /s ), y 5 a(kc /g)( f /s)(s c 2 s c r),cI b b sI b b a a b

w 5 2akr, w 5 al(c s /s )( f /s), r 5 0,cI sI b a b cI

2r 5 2(aks N r /gsg)(s c 2 s c r),sI b 0 a b b a (B1)

and

2 2 2 2 2u 5 (ak/Vgs )[N l s s [c r(s 2 s ) 1 s s c 1 rs c ]cR b a b a b a a b b b a

2 2 2 2 2 21 s {s k (rs c 1 s c ) 1 l [c (s 2 s ) 2 s c 2 rc s s ]}],b a a b b b b a a b a b a

2 2 2 2 2 2 2 2u 5 2a(lfc /sVgs )[N l c s g 1 s {k {c (s 1 s ) 1 2s s c r] 1 l c g}],sR b b a a a a b a b b a

2 2 2 2 2 2 2 2y 5 (alk /gV){N r s c g 1 ( f c /s )[2rs c s 1 c (s 1 s r )]},cR b b b b a a b b a b

2 2 2 2 2 2y 5 (akfc /gs sV){N l s s (c s 2 rs c ) 1 s [k rs (s c 1 rc s ) 2 l s (s c 1 rs c )]},sR b b a b a b a b b a b a b a a a b b

2 2w 5 akr w 5 2al(c s /s )( f /s), r 5 2(2ak N r lfrs c /gVg)(s c 1 s c r)cR sR b a b cR 0 a b a b b a

2 2 2 2r 5 2(aksN r /gVg)(s c 1 s c r)[k r s 2 ( fls c /s) ], (B2)sR 0 a b b a b a b
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where V 5 N 2k2r2 1 f 2 (k2 1 l2), g 5 2 , r22 2 2 2s c s sb b b a

5 (1 1 l2g/k2 ), a 5 gAs/[ksb(sbcar 2 sacb)]. The2sb

dispersion relation in the (x, y, z) frame of reference is

s2 5 {N2[(kca 2 msa)2 1 l2] 1 f 2(ksa 1 mca)2}

4 (k2 1 l2 1 m2). (B3)

The wavenumber (k, l, mI) of the incident wave in the
(x, y, z) frame of reference is related to components in
the horizontal and vertical directions, K and M respec-
tively, by k 5 Kcacu 1 Msa, l 5 Ksu, ml 5 Mca 2
Ksacu. The x and y wavenumbers of the incident and
reflected waves are the same, and the z wavenumbers
of the incident and reflected waves, mI and mR, are mI

5 2(k/g)(saca 2 rsbcb) and mR 5 2(k/g)(saca 1
rsbcb), where g 5 2 and r 5 (1 1 l2g/k2 )1/2.2 2 2s s sb a b

The parameter r is related to u by

r 5 (casb 1 cucbsa)/(cusbca 1 sacb). (B4)

APPENDIX C

The Second-Order Solution

The second-order components of velocity (u2, y 2, w2)
and density r2 are found in the conventional way by
solving (A1)–(A4) with the first-order solution substi-
tuted in the right-hand sides. All I, I and R, R products
vanish because the first-order solutions are exact, leav-
ing only I, R products, which are sinusoidal in x1 5
[2(kx 1 ly 2 st) 1 (mI 1 mR)z] or in x2 5 (mR 2
mI)z. The latter represents the steady Eulerian currents
or density perturbations which vary sinusoidally with
distance z from the slope with scale 2p/(mI 2 mR) 5
2pg/rksbcb.

The Eqs. (A1)–(A4) are reduced by substitution to
one equation in w2. The terms that are sinusoidal in x2

vanish identically in this equation. It has a solution that
satisfies w 5 0 at z 5 0 of the form

w2 5 wc(cosx1 2 cosx) 1 ws(sinx1 2 sinx), (C1)

where x 5 2(kx 1 ly 2 st) 1 mz, with

m 5 2 2 2 2 2 1/222k[s c 1 {(1 2 4s )[4s 1 (l/k) (4s 2 s )]}a a b b b a

2 24 (4s 2 s ),b a (C2)

and wc and ws are functions of the angles and propor-
tional to A2. The terms in (C1) that are sinusoidal in x,
correspond to a wave with wavenumber (2k, 2l, m) and
frequency 2s that propagates away from the boundary.

All terms in (A2) and (A4) vanish when temporal
averages are taken; w2 has no x2 terms. Taking temporal
averages of (A1) and integrating with respect to z gives

(g/r0)saP 2 fcaV 5 ,/2I1 (C3)

where V and P are the steady (x2); second-order y ve-
locity component and density variations, respectively;
and are the sinx2 and cosx2 terms in I1, defined in/I1

appendix A. Eq. (C3) does not provide a unique solution
for V or P. The terms on the right of (C3) represent a

second-order geostrophic balance of the buoyancy and
Coriolis forces. If it is supposed that V 5 0, that is, the
along-slope Eulerian flow is zero, then

P 5 /(g/r0)sa,/2I1 (C4)

(identical to the solution at f 5 0, except for f -modified
terms in ). Temporal averaging of (A3) leads to/I1

U 5 /N 2r0sa,/gI 4 (C5)

where are the sinx2 and cosx2 terms in I4, and U is/I 4

the second-order steady (x2) upslope Eulerian flow. This
is balanced by an opposite Stokes drift so that the mean
density field remains steady in time (Thorpe 1987).

The x1 and x terms in r2 are found by eliminating u
and y in (A1)–(A4), giving two equations for r2 in terms
of the known w2. Each is used, giving two separate es-
timates of r2 to provide a check of the analysis and nu-
merical programs. The sum of the periodic x1 and x terms
can be written as q2 sin[2(kx 1 ly 2 st) 1 fr2] at z 5 0.
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