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Abstract Let Wβ(x) = exp(− 1

2
|x|β) be the Freud weight and pn(x) ∈ Πn be the sequence of

orthogonal polynomials with respect to W 2

β (x), that is,

∫

∞

−∞

pn(x)pm(x)W 2

β (x)dx =

{

0, n 6= m,

1, n = m.

It is known that all the zeros of pn(x) are distributed on the whole real line. The present

paper investigates the convergence of Grünwald interpolatory operators based on the zeros of

orthogonal polynomials for the Freud weights. We prove that, if we take the zeros of Freud

polynomials as the interpolation nodes, then

Gn(f, x) → f(x), n → ∞

holds for every x ∈ (−∞,∞), where f(x) is any continous function on the real line satisfying

|f(x)| = O(exp( 1

2
|x|β)).
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1. Introduction

The convergence of interpolation operators based on the zeros of orthogonal polynomials has

been extensively studied and explored. In recent years, orthogonal polynomials with exponential

weights have been investigated by many researchers (for example, see [1], [3], [4]). Lubinsky[1]

gave a deliberate discussion on the properties of the orthogonal polynomials and their zeros. The

present paper will apply these useful properties in proving convergence of Grünwald interpolation

operators based on the zeros of orthogonal polynomials with exponential weights. In this paper

we will deal with one type of exponential weights, the so-called Freud weight.
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Let Wβ(x) = exp(−Q(x)) = exp(− 1
2 |x|

β), β > 7/6, be the Freud weight, pn(x) = γnxn +

· · · , γn > 0, denote the nth Freud orthogonal polynomial with respect to Wβ(x), so that

∫ ∞

−∞

pn(x)pm(x)W 2
β (x)dx =

{

0, n 6= m,

1, n = m,

and {xk}
n
k=1 be the zeros of pn(x) satisfying

−∞ < xn < xn−1 < · · · < x1 < ∞.

Then, taking zeros of pn(x) as the interpolation nodes, we define the Grünwald operators as

follows:

Gn(f, x) =

n
∑

k=1

f(xk)l2k(x) =

n
∑

k=1

f(xk)(
pn(x)

p′

n(xk)(x − xk)
)2. (1)

The main result of this paper is the following

Theorem Let f ∈ C(−∞,∞) satisfy |f(x)| = O
(

exp(1
2 |x|

β)
)

and {xk}
n
k=1 denote the zeros of

the nth Freud polynomial. Then for any given point x ∈ IR, we have

lim
n→∞

Gn(f, x) = f(x).

2. Lemmas

In the following lemmas, and elsewhere in the paper, C always denotes a positive constant,

which may differ at each different occurrence.

Lemma 1 Let pn(x) be the nth Freud orthogonal polynomial, and {xk}
n
k=1 its zeros. Then we

have the following properties of pn(x) and its zeros:

(1) supx∈IR |pn(x)| · Wβ(x) ∼ a
−1/2
n n1/6;

(2) an

n |p
′

n(xk)| · Wβ(xk) ∼ a
−1/2
n (max{n−2/3, 1 − |xk|

an
})1/4;

(3) |
p
′′

n (xk)

p′

n(xk)
| ≤ C(1 + |Q

′

(xk)|);

(4) xj − xj+1 ∼ an

n max{n−2/3, 1 −
|xj|
an

}−1/2;

(5) an = Cn1/β , |xk| ≤ Can,

where an is the Mhskar-Rahmanov-Saff number defined as follows: Suppose Q(x) : IR → IR,

is even and continuous in IR, Q
′′

is continuous in (0,∞) and Q
′

> 0. Then aµ is the Mhskar-

Rahmanov-Saff number, i.e., the positive root of the equation

µ =
2

π

∫ 1

0

aµtQ
′

(aµt)(1 − t2)−
1
2 dt.

Proof Readers could find (1)–(4) in [1], and (5) in [3].

Lemma 2 For n ≥ 1 and |x| ≤ δan, δ ∈ (0, 1), we have

(1) |pn(x)|Wβ(x) ≤ Ca
− 1

2
n ;

(2) |p
′

n(x)|Wβ(x) ≤ Cna
− 3

2
n ,

while for an arbitrary x ∈ IR,
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(3) |p
′

n(x)|Wβ(x) ≤ Cn7/6−1/βa
−1/2
n .

Proof Readers could find (1), (2) in [4]. Here we give the proof of (3). By [1], we have

‖ p
′

n(x)Wβ(x) ‖L∞(R)≤ Cρn(1) ‖ pn(x)Wβ(x) ‖L∞(R),

where

ρn(x) =

∫ Cn

Q(max{1,|x|})

ds

Q[−1](s)
.

It is easy to find ρn(1) = Cn1− 1
β . Now by Lemma 1, we obtain that

|p
′

n(x)|Wβ(x) ≤‖ p
′

n(x)Wβ(x) ‖L∞(R)≤ Cρn(1) ‖ pn(x)Wβ(x) ‖L∞(R)

≤ Cn1−1/βa−1/2
n n1/6 ≤ Cn7/6−1/βa−1/2

n .

In the sequel, without loss of generality, we suppose that x ∈ [xj+1, xj) for some 1 ≤ j ≤ n−1,

while the case x ∈ (−∞, xn) or x ∈ (x1, +∞) can be treated similarly.

Lemma 3 Let {xk}
n
k=1 be the zeros of nth Freud orthogonal polynomial and write E = {k :

k 6= j, j + 1}. We have the following

∑

k∈E

1

|x − xk|
≤ C

n

an
log n.

Proof By the definition of set E, we obtain that

∑

k∈E

1

|x − xk|
=

j−1
∑

k=1

1

|x − xk|
+

n
∑

k=j+2

1

|x − xk|
≤

j−1
∑

k=1

1

|xj − xk|
+

n
∑

k=j+2

1

|xj+1 − xk|
.

It is easily deduced from Lemma 1 (4) that

|xj − xj+1| ≥
an

n
.

Thus
∑

k∈E

1

|x − xk|
≤ C

n

an

n
∑

k=1

1

k
≤ C

n

an
log n.

Lemma 3 is proved. 2

Lemma 4 Let lk(x) be the interpolating fundamental polynomials. Then for any given point

x ∈ (−∞,∞), we have
n

∑

k=1

l2k(x) → 1, n → ∞.

Proof Suppose without loss of generality that x ∈ [xj+1, xj). By the definition of Hermite-Fejér

operators, we have

Hn(f, x) =

n
∑

k=1

f(xk)[1 − (x − xk)
p

′′

n(xk)

p′

n(xk)
]l2k(x).

Let f(x) ≡ 1, whence Hn(f, x) ≡ 1. We have

1 =

n
∑

k=1

[1 − (x − xk)
p

′′

n(xk)

p′

n(xk)
]l2k(x).
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Thus

|1 −

n
∑

k=1

l2k(x)| ≤

n
∑

k=1

p2
n(x)|p

′′

n(xk)|

|p′

n(xk)|3|x − xk|
.

By Lemma 1(3) and the above inequality, noting that Q(x) = 1
2 |x|

β in this paper, we have

|1 −

n
∑

k=1

l2k(x)| ≤ C

n
∑

k=1

p2
n(x)(1 + |Q

′

(xk)|)

|p′

n(xk)|2|x − xk|

≤ C(
∑

k∈E

p2
n(x)(1 + 1

2β|xk|
β−1)

|p′

n(xk)|2|x − xk|
+

p2
n(x)(1 + 1

2β|xj |
β−1)

|p′

n(xj)|2|x − xj |
+

p2
n(x)(1 + 1

2β|xj+1|
β−1)

|p′

n(xj+1)|2|x − xj+1|
)

=: C(I + Ij + Ij+1).

Write

I = (
∑

k∈E1∩E

+
∑

k∈E2∩E

)
p2

n(x)W 2
β (x)(1 + 1

2β|xk|
β−1)W 2

β (xk)

|p′

n(xk)|2W 2
β (xk)|x − xk|

W−2
β (x),

where

E1 = {k : |xk| ≤ n
1

6β(β−1) }, E2 = {k : |xk| > n
1

6β(β−1) }.

Applying Lemma 1(1),(2),(5) and Lemmas 2-3 yields that

I ≤C
∑

k∈E1∩E

(a
−1/2
n )2n1/(6β)W 2

β (xk)

( n
an

a
−1/2
n )2|x − xk|

W−2
β (x)+

C
∑

k∈E2∩E

(a
−1/2
n n1/6)2aβ−1

n W 2
β (xk)

( n
an

a
−1/2
n n−1/6)2|x − xk|

W−2
β (x)

≤Cn
7
6β −1 log n · exp(|x|β) + Cn2/3 exp

(

−n
1

6(β−1)

)

log n · exp(|x|β) → 0, n → ∞.

Next we estimate Ij and Ij+1:

Ij =
p2

n(x)(1 + 1
2β|xj |

β−1)

|p′

n(xj)|2|x − xj |

=
|pn(x)|Wβ(x)|(pn(x) − pn(xj))|(1 + 1

2β|xj |
β−1)Wβ(x)W 2

β (xj)

|p′

n(xj)|2W 2
β (xj)|x − xj |

W−2
β (x).

If j ∈ E1, by Lemma 1(2), Lemma 2(1) and the mean value theorem, we have

Ij ≤ C
a
−1/2
n n1/(6β)|p

′

n(ξj)|Wβ(ξj)

( n
an

a
−1/2
n )2

W−1
β (ξj)W

2
β (xj)Wβ(x)W−2

β (x)

≤ Cn
8
3β −2

(

|p
′

n(ξj)|Wβ(ξj)
)

W−1
β (ξj)W

2
β (xj)Wβ(x)W−2

β (x),

where ξj ∈ (x, xj). Applying Lemma 2(2) again gives

Ij ≤ Cn
8
3β −2na−3/2

n W−1
β (ξj)W

2
β (xj)Wβ(x)W−2

β (x)

≤ Cn
7
6β −1 exp(|x|β) → 0, n → ∞,
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where the last inequality comes from W−1
β (ξj) · Wβ(xj)Wβ(x) ≤ 1, ξj ∈ (x, xj).

For j ∈ E2, by Lemma 1(1),(2), Lemma 2(3) and the mean value theorem, we obtain that

Ij ≤ C
a
−1/2
n n1/6aβ−1

n n1−1/βa
−1/2
n n1/6

( n
an

a
−1/2
n n−1/6)2

· exp{−
1

2
n

1
6(β−1) } exp(

1

2
|x|β)

≤ Cn
2
3 exp{−

1

2
n

1
6(β−1) } exp(

1

2
|x|β) → 0, n → ∞.

Proceeding in a similar argument to Ij+1 and noticing W−1
β (ξj+1) ·Wβ(xj+1)Wβ(x) ≤ 1, we

also have Ij+1 → 0 as n → ∞.

Combining all the above estimates, we complete the proof of Lemma 4.

It is easy to deduce from Lemma 4 that, for any given point x ∈ (−∞,∞),
∑n

k=1 l2k(x) ≤ C.

Lemma 5 For large enough n, we have

n
∑

k=1

|x − xk|l
2
k(x) ≤ Cn

1
β −1 log n exp(|x|β).

Proof Let x ∈ [xj+1, xj) without loss of generality. We proceed similarly as in Lemma 4,

n
∑

k=1

|x − xk|l
2
k(x) =

∑

k∈E

|x − xk|l
2
k(x) + |x − xj |l

2
j (x) + |x − xj+1|l

2
j+1(x).

By Lemmas 1,2 and 3 , for large enough n, we obtain that
∑

k∈E

|x − xk|l
2
k(x)

= (
∑

k∈E1∩E

+
∑

k∈E2∩E

)
p2

n(x)W 2
β (x)W 2

β (xk)

(p′

n(xk)Wβ(xk))2|x − xk|
W−2

β (x)

≤ C
(a

−1/2
n )2

( n
an

a
−1/2
n )2

∑

k∈E1∩E

exp(−|xk|
β)

|x − xk|
exp(|x|β)+

C
(a

−1/2
n n1/6)2

( n
an

a
−1/2
n n−1/6)2

∑

k∈E2∩E

exp(−|xk|
β)

|x − xk|
exp(|x|β)

≤ Cn
2
β −2 n

an
log n · exp(|x|β) + Cn

2
β − 4

3
n

an
log n · exp(−n

1
6(β−1) ) exp(|x|β)

≤ Cn
1
β −1 log n exp(|x|β).

For j ∈ E1, by Lemmas 1, 2 and the mean value theorem, we get

|x − xj |l
2
j (x)

≤ C
|pn(x)|Wβ(x)

|p′

n(xj)|2W 2
β (xj)

|p
′

n(φj)|Wβ(φj)[W
−1
β (φj)Wβ(x)Wβ(xj)] exp(−

|xj |
β

2
) exp(|x|β)

≤ Cn
1
β −1 exp(|x|β) (where φj ∈ (x, xj)),

for j ∈ E2, for sufficiently large n, by Lemmas 1 and 2, we have the following inequality

|x − xj |l
2
j ≤ Cn

1
β − 1

3 exp{−
1

2
n

1
6(β−1) } exp(|x|β) ≤ Cn

1
β −1 exp(|x|β).
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Similarly, |x − xj+1|l
2
j+1 ≤ Cn

1
β −1 exp(|x|β).

Combining all the above estimates, we have proved Lemma 5.

Lemma 6 Let f(x) satisfy conditions of the Theorem. Then for any given point x ∈ (−∞,∞),

we have
n

∑

k=1

|f(x) − f(xk)| · l2k(x) → 0, n → ∞.

Proof Let ω(f, t) be the modulus of continuity of f(x). Then

n
∑

k=1

|f(x) − f(xk)| · l2k(x)

≤
∑

|xk|≤2|x|

ω(f, |x − xk|) · l
2
k(x) +

∑

|xk|>2|x|

|f(x) − f(xk)| · l2k(x)

≤ ω(f, 1/ logn)[−4|x|,4|x|]

∑

|xk|≤2|x|

(1 + log n|x − xk|) · l
2
k(x)+

∑

|xk|>2|x|

|f(x) − f(xk)| · l2k(x)

=: S1 + S2.

Applying Lemmas 4 and 5 yields that S1 → 0 as n → ∞. Now we estimate S2:

S2 =
∑

|xk|>2|x|

|f(x) − f(xk)| · l2k(x)

≤ C(
∑

2|x|<|xk|≤x2n1/(6β)

+
∑

|xk|>x2n1/(6β)

) exp(
1

2
|xk|

β)
(pn(x)Wβ(x))2W 2

β (xk)

(p′

n(xk)Wβ(xk))2(x − xk)2
exp(|x|β)

=: S21 + S22.

Zeros of Freud orthogonal polynomials in Lemma 1 satisfy that for 1 ≤ k ≤ n − 1,

xk − xk+1 ∼
an

n
(max{n− 2

3 , 1 −
|xk|

an
})−

1
2 .

When 2|x| < |xk| ≤ x2n1/(6β), we get

xk − xk+1 ∼
an

n
∼ n

1
β −1

for sufficiently large n. Thus

(
∑

2|x|<|xk|≤x2n1/(6β)

1) ≤ C
x2n1/(6β)

n
1
β −1

.

Therefore, it follows from Lemma 2 that

S21 ≤ C
(a

−1/2
n )2

( n
an

a
−1/2
n )2

·
1

x2
·
x2n1/(6β)

n
1
β −1

exp(|x|β)

≤ Cn
7
6β −1 exp(|x|β) → 0, n → ∞.
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Applying Lemma 1(1)(2) together with Lemma 3 yields that

S22 ≤ C
(a

−1/2
n n1/6)2

( n
an

a
−1/2
n n−1/6)2

exp(|x|β)
∑

|xk|>x2n1/(6β)

exp(− 1
2 |xk|

β)

(x − xk)2

≤ Cn
2
β − 4

3 ·
n

x2
exp(−

1

2
x2βn1/6) → 0, n → ∞.

Combining all the above estimates, we thus have proved Lemma 6.

3. Proof of the Theorem

Write

|Gn(f, x) − f(x)| = |
n

∑

k=1

f(xk)l2k(x) − f(x)|

= |

n
∑

k=1

[f(xk) − f(x)]l2k(x) − f(x)[1 −

n
∑

k=1

l2k(x)]|

≤
n

∑

k=1

|f(xk) − f(x)|l2k(x) + |f(x)||1 −
n

∑

k=1

l2k(x)|.

Applying Lemmas 4 and 6 implies that

|Gn(f, x) − f(x)| → 0, n → ∞

for any given point x. This completes the proof of the Theorem. 2
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