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ABSTRACT

Models of ocean circulation beneath ice shelves are driven primarily by the heat and freshwater fluxes that
are associated with phase changes at the ice–ocean boundary. Their behavior is therefore closely linked to the
mathematical description of the interaction between ice and ocean that is included in the code. An hierarchy of
formulations that could be used to describe this interaction is presented. The main difference between them is
the treatment of turbulent transfer within the oceanic boundary layer. The computed response to various levels
of thermal driving and turbulent agitation in the mixed layer is discussed, as is the effect of various treatments
of the conductive heat flux into the ice shelf. The performance of the different formulations that have been used
in models of sub-ice-shelf circulation is assessed in comparison with observations of the turbulent heat flux
beneath sea ice. Formulations that include an explicit parameterization of the oceanic boundary layer give results
that lie within about 30% of observation. Formulations that use constant bulk transfer coefficients entail a definite
assumption about the level of turbulence in the water column and give melt/freeze rates that vary by a factor
of 5, implying very different forcing on the respective ocean models.

1. Introduction

The continental shelf seas surrounding Antarctica
most frequently attract attention because they are the
source regions of Antarctic Bottom Water. It is com-
monly assumed that atmospheric forcing of the ocean
and ice cover is the primary driving mechanism behind
the deep convection that occurs over the continental
slope (e.g., Gill 1973). However, poleward of the shelf
break, 40% of the sea surface is covered by floating ice
shelves, which range in thickness from 100 to 2000 m
and therefore completely isolate the ocean from the at-
mosphere. Circulation beneath the ice shelves and the
associated meltwater input have a profound impact on
shelf water properties (Foldvik et al. 1985; Jacobs et al.
1985; Fahrbach et al. 1994; Hellmer et al. 1999). Togg-
weiler and Samuels (1995) suggest that up to 75% of
all the ocean’s deep waters may retain a signature of
this meltwater input.

The interaction between ice shelves and the ocean is
thus a potentially important element of the climate sys-
tem, and in recent years numerical models have been
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used to evaluate the key processes operating in sub-ice-
shelf cavities (Williams et al. 1999). Upper boundary
conditions derived from a thermodynamic model of the
ice–ocean interaction have been applied to ocean models
of varying sophistication. Dynamic models of the ice
shelf itself have not been included, so the ice–ocean
interface has been treated as a fixed boundary. The dis-
parity of timescales between the slowly flowing ice shelf
and the relatively fast flowing waters beneath provides
some justification for this approach. Although the spec-
ification of the upper boundary conditions represents a
computationally small and simple component of most
sub-ice-shelf circulation models, it is of crucial impor-
tance. A correct estimate of the surfaces fluxes is es-
sential to a realistic simulation of the sub-ice-shelf cir-
culation and to the utility of the results for estimating
the mass balance of the ice shelves.

In this paper we focus on the mathematical descrip-
tion of the ice–ocean interaction. We present an hier-
archy of models describing the heat and freshwater ex-
change at and near the ice–ocean interface. Our aim is
to compare the behavior of the differing upper boundary
formulations that have been used in models of sub-ice-
shelf circulation to date and to introduce a new for-
mulation that closely follows the work of McPhee et al.
(1987). For a related comparative study, but in the con-
text of sea ice–ocean coupling, the reader is referred to
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work by Holland et al. (1997). We also compare the
results of the various models with recent observations
of heat flux in the turbulent boundary layer beneath sea
ice.

The fundamental assumption in all the models is that
phase changes occur in thermodynamic equilibrium so
that the temperature and salinity at the ice–ocean in-
terface are always related by an expression for the freez-
ing point at the appropriate depth. The problem becomes
one of calculating the heat and freshwater fluxes that
result from deviations in the far-field ocean properties
from freezing point conditions. Our treatments of the
processes occurring in the oceanic boundary layer differ
only in the sophistication with which turbulent diffusion
of heat and salt is modeled. On the ice side of the in-
terface the flow is laminar and only the diffusion of heat
need be considered because salt cannot diffuse through
the solid ice matrix. The problem is that diagnosis of
the temperature gradient at the ice shelf base requires
solution of the equation for heat advection and diffusion
throughout the ice shelf. As the ice flow is unknown,
we require a reduced form of this equation that is trac-
table but captures the essential features of the full so-
lution.

In common with most models of sub-ice-shelf cir-
culation, we consider all phase changes to occur at the
ice–ocean boundary, regardless of whether the far-field
ocean conditions are above or below freezing. We do
not consider the process of frazil ice growth in super-
cooled parts of the water column, although observations
and modeling (Oerter et al. 1992; Bombosch and Jenkins
1995) suggest that deposition of suspended ice crystals
is the dominant mechanism of basal growth beneath ice
shelves. Thus, while it is instructive to intercompare the
response of the different boundary formulations to su-
percooling in the ocean, direct comparisons between
models and observations are only valid for melting con-
ditions. It is possible to treat the thermodynamics of
frazil ice growth in a manner analogous to that outlined
below for melting and freezing at a solid boundary, but
the incorporation of frazil ice into an ocean model re-
quires the addition of an ice conservation equation (Om-
stedt and Svensson 1984; Mellor et al. 1986; Jenkins
and Bombosch 1995).

2. Thermodynamic models of ice–ocean interaction

The objective of modeling the ice–ocean interaction
is to obtain as realistic as possible a melt rate at the ice-
shelf base. We now define and solve the necessary equa-
tions to achieve this. The far-field quantities are the
prescribed interior properties of the ice shelf and the
properties of the upper layer or level of the ocean model.
We are interested in determining the characteristics ex-
actly at the ice–ocean interface where there are three
physical constraints: the interface must be at the freezing
point and both heat and salt must be conserved at the
interface during any phase changes. This gives a system

of up to three equations in up to three unknowns, name-
ly, the interface temperature, salinity, and melt rate.

To assist the discussion below, the relevant layers,
temperatures, salinities, and heat and salt fluxes are
shown schematically in Fig. 1. The ocean mixed layer
has a temperature TM and salinity SM, which are not
necessarily equal to the respective ice–ocean interface
properties TB and SB. The gradients in temperature and
salinity through the boundary layer drive heat and salt
fluxes between the interface and the mixed layer. The
temperature gradient in the ice at the base of the ice
shelf drives a heat flux from the interface into the ice
shelf, which has a surface temperature denoted by Ts

and a bulk salinity denoted by SI.

a. Fundamental equations

1) FREEZING POINT DEPENDENCE

The freezing point of seawater is a weakly nonlinear
function of salinity and a linear function of pressure
(Millero 1978). This relationship between temperature
and salinity at the ice–ocean interface will be one of
three equations that will have to be solved simulta-
neously, so it is simpler to work with a linearized ver-
sion:

TB 5 aSB 1 b 1 cpB, (1)

where pB is the pressure at the interface. The values of
the empirical constants a, b, and c are given in Table 1
along with other constants and parameters used in this
study. The formula is valid only in the salinity range
4–40 psu and does not apply to pure freshwater.

2) HEAT CONSERVATION

At the ice–ocean interface, the divergence of the heat
flux balances the sink or source of latent heat caused
by melting or freezing:

2 5 .T T TQ Q QI M latent (2)

The latent heat term is given by

5 2rMwBLf ,TQlatent (3)

where rMwB represents the mass of ice that is melted
(wB . 0) or frozen (wB , 0) per unit time. The esti-
mation of the diffusive heat fluxes is discussed in detail
below.

3) SALT CONSERVATION

An equation analogous to (3) describes the salt flux
required to maintain the boundary salinity at SB in the
presence of the ‘‘freshwater’’ flux associated with melt-
ing or freezing of ice having a salinity of SI:

5 rMwB(SI 2 SB).SQbrine (4)

This is balanced by the salt flux divergence at the in-
terface:
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FIG. 1. Schematic representation of (a) the heat and (b) the salt balance at the base of an ice
shelf. The slope of the ice shelf base is greatly exaggerated for illustrative purposes.

2 5 .S S SQ Q QI M brine (5)

The diffusive flux of salt into the ice shelf, , is iden-SQI

tically zero and will be discussed no further, while the
estimation of the diffusive flux through the oceanic
boundary layer will be addressed below. Continental ice
that melts from the base of an ice shelf has a salinity
of zero, but when seawater freezes, brine is usually
trapped within the forming ice, giving it a nonzero bulk
salinity. Observations of marine ice found at the base
of ice shelves with salinities of 0.025 psu (Eicken et al.
1994) indicate that a very effective desalination process
must operate. As further evidence, additional observa-
tions (Oerter et al. 1992) show very low salinities of

approximately 0.100 and suggest that to a good ap-
proximation we can treat SI as zero always.

b. Modeling the oceanic fluxes

1) A ONE-EQUATION FORMULATION

The simplest approach recognizes that whatever the
details of heat and salt transfer through the oceanic
boundary layer, the overall effect is to cause the upper
layer of the ocean to relax toward the freezing point. If
this relaxation is assumed to occur instantaneously, there
is no distinction between interface and mixed layer
properties, and the ice–ocean interaction can be de-
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TABLE 1. Model parameters and constants.

Parameter Symbol Units Value

Salinity coefficient of freezing equation
Constant coefficient of freezing equation
Bernoulli numbers
Ocean surface buoyancy flux
Pressure coefficient of freezing equation
Constants of integration
Momentum exchange coefficient
Specific heat capacity ice shelf
Specific heat capacity mixed layer
Coriolis parameter

a
b
Bn

BM

c
c1, c2

cd

cpI

cpM

f

8C psu21

8C
dimensionless
m2 s22

8C Pa21

dimensionless
dimensionless
J kg21 K21

J kg21 K21

s21

25.73 3 1022

9.39 3 1022

27.53 3 1028

1.50 3 1023

2009.0
3974.0

21.00 3 1024

Gravitational acceleration
Thickness of boundary layer
Thickness of viscous sublayer
Thickness of ice shelf
Thickness of mixed layer
Von Kármán’s constant
Latent heat fusion
Obukhov length
Solutions of characteristic polynomial
Nusselt number

g
h
hn

HI

HM

k
Lf

Lo

m, m1, m2

Nu

m s22

m
m
m
m
dimensionless
J kg21

m
dimensionless
dimensionless

9.81

;0.001
;1000

;10
0.40

3.34 3 105

k1
Pressure at ice shelf base
Prandtl number
Conductive heat flux through ice shelf
Latent heat at ice–ocean interface
Diffusive heat flux in boundary layer
Diffusive salt flux through ice shelf
Salt flux at ice–ocean interface

pB

Pr
QT

I

QT
latent

QT
M

QS
I

QS
brine

Pa
dimensionless
W m22

W m22

W m22

psu m21 s21

psu m21 s21

;1.0 3 107

13.8

Diffusive salt flux in boundary layer
Ratio of melt/freeze rates
Critical flux Richardson number
Schmidt number
Bulk salinity of ice shelf
Salinity at ice–ocean interface
Salinity of mixed layer
Time coordinate
Temperature at ice shelf surface
Temperature at ice–ocean interface

QS
M

r
Rc

Sc
SI

SB

SM

t
TS

TB

psu m21 s21

dimensionless
dimensionless
dimensionless
psu
psu
psu
s
8C
8C

0.20
2432

0
Prognostic

;34.5

;225.0
Prognostic

Temperature of mixed layer
Thermal driving
Ice shelf flow velocity
Ocean mixed layer velocity
Friction velocity ice–ocean
Melt rate at ice shelf base
Vertical velocity of ice shelf
Vertical geopotential coordinate
Salinity contraction coefficient
Thermal expansion coefficient

TM

T∗
UI

UM

U∗
wB

wI

z
bS

bT

8C
8C
m s21

m s21

m s21

m s21

m s21

m
psu21

8C21

;21.85

Prognostic

Molecular thermal conductivity ice shelf
Thermal diffusivity of mixed layer
Molecular salt conductivity ice shelf
Salt diffusivity mixed layer
Ice shelf reference density
Ocean reference density
Ratio of thermal driving to thermal forcing
Thermal exchange velocity
Salinity exchange velocity

kT
I

kT
M

kS
I

kS
M

rI

rM

Q
gT

gS

m2 s21

m2 s21

m2 s21

kg m23

kg m23

dimensionless
m s21

m s21

1.14 3 1026

0.0

920.0
1025.0

;1.00 3 1024

;5.05 3 1027

Kinematic viscosity of sea water
Péclet number
Temperature gradient amplification factor
Turbulent transfer parameter
Thermal molecular transfer parameter
Salinity molecular transfer parameter
Stability parameter
Stability constant

n
Y
P
GTurb

GT
Mole

GS
Mole

h∗
jN

m2 s21

dimensionless
dimensionless
dimensionless
dimensionless
dimensionless
dimensionless
dimensionless

1.95 3 1026

#1
0.052
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scribed completely using Eq. (1). Such a formulation
has been widely used in large-scale ocean–atmosphere–
sea ice models (Holland 1998) and was the basic as-
sumption behind the earliest conceptual and numerical
models of ice shelf–ocean interaction (Doake 1976;
Robin 1979; MacAyeal 1985; Jenkins and Doake 1991).
Despite its simplicity, the application of such a bound-
ary condition to an ocean model may not be straight-
forward. If the usual prognostic equations for temper-
ature and salinity are solved everywhere, the derived
values must subsequently be reset wherever the mixed
layer is in contact with ice. The ‘‘melt rate’’ cannot be
recovered from the boundary condition but is deter-
mined from the change in temperature of the mixed
layer. The derived rate is therefore a function of model
time step and mixed layer thickness among other things.
This is an undesirable feature if the aim is an accurate
diagnosis of the melting and, since this formulation is
not directly comparable to those presented below, we
will discuss it no further.

2) TWO-EQUATION FORMULATIONS

The next approach that we will discuss recognizes
that the rate at which the mixed layer temperature re-
laxes toward the freezing point is governed by the dif-
fusion of heat through the oceanic boundary layer. Equa-
tion (2) is introduced and estimates are made of the two
heat fluxes that appear on the left-hand side. In their
most general form they can be written

]TIT TQ 5 2r c k (6)I I pI I )]z B

and

]TMT TQ 5 2r c k . (7)M M pM M )]z B

In the above equations k are thermal diffusivities ad-
jacent to the ice–ocean interface, r are densities, and cp

are specific heat capacities, while subscript M indicates
mixed layer properties and I ice properties. In Eq. (6)
the density, specific heat capacity, and thermal diffu-
sivity may all be regarded as constant, and the problem
becomes one of estimating the temperature gradient at
the base of the ice shelf. To solve Eq. (7) we can treat
the density and specific heat capacity as constant, but
we need a suitable parameterization of the product of
the diffusivity and temperature gradient near the ice
shelf base. If the boundary layer were laminar, we would
anticipate that the temperature would vary linearly be-
tween the interface and mixed layer temperatures, in
which case Eq. (7) could be written

(T 2 T )B MT TQ 5 2r c k , (8)M M pM M h

where h is the boundary layer thickness. Turbulence in

the boundary layer means that the temperature profile
is nonlinear and the diffusivity is variable, but we can
parameterize these complications with the introduction
of a Nusselt number, Nu, an empirical parameter having
a value greater than 1:

TNukMTQ 5 2r c (T 2 T ). (9)M M pM B M1 2h

We will refer to the first quantity in brackets, which has
dimensions of velocity, as a thermal exchange velocity
gT. The simplest approach would be to choose a constant
value for the exchange velocity but, recognizing that it
is a result of turbulence in the mixed layer, a more
realistic assumption is to make it a function of the fric-
tion velocity.

The two-equation formulation offers some advantag-
es over the one-equation formulation. It is still very
simple, but it includes a diagnosis of the melt rate. As-
sociated heat and freshwater fluxes can then be applied
to the ocean model in an identical manner to all other
surface fluxes, and no special treatment of the mixed
layer equations is required because of the presence of
ice. However, it still lacks some realism, as to solve Eq.
(1) it must be assumed that the interface salinity and
the mixed layer salinity are identical. This implies in-
finite salt diffusivity, whereas in reality we would expect
salt to diffuse at the same rate as, or slower than, heat.
Nevertheless, the only error implied by this assumption
is the misdiagnosis of the interface temperature, and as
this is a weak function of salinity, we might anticipate
relatively small errors. McPhee (1992) and McPhee et
al. (1999) show that this formulation produces heat flux-
es that agree well with measurements made beneath sea
ice having a wide range of roughness characteristics.
An analogous formulation, but with a constant thermal
exchange velocity and a constant, prescribed interface
salinity, has been used in the sub-ice-shelf models of
Determann and Gerdes (1994), Grosfeld et al. (1997),
and Williams et al. (1998).

3) THREE-EQUATION FORMULATIONS

The most sophisticated formulations make no prior
assumptions about conditions at the interface and solve
Eqs. (1), (2), and (5) using the known mixed layer and
ice properties. By an analogous argument to that used
in the derivation of Eq. (9) we can express the surviving
term on the left-hand side of Eq. (5) as

5 2rMgS(SB 2 SM),SQM (10)

where gs is the salinity exchange velocity. Once again
the exchange velocity can be either assumed constant
or assigned a functional dependence on friction velocity.
The former approach was followed by Hellmer and Ol-
bers (1989, 1991), Scheduikat and Olbers (1990), and
Hellmer and Jacobs (1992). The latter approach has been
developed in the sea-ice literature [see Gade (1993) for
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a review] and adopted in the ice shelf–ocean interaction
models of Jenkins (1991), Jenkins and Bombosch
(1995), Hellmer and Jacobs (1995), and Hellmer et al.
(1999).

c. Parameterizing the transfer of heat and salt
through the oceanic boundary layer

The key to diagnosing a realistic melt rate from either
the two- or the three-equation formulation lies in the
choice of appropriate exchange velocities. In the case
of the three-equation model the problem is complicated
by the fact that the thermal and salinity diffusivities can
only be assumed to be equal in the fully turbulent part
of the boundary layer. Close to the ice–ocean interface,
the eddy size and hence the turbulent diffusivity are
suppressed. Where the suppression is great enough that
molecular diffusion becomes the dominant transfer
mechanism, heat will diffuse more rapidly than salt. As
the exchange velocities need to account for all processes
occurring within the boundary layer, gs will be smaller
than gT.

The role of molecular diffusion in governing the rate
of heat and mass transfer within a thin, viscous sublayer
adjacent to the ice–ocean boundary was recognized by
Mellor et al. (1986). Subsequently, McPhee et al. (1987)
and Steele et al. (1989) investigated boundary layer pa-
rameterizations that explicitly included a viscous sub-
layer. Jenkins (1991) used an analogous parameteriza-
tion to calculate exchange velocities at the base of an
ice shelf. Assuming the ice–ocean interface in this case
to be hydraulically smooth leads to expressions of the
form (Kader and Yaglom 1972)

u*
g 5 (11)T 2/32.12 ln(u*h /n) 1 12.5 Pr 2 9

and

u*
g 5 . (12)S 2/32.12 ln(u*h /n) 1 12.5 Sc 2 9

The influence of the molecular sublayer is apparent in
the inclusion of the molecular Prandtl number, Pr (the
ratio of viscosity to thermal diffusivity), and the mo-
lecular Schmidt number, Sc (the ratio of viscosity to
salinity diffusivity), in the denominators. The kinematic
viscosity of sea water is considered constant and is de-
noted by the symbol n. The friction velocity u* is de-
fined in terms of the shear stress at the ice–ocean in-
terface, a simple parameterization of which involves a
dimensionless drag coefficient cd and the velocity of the
mixed layer UM, the ice being considered stationary:

5 cd .2 2u U* M (13)

A potentially important effect not accounted for in (11)
and (12) is the impact of the buoyancy flux at the ice–
ocean interface on turbulence within the boundary layer.
A stabilizing buoyancy flux (i.e., melting) will suppress

mixing, while a destabilizing buoyancy flux (i.e., freez-
ing) will enhance mixing (McPhee 1994). We wish to
investigate how the stability of the boundary layer might
influence melt rates at the base of an ice shelf, so we
follow McPhee et al. (1987) in expressing the transfer
coefficients as

u*
g 5 , (14)T,S T,SG 1 GTurb Mole

where

21 u*j h 1 1N *G 5 ln 1 2 (15)Turb 1 2k fh 2j h* kn N

and

5 12.5(Pr, Sc)2/3 2 6.T,SGMole (16)

In Eq. (15) k is von Kármán’s constant, f is the Coriolis
parameter, jN is a dimensionless constant, and hn is the
thickness of the viscous sublayer. Values for the first
three of these are given in Table 1, while we estimate
the sublayer thickness to be (Tennekes and Lumley
1972, p. 160)

n
h 5 5 . (17)n u*

In Eqs. (15)–(17) we have assumed the ice–ocean in-
terface to be hydraulically smooth. The influence of the
interfacial buoyancy flux is encapsulated in the stability
parameter, introduced by McPhee (1981):

21/2
j u*Nh* 5 1 1 , (18)1 2fL RO c

where Rc is a critical flux Richardson number and Lo is
the Obukhov length. If the Obukhov length is negative
(i.e., the buoyancy flux is destabilizing) the stability
parameter is set to 1. We do not consider how desta-
bilizing buoyancy fluxes influence freezing rates be-
cause direct freezing to the ice shelf base is thought to
be limited. The formation of frazil ice in the water col-
umn, which we do not discuss here, will have a stabi-
lizing effect on the boundary layer (Jenkins and Bom-
bosch 1995).

d. Modeling the heat flux into the ice shelf

We now address the problem of estimating the basal
temperature gradient in the ice shelf, required in Eq.
(6). This requires solution of the heat transport equation
in the ice shelf:

]TI T 21 U · =T 5 k ¹ T . (19)I I I I]t

In practice, the solution of the full equation is not pos-
sible unless the flow field within the ice shelf is known,
so we consider reduced forms.
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FIG. 2. Temperature–depth profiles through an ice shelf 1000 m
thick, calculated assuming a constant vertical velocity. Surface and
basal temperatures are 2258 and 228C, respectively. Vertical velocity
(in m yr21) is given for each profile where positive labels indicate
basal melting.

1) NO ADVECTION, NO DIFFUSION

The simplest of all approximations is that the ice shelf
is a perfect insulator. With no diffusion into the ice shelf,
the first term on the left-hand side of Eq. (2) is iden-
tically zero. Such an approximation has been used by
Determann and Gerdes (1994), Jenkins and Bombosch
(1995), Grosfeld et al. (1997), and Williams et al.
(1998), although it can be justified only if the conducted
heat flux is always small compared to the latent heat
term.

2) NO ADVECTION, VERTICAL DIFFUSION

In this case (19) reduces to
2] TI 5 0 (20)

2]z

for a steady state. The solution is a linear temperature
profile throughout the thickness of the ice shelf, so the
basal gradient can be expressed as

]T (T 2 T )I S B5 , (21))]z HIB

where HI is the thickness of the ice shelf and TS is the
surface temperature. Such an approximation has been
used in the models of Hellmer and Olbers (1989, 1991),
Scheduikat and Olbers (1990), and Hellmer and Jacobs
(1992, 1995). This approach is common in sea–ice mod-
els, but the thickness of ice shelves and the observed,
highly nonlinear temperature profiles make it less sat-
isfactory for modeling ice-shelf thermodynamics.

3) CONSTANT VERTICAL ADVECTION, VERTICAL

DIFFUSION

The simplest way to allow a nonlinear temperature
profile to develop is to allow for vertical advection with-
in the ice shelf. We will assume that the vertical velocity
is constant and equal to the basal melt/freeze rate and
that the ice shelf is in a steady state. There is some
justification for this approximation in that over the short
timescales of interest here, that is, of years to decades,
the ice shelves are believed to be in a relatively steady
state. Clearly, such an approximation would be unre-
alistic for consideration of sea ice thermodynamics be-
cause of its thinness. This requires that all ice added or
removed at the base is balanced by surface ablation or
accumulation. In this case Eq. (19) reduces to the equa-
tion used by Wexler (1960) (see also discussion by Pat-
erson 1994, p. 204):

2] T w ]TI I I1 5 0, (22)
2 T]z k ]zI

where

rMw 5 w . (23)I BrI

We assume a solution of the form T(z) 5 emz, which
yields a quadratic characteristic polynomial of Eq. (22)
having the two roots m1 5 2wI/ and m2 5 0. TheTkI

general solution of Eq. (22) is then

TI(z) 5 1m z m z1 2c e c e ,1 2 (24)

where c1 and c2 are constants to be determined by the
boundary conditions of fixed temperatures at the ice
shelf surface TS and base TB. Utilizing these boundary
conditions, the temperature profile can be written

2w z w HI I I(T 2 T ) exp 1 T 2 T expS B B ST T1 2 1 2k kI I

T (z) 5I

w HI I1 2 exp
T1 2kI

(25)

with z 5 0 at the surface and z 5 2HI at the base. The
solution expressed by (25) is shown in Fig. 2 for an ice
shelf 1000 m thick experiencing a range of basal melting
and freezing rates. Under melting conditions, the tem-
perature gradient near the base of the ice shelf is in-
creased, which increases the conductive heat flux and
serves to counteract the melting. Conversely, freezing
decreases the temperature gradient and the conductive
flux, which leads to a lower freezing rate than would
be estimated for a linear temperature profile.

From Eq. (25) we can derive the temperature gradient
at the ice shelf base:

]T (T 2 T )I S B5 P . (26))]z HIB

Equation (26) has the same form as Eq. (21) apart from
the factor
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FIG. 3. Temperature gradient amplification factor as a function of
Péclet number. The dotted line shows the approximation given in Eq.
(31). The upper axis scale indicates equivalent melt rates for an ice
shelf 1000 m thick.

Y
P 5 , (27)

Ye 2 1

which depends on the Péclet number

2w HI IY 5 . (28)
TkI

For a melt rate of 1 m yr21 at the base of an ice shelf
1000 m thick we obtain a Péclet number of approxi-
mately 230, implying that the temperature gradient am-
plification factor P can play an important role in Eq.
(26).

Immediately obvious is that Eq. (27) is ill-defined for
a melt rate of zero, a problem that may be overcome
by rewriting the right-hand side as a power series (Arf-
ken 1970) of the form

` nY Y
5 B , (29)O nYe 2 1 n!n50

where Bn represent the sequence of Bernoulli numbers.
The first few Bernoulli numbers have values (Abra-
mowitz and Stegun 1972)

1 1
B 5 1, B 5 2 , B 5 2 ,0 2 42 30

1
B 5 , · · · (30)6 42

the odd labeled Bernoulli numbers, B2n11 for n 5 1, 2,
3, . . . , being identically zero. The series (29) is valid
for Y , 2p and is therefore appropriate for small values
of the Péclet number (i.e., a near-zero melt/freeze rate).
In particular when Y 5 0, the expression in (29) equals
B0 and Eq. (26) is then identical to Eq. (21), the purely
diffusive solution with no advection. We also note that
for sea ice Y , 1 typically, so the purely diffusive
solution is a good approximation.

Figure 3 illustrates the behavior of P as a function
of the Péclet number. Under conditions of moderate to
high freezing P is close to zero, while for moderate to
high melting it is very close to the absolute value of
the Péclet number. This suggests that a possible sim-
plification of Eq. (27) is

w HI I for melting case when w . 0BTkP 5 I (31)
0 for freezing case when w , 0. B

This approximation (also shown in Fig. 3) has the ad-
vantage of linearizing Eq. (2), and hence simplifying
the solution of the ice–ocean boundary equations. Such
an approximation was introduced by Nøst and Foldvik
(1994) and has been adopted in the model of Hellmer
et al. (1999).

4) MORE COMPLEX MODELS

The next stage of complexity in the heat transport
problem would be to introduce a vertical velocity that

varies linearly from the surface to the base of the ice
shelf. This would lead to the classical solution for the
temperature profile in an ice column, first introduced by
Robin (1955) for ice sheets. However, the solution in-
volves either error functions or Dawson’s integrals, and
we have little hope of recovering a linear version of Eq.
(2). To use such a solution, the basal temperature gra-
dient would have to be calculated as a separate problem
and the result introduced directly into Eq. (6). The same
applies to models of greater sophistication that could
include the horizontal advection of heat. Such a model
was used by Jenkins (1991) for a specific region of
Ronne Ice Shelf where measurements of ice flow and
surface temperature made the computation of a steady-
state temperature distribution within the ice shelf pos-
sible.

3. Comparison of model results

We begin by discussing the behavior of the three-
equation formulations, which are the most widely used
in the literature on ice shelf–ocean interactions, and we
will initially treat the ice shelf as a perfect insulator.
With no heat conduction into the ice shelf, the only
external parameters that enter into Eqs. (1), (2), and (5)
are the friction velocity u* and the thermal driving T*,
defined as

T* 5 TM 2 (aSM 1 b 1 cpB). (32)

The difference between the various formulations lies in
the specification of the exchange velocities for heat and
salt, which are illustrated in Fig. 4. The two formulations
that include an explicit parameterization of the boundary
layer yield heat transfer coefficients that are approxi-
mately linear functions of friction velocity, with values
that generally differ by no more than about 10% (Fig.
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FIG. 4. (a) Heat transfer coefficients introduced by Hellmer and Olbers (1989) (dashed line labeled H1O),
by Scheduikat and Olbers (1990) (dotted line labeled S1O), by Jenkins (1991) (solid line labeled J), and in
this paper (dotted and dashed lines labeled H1J). In the latter case the dashed line indicates values obtained
with the stability parameter of Eq. (18) set to 1, while the dotted line indicates values for a melt rate of 10
m yr21. (b) Ratio of salt to heat transfer coefficients for the same formulations.

4a). The reason for this close agreement is the domi-
nance of the molecular term, which is the same in all
cases, in the denominators of Eqs. (11) and (14). The
two models having constant exchange velocities use val-
ues of gT that are consistent with a friction velocity of
about 0.01 m s21, which corresponds to a mixed layer
velocity of about 0.2 m s21. Although this is higher than
most estimates of currents associated with the thermo-
haline circulation, it is consistent with rms currents as-
sociated with strong tidal flow (Makinson and Nicholls
1999). That the ratio of gs to gT is significantly less
than one in all cases, and is relatively constant in most,
(Fig. 4b) is evidence of the importance of molecular
processes. Heat and salt transfer within the turbulent
part of the boundary layer has little impact on the size
of the coefficients except in the formulation that con-
siders the influence of gravitational stability, and even
in this formulation the effect is only significant under
conditions of high thermal driving and low friction ve-
locity.

A model’s response to thermal driving is determined
by the magnitudes of both the heat and the salt transfer
coefficients. Figures 5a–c show the influence of chang-
ing the size of both gS and gT while keeping their ratio
constant. Temperature and salinity differences across the
boundary layer are set entirely by the thermal driving,
with computed melt rates then responding linearly to
variations in gS and gT, as heat and salt are transported
with varying ease across the boundary layer. This re-

sponse is similar to what we would anticipate for a two-
equation formulation. However, the salinity difference
across the boundary layer (Fig. 5c) means that the cor-
responding temperature difference (Fig. 5b) is always
smaller than the thermal driving. Calculated melt/freeze
rates are therefore lower than they would be if the
boundary salinity were assumed to be equal to the mixed
layer salinity. There is also a slight nonlinearity in the
response to thermal driving that arises because the sa-
linity at the ice–ocean interface can increase without
limit but can only decrease by ;35 psu before becoming
completely fresh.

The role played by salinity diffusion in determining
the melt/freeze rates is shown more clearly in Figs. 5d–f,
where the effect of varying the ratio of gS to gT while
keeping the latter constant is illustrated. As the ratio
tends to infinity, the response becomes that of a two-
equation formulation with zero salinity difference across
the boundary layer (Fig. 5f), a temperature difference
equal to the thermal driving (Fig. 5e), and a melt/freeze
rate that is directly proportional to T* (Fig. 5d). De-
creasing the salinity diffusivity increases the salinity
difference across the boundary layer, which decreases
the temperature difference and with it the melt/freeze
rate, while the nonlinearity in the response to T* be-
comes more pronounced. With negative thermal driving,
the salinity at the boundary can grow until the freezing
point depression balances the thermal driving, yielding
a temperature difference of zero across the boundary
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FIG. 5. Response of a three-equation formulation for thermal driving of 128, 118, 08, 218, and 228C plotted against
the magnitude of the thermal exchange velocity gT, (a) melt rate, (b) temperature difference across the boundary layer,
(c) salinity difference across the boundary layer. The ratio of the salinity exchange velocity gS to gT is kept at 0.04.
Panels (d), (e), and (f ) show the response of the same variables to changes in the ratio of gS to gT, while the latter is
kept constant at 1.0 3 1024 m s21. The dotted lines indicate ratios typical of formulations with constant coefficients
(0.005) and those based on boundary layer parameterizations (0.04).

layer and hence no freezing, but, given sufficient pos-
itive thermal driving, melting can proceed even if the
water at the boundary is completely fresh. The two val-
ues of gS/gT found in the literature span a region of high
sensitivity. The lower ratio gives rise to melting and
freezing rates that are not only smaller (for the same
heat transfer coefficient), but also show a more nonlinear
response to thermal driving.

The effects discussed above are illustrated quantita-
tively in Fig. 6, which shows the melt/freeze rates com-
puted by each of the models for a broad range of thermal
driving. The two boundary layer parameterizations give
rather similar results, suggesting that the precise form
of GTurb is not critical. This is convenient, as the intro-
duction of the stability parameter into Eq. (15) involves
a computationally expensive iteration to derive the melt
rates and exchange coefficients. Simply setting the sta-
bility parameter to unity does not have a large impact
on melt rates computed with this model, except at very
low friction velocity (Fig. 7a). For thermal driving less
than 0.58C (i.e., values commonly found in nature) and
a friction velocity greater that 0.001 (corresponding to
a velocity of about 0.02 m s21) differences between melt

rates computed with and without the stability parameter
differ by less than 10%.

A possible refinement to the models discussed above
would be the introduction of a conductive heat flux into
the ice shelf. The influences of purely diffusive and
constant vertical advection/diffusion models are illus-
trated in Figs. 7b,c. The linear temperature profile as-
sumed by the purely diffusive model causes a net shift
toward freezing so that a positive thermal driving is
required for zero melting. Only in the region of the melt/
freeze transition, where the rates are very small, does
this approximation have a noticeable impact on model
results (Fig. 7b). The model with constant vertical heat
advection in the ice shelf has no effect unless the mixed
layer is warmer than the freezing point. It then reduces
the computed melt rates by about 10% (Fig. 7c).

McPhee (1992) and McPhee et al. (1999) demon-
strated that direct measurements of the turbulent heat
flux in the boundary layer beneath drifting sea ice could
be well fitted with a two-equation model. This might
be anticipated from the approximately linear response
of the three-equation models, particularly at the mod-
erate levels of thermal driving that are of most practical
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FIG. 6. Melt/freeze rates as a function of thermal driving calculated using exchange velocities given by
Eqs. (14)–(18) (solid lines), by Jenkins (1991) (dotted lines), by Hellmer and Olbers (1989) (dashed line),
by Scheduikat and Olbers (1990) (dot–dashed line), and by Determann and Gerdes (1994) (solid line with
dots). In the Jenkins and Hellmer and Olbers cases, three curves are shown and labeled for friction velocities
of 0.0, 1.0, and 2.0 cm s21. Panel (b) shows an enlargement of the boxed area in panel (a).

interest (Fig. 6b). However, the key to a consistent two-
equation formulation lies in the choice of an effective
exchange velocity, which accounts approximately for
the fact that the finite salinity diffusivity supports a
salinity difference across the boundary layer and hence
reduces the thermal forcing. Using Eq. (1) we can re-
write Eq. (32) as

T* 5 (TM 2 TB) 2 a (SM 2 SB) (33)

from which we can express the ratio of thermal driving
(T*) to thermal forcing (TM 2 TB) as

(S 2 S )M BQ 5 1 2 a . (34)
(T 2 T )M B

From Eqs. (2) and (5), with all fluxes into the ice shelf
ignored, Eq. (34) can be written

aS c gB pM T
Q 5 1 2 . (35)

L gf S

Provided this factor is approximately constant, a two-
equation formulation with an effective transfer coeffi-
cient of gT/Q should yield reasonable melt rates. Taking
SB 5 34.5 psu gives Q 5 1.6 for gS/gT 5 0.04, typical
for the models of Jenkins (1991) and McPhee et al.
(1987), and Q 5 5.7 for gS/gT 5 0.005, as in the models
of Hellmer and Olbers (1989) and Scheduikat and Ol-
bers (1990).

Figure 7d illustrates the differences between melting/
freezing rates calculated with the model that includes

the stability parameter and those derived from an equiv-
alent two-equation formulation. We find large differ-
ences for high thermal driving, particularly at low values
of the friction velocity, most of which are a result of
ignoring the effect of stability (Fig. 7a). At higher fric-
tion velocity, the linear response of the two-equation
formulation means that melting rates tend to be under-
estimated and freezing rates overestimated compared
with the results of the full three-equation model. How-
ever, for conditions frequently encountered in nature
(|T*| , 0.58C, u* . 0.001) differences between the two-
and three-equation formulations are typically less than
10%.

In Fig. 8 we compare the effective transfer coeffi-
cients for each of the formulations discussed above, with
that derived by McPhee et al. (1999) from observations
in the turbulent boundary layer beneath sea ice. The
models of McPhee et al. (1987) and Jenkins (1991) re-
produce the observed dependency on friction velocity,
but overestimate turbulent transfer by about 15% and
30%, respectively. The constant transfer coefficients
used by Hellmer and Olbers (1989) and Scheduikat and
Olbers (1990) are consistent with currents of 0.06–0.08
m s21, the right order of magnitude for the thermohaline-
forced circulation beneath ice shelves. The effective
transfer coefficient of Determann and Gerdes (1994) is
much higher, corresponding to a velocity of about 0.35
m s21, and is therefore appropriate for a cavity subject
to vigorous tidal mixing. The melt/freeze rates produced
by this latter model are shown in Fig. 6 for comparison.
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FIG. 7. Ratio of the melt/freeze rate r derived from different formulations to that calculated
using the standard three-equation formulation with exchange velocities set according to Eqs. (14)–
(18) and no heat conduction into the ice shelf. In each panel, solid lines indicate results obtained
with a friction velocity of 1 cm s21, dashed lines with 0.1 cm s21, and dotted lines with 0.01 cm
s21. The different formulations are (a) exchange velocities derived from Eqs. (14)–(18) with the
stability parameter set to 1, (b) the standard model with vertical heat diffusion in the ice shelf,
(c) the standard model with vertical advection and diffusion of heat in the ice shelf, and (d) an
equivalent two-equation formulation. Note that the vertical scale differs between panels.

FIG. 8. Effective transfer coefficients for the formulations intro-
duced by Hellmer and Olbers (1989) (dashed line labeled H1O), by
Scheduikat and Olbers (1990) (dotted line labeled S1O), by Jenkins
(1991) (solid line labeled J), in this paper (unlabeled, dashed line),
and by Determann and Gerdes (1994) (solid line labeled D1G). The
dotted line labeled MKM illustrates the effective transfer coefficient
derived by McPhee et al. (1999) based on observations.

4. Computed buoyancy fluxes

Buoyancy fluxes associated with melting and freezing
represent the primary forcing on the ocean beneath an
ice shelf. Here we analyze how the differing formula-
tions of the ice–ocean interaction discussed above in-
fluence the forcing imparted to an ocean model. The
rate of change of mixed layer buoyancy can be written

˙b TT M˙ ˙B 5 2gb S 1 2 , (36)M S M ˙1 2b SS M

where bS and bT are the salinity contraction and thermal
expansion coefficients, respectively. The term outside
the brackets is directly related to the freshwater flux
associated with melting:

SMṠ 5 2 w , (37)M BHM

where HM denotes the thickness of the mixed layer. The
term in brackets can be rewritten

˙b T (]T /]S)T M M5 . (38)˙b S (]T /]S)S M s

Melting of ice into the mixed layer causes its T/S prop-
erties to evolve along a straight line, the gradient of
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which has been derived by Gade (1979), Greisman
(1979), and Nøst and Foldvik (1994), and appears as
the numerator on the right-hand side of Eq. (38). The
denominator is the isopycnal slope in T/S space. Of
relevance to the discussion here is that (]T/]S)M depends
on the assumptions made about the heat flux into the
ice shelf (Nøst and Foldvik 1994). In particular, the
advection/diffusion model yields a (]T/]S)M of 2.8 (for
a surface temperature of 2258C), while the commonly
used model of a perfectly insulating ice shelf gives a
value that is lower by 0.33. The overall error in buoy-
ancy forcing is

˙ ˙]B ]BM M˙dB 5 dw 1 d(]T /]S) (39)M B M]w ](]T /]S)B M

from which we obtain

˙dB dw d(]T /]S)M B M5 1 . (40)
Ḃ w (]T /]S) 2 (]T /]S)M B s M

As expected, we find that any model that gives an error
in the melt rate contributes the same percentage error
to the buoyancy forcing. However, if the melt rate is
misdiagnosed because of an error in the estimate of the
heat conducted into the ice shelf, there is an additional
error in the forcing. Figure 7c shows a 10% difference
between the melt rates derived from a model having
constant vertical advection in the ice shelf and those
derived with a model that treats the ice as a perfect
insulator. The additional error in buoyancy forcing, aris-
ing from the second term on the right-hand side of Eq.
(40), is small (;1%) near the surface, where the iso-
pycnals are steep, but rises to about 5% at a depth of
2000 m, which is reached beneath the thickest ice
shelves.

5. Summary and conclusions

The main objective of this study has been the pre-
sentation of an hierarchy of models describing the ther-
modynamic interaction between the base of an ice shelf
and the underlying ocean waters. We have reviewed the
various models that have been used in the literature on
ice shelf–ocean interactions and have introduced a pa-
rameterization of turbulent transfer in the oceanic
boundary layer, based on the work of McPhee et al.
(1987), that considers the impact of gravitational sta-
bility. We have investigated the behavior of all the mod-
els and analyzed their performance in the light of recent
studies of the turbulent boundary layer beneath sea ice
(McPhee 1992; McPhee et al. 1999). A key finding of
the latter authors is that turbulent transfer is apparently
independent of the roughness of the ice–ocean interface,
a fact that gives us confidence in extrapolating their
findings to an ice shelf base of unknown roughness.

Most of the models in the literature conform to the
three-equation formulation, although the choice of ther-
mal and salinity transfer coefficients varies. We have

shown that the behavior of these models can be ap-
proximated by an equivalent two-equation formulation,
at least for moderate thermal driving. The nonlinearity
in the response of the three-equation models, a feature
that does not appear in the simpler formulation, only
becomes apparent at high thermal driving. In nature,
supercooling can always be damped by the formation
of frazil ice within the water column (Jenkins and Bom-
bosch 1995), making model behavior at negative ther-
mal driving greater than ;0.18C of theoretical rather
than practical interest. Conditions of high positive ther-
mal driving are unlikely to be encountered beneath the
ice shelves of the Ross and Weddell Seas, but mea-
surements from beneath George VI Ice Shelf, in the
Bellingshausen Sea, show water more than 18C above
freezing within a few meters of the ice shelf base (K.
W. Nicholls 1998, personal communication). A two-
equation formulation may be inappropriate under these
conditions, which may require the use of the full model
of McPhee et al. (1987).

We have discussed various parameterizations of the
heat flux into the ice shelf. The only one that manages
to capture any of the nonlinearity of the typical ice shelf
temperature profile is that which assumes constant ver-
tical advection of ice. Applying this parameterization
reduces melting by about 10% but reduces the buoyancy
forcing on the ocean by up to 15%, the additional change
being the result of the heat loss to the overlying ice.
The overall effect is comparable to the differences in
buoyancy forcing associated with the various choices
of transfer coefficients used in the three-equation mod-
els. In nature, the temperature distribution within an ice
shelf is determined by the history of melting and freez-
ing that each ice column has experienced, but to intro-
duce this thermal memory of past conditions would re-
quire a rather sophisticated dynamic/thermodynamic
model of the ice shelf.

Our most important results are summarized in Figs.
6 and 8, which illustrate the behavior of the models
used to date in the literature on ice shelf–ocean inter-
actions. The three-equation models of Hellmer and Ol-
bers (1989) and Scheduikat and Olbers (1990) have ef-
fective transfer coefficients that are only one-fifth the
size of that used by Determann and Gerdes (1994). In
the models of Jenkins (1991) and Jenkins and Bombosch
(1995), typical friction velocities lie in the range 0.002–
0.008 m s21, yielding effective transfer coefficients
ranging in magnitude from that of Hellmer and Olbers
(1989) up to half that used by Determann and Gerdes
(1994). Whether it is better to use constant coefficients,
ones based on assumed tidal velocities, or ones based
on computed thermohaline velocities is an open ques-
tion. However, when comparing model output, it is im-
portant to realize that the differing parameterizations of
the ice–ocean interaction yield melting rates and hence
buoyancy fluxes, that vary over a factor of 5 for the
same thermal driving. Our recommendation is that for-
mulations used in future, whether two-equation or three-
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equation, should aim to reproduce the behavior ob-
served by McPhee (1992) and McPhee et al. (1999), at
least until such time as measurements of turbulent heat
flux beneath ice shelves are available.
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