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ABSTRACT

A characteristic of internal waves reflecting from sloping boundaries is that they form fronts that travel with
the component of the phase speed of the waves up the boundary. The strength of the fronts is assessed by
estimating the magnitude of nonlinear terms leading to the asymmetry of density gradients at the slope when
waves travelling in a fluid of uniform buoyancy frequency are at nonnormal, or oblique, incidence to the slope.
Strong nonlinearities, indicating fronts, are found for both supercritical (b . a) and subcritical (b , a) waves
near critical slopes where the inclination of the boundary to the horizontal, a, matches that of the wave group
velocity b. They are also found for subcritical waves when b is near sin21[(sina)/2]. Fronts become weaker as
the angle at which the wave approaches the slope, the azimuth or incident angle, increases from zero (i.e., when
waves are nonnormal), but not significantly so until this angle exceeds 308.

1. Introduction

There is much interest in the processes that lead to
mixing at, or near, the sloping boundaries of oceans and
lakes. This is prompted by observations of enhanced
rates of dissipation near the Mid-Atlantic Ridge bound-
ing the eastern side of the Brazil Basin (Polzin et al.
1997), near seamounts (Toole et al. 1997; Eriksen.
1998), and near lake or reservoir boundaries (Imberger
and Ivey 1991, 1993), as well as by the higher rates of
vertical diffusion of tracers that are found in tracer stud-
ies near slopes (Ledwell and Watson 1991; Ledwell and
Hickey 1995; Ledwell and Bratkovich 1995). It is
known that internal waves reflecting from sloping
boundaries may produce reflected waves that are steeper,
produce greater shear, and have smaller characteristic
Richardson numbers than the incident waves (Eriksen
1982, 1985), particularly when the slope of the bound-
ary is near-critical, that is, when sina is approximately
equal to s/N (5sinb), where a is the inclination of the
sloping boundary to the horizontal, s is the wave fre-
quency, and N is the buoyancy frequency. A character-
istic of waves reflecting from sloping boundaries—at
least when they approach ‘‘normally,’’ that is, their
group velocity vector lies in a vertical plane that inter-
sects the sloping boundary along a line of greatest
slope—is that they produce regions of enhanced density
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gradient, or fronts, which move up the slope with the
advancing wave phase. Such fronts produced by waves
at normal incidence have been observed in laboratory
experiments (Thorpe 1987), and they have been studied
analytically (Thorpe 1992) and are found in numerical
simulations (Slinn and Riley 1998). They are often as-
sociated with the onset of turbulence and mixing typical
of that in gravity currents (Ivey and Nokes 1989; Thorpe
et al. 1991; Taylor 1993; Slinn and Riley 1998).

While fronts are also evident in measurements within
a few meters of oceanic (Thorpe 1992) and lake (Lem-
min et al. 1998) slopes, the orientation (relative to the
boundary contours) of the incident waves causing them
has not been observed. Recent laboratory experiments
(Dunkerton et al. 1998) with azimuth angles of about
188 have, however, demonstrated that fronts can occur
when internal waves approach a slope nonnormally, or
‘‘obliquely.’’ The purpose of this note is to examine
analytically what effect nonnormal incidence may have
on the steepening of waves at sloping boundaries and,
in particular, to see whether steeper waves may occur
at the boundary if reflection is nonnormal but when the
characteristics of the incident waves (i.e., b and the
wave steepness) are unchanged. The effects of wave
breaking and alongslope current generation at the slope
(Thorpe 1999a) are ignored.

2. Analysis

a. The steepening of waves on the sloping boundary

The analytical method follows that described by
Thorpe (1987, 1992). Rotation is neglected ( f 5 0).
Nonlinear wave components with frequency 2s and
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FIG. 1. (a) A diagram defining the notation and showing a constant phase plane of an internal wave and its intersection with an inclined
plane forming a boundary to the fluid. The constant phase plane is inclined at an angle b to the horizontal and meets the plane boundary
ABGC (stippled), inclined at angle a to the horizontal, in the line AB. The line AE, marked cg, is in the direction of the group velocity.
(b) A diagram showing how, as the incident angle u increases, the internal wave group velocity vector cg eventually becomes parallel to the
sloping boundary ABC along the line AB. Shown are (i), u 5 0; (ii), u 5 p/2; and (iii), the eventual limiting direction. The line marked u
5 0 is parallel to CD and is the projection of EP onto the horizontal plane BCD.

wavenumber components (2k, 2l) in the x and y direc-
tions, respectively up and along the plane slope, are
generated by the interaction of an incident wave with
wavenumber (k, l, mI) (with the z direction upward,
normal to the slope) and frequency (s) and a (first order)
reflected wave with components (k, l, mR) and conserved
frequency s. [An exact solution is available for the in-
cident wave. The interactions considered here are
‘‘sum’’ interactions; the ‘‘difference’’ interactions gen-
erate steady currents and are discussed by Thorpe
(1997).] The wavenumbers normal to the slope are mI

5 2(k/g)(saca 2 rsbcb) and mR 5 2(k/g)(saca 1
rsbcb), which satisfy the dispersion relation s 2 5
N 2 , where sa 5 sina, cb 5 cosb, etc., g 5 2 ,2 2 2s s sb b a

and r 5 [1 1 l2g/(k2 )]1/2. The velocity and density2sb

perturbations of the incident and first-order reflected
waves are given in appendix B (from Thorpe 1997).
Correct to first order the density on the slope at z 5 0
is r0[1 2 (N 2sa/g)x] 1 r1, where

r1 5 2(2r0aksasbcb N2/gsg) sin(kx 1 ly 2 st),

5 r0sq1 sin(kx 1 ly 2 st), (1)

say, and ak 5 2ssg2/[ksbcb(sacb 2 rsbca)2], where s
is the steepness of the incident wave, an ordering pa-
rameter, and r0 is a reference density.

Second-order terms are found by reiteration, using
the first-order terms to estimate product terms in the
equations of motion and density conservation, and then
solving these subject to the condition that the velocity
normal to the slope is zero on the slope at z 5 0, as
described in appendix C. The second-order density per-
turbation, periodic in x, y, and t, is

r2 5 r0s2q2 sin[2(kx 1 ly 2 st)], (2)

at z 5 0, where q2 is a function of a, b, and u.
Using (1) and (2), the total density perturbation on

the sloping boundary, which varies periodically in x, y

and t, is r 5 r0[sq1 sin(kx 1 ly 2 st) 1 s2q2 sin[2(kx
1 ly 2 st)]. Values of q1 and q2 are found numerically
from the analytical solutions. The term q2 is ,0 for the
supercritical waves with a/b , 1. The contribution of
the second-order terms with q2 , 0 for a near b results
in an asymmetry in the density, with a relatively steep
fall in density at phase kx 1 ly 2 st 5 2np, (n 5 1,
2, 3, . . .), and with gradual recovery in between. Cor-
respondingly at fixed times t, an enhanced density rise
is found at positions kx 1 ly 5 2np 1 st, and this
advances with the wave phase speed as t increases. For
subcritical waves with 1 , a/b , 2, q2 . 0, and the
second-order terms again result in an enhanced rise in
density, but now at kx 1 ly 2 st 5 (2n 1 1)p, (n 5
1, 2, 3, . . .).

b. Constant phase lines on the slope

The orientation of fronts on the sloping boundary is
given by the lines of constant wave phase. Figure 1
shows how a constant phase surface of an incident wave,
inclined at angle b to the horizontal, meets a plane
boundary inclined at angle a to the horizontal. The in-
tersection is along a line AB. The wave group velocity
is at right angles to the phase velocity (Phillips 1966).
The latter is normal to the surface of constant phase, so
therefore the group velocity lies in the constant phase
plane and is in a direction, AE down its steepest slope.
The line AB is a constant phase line on the slope for
both the incident and reflected wave. (AB therefore also
lies in a constant phase plane of the reflected wave that,
since the wave frequency and therefore the inclination
b are conserved, is also inclined at angle b to the hor-
izontal.) It is shown by simple geometry in appendix A
that AB makes an angle f with line AC of greatest
slope on the boundary given by

f 5 tan21(cosa cotu 1 cotb cscu sina), (3)
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FIG. 2. The variation of the ratio R of second- and first-order density terms with a/b for a 5 58 at various incident angles u indicated on
the graph, for (a) supercritical waves, 0.5 , a/b , 1.0, and (b) with 2R, subcritical waves, 1.0 , a/b , 2.0.

where u is the angle that BE, the line of intersection of
the constant phase plane and a horizontal plane, makes
with BC a horizontal line in the plane of the slope. The
angle u is also the angle between the projection of the
group velocity (direction AE) onto the horizontal (DE)
and the projection of a line of greatest slope (e.g., AC)
onto the horizontal (direction CD). The angle u is there-
fore the angle of incidence of the internal wave to the
slope measured in a horizontal plane. From (3), f 5
p/2 when the angle of incidence, u, 5 0. At u 5 p/2,
f 5 tan21(sina cotb), but, when f 5 0, it is found
that

u 5 2cos21(tana cotb). (4)

There are no solutions to (4) if the waves are sub-
critical; that is, when a . b. In that case the direction
of the wave group velocity eventually becomes tangen-
tial to the slope as u increases, and at larger u there are
no waves approaching the slope. This is illustrated in
Fig. 1b. The slope is again the plane ABC. The incident
angle, u, is that between the directions CD and the pro-
jection of the group velocity vector onto the horizontal
plane, BCD. Three cases are illustrated: (i) u 5 0, when
EB represents the group velocity vector. As u increases,
the vector rotates about the vertical line BG. (ii) At u
5 p/2 it becomes FB, where BC is its projection onto
the horizontal. As u increases further, the vector (keep-
ing b constant) eventually lies parallel to the slope along
the line AB at u 5 uc, say (case iii). Further increase
in u places the vector below the sloping boundary; no
waves can exist for such u. The limiting value is uc 5
p/2 1 angle CBD, and since sin(CBD) 5 CD/BD 5
(AD cota)/(AD cotb), so

cosuc 5 2tanb cota. (5)

Relations (3)–(5) are used in section 3.

3. Results

The intensity, or strength, of the density ‘‘fronts’’
depends on the relative steepening produced by the sec-
ond-order terms and hence on the ratio R 5 q2/q1. This
determines both the asymmetry of spatial gradients,
found by differentiating r with respect to x or y, and
the temporal gradients found by time differentiation,
both of which introduce a multiplicative factor 2 to the
ratio of the second to the first-order contributions. The
variation of R with a/b at a 5 58 for various incident
angles u is shown in Fig. 2a, for 0.5 , a/b , 1, while
the variation of 2R (.0) is shown in Fig. 2b for 1 ,
a/b , 2. Here |R| decreases as u increases from 0 to
908. Large values are found near the critical slope where
a 5 b, evidence of the dominance of nonlinear terms
and the formation of fronts. Values of |R| greater than
10, those for which the size of the second-order terms
would match the first-order terms for an incident wave
steepness of s 5 0.1, are found in 0.84 , a/b , 1.28
when u 5 08, but only in the narrower range 0.9 , a/b
, 1.12 when u 5 608.

Large values of |R| are also evident in Fig. 2b as a/b
approaches a value of near 2. These are a consequence
of a singularity of the interaction component with wave-
number (2k, 2l, m2) and frequency 2s. The formula for
m2 is given in appendix C, (C4). This forced component
corresponds to a wave inclined at angle sin21(2s/N) to
the horizontal plane, which has the same inclination as
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FIG. 3. The variation of the ratio R with u when a 5 58 and 208 and when (a) waves are supercritical with a/b 5 0.9 and (b) waves are
subcritical with a/b 5 1.1.

the slope. It is therefore ‘‘critical,’’ with m2 tending to
infinity (zero wavenumber), when a 5 sin21(2s/N) or,
since s/N 5 sinb, when sina/sinb 5 2. The angle a
5 58 in Fig. 2, and so these critical conditions occur
when b 5 2.4988, or a/b 5 2.002. It is particularly
noticable at the larger values of u that the width of the
range in a/b for which |R| exceeds some given value
is smaller at a/b 5 2 than at a/b 5 1; that is, at fixed
b, the range of boundary slopes, a, which produce com-
parable |R| is greater near a 5 b than near a 5 2b. It
may be expected that when higher order terms are in-
cluded, new singularities will occur and, at the nth order,
will be found when sina/sinb 5 n.

Figure 3 shows how R varies with u at fixed values
of a/b. For supercritical waves (Fig. 3a), R decreases
with u, tending to zero when u is near 1508. The ori-
entation of the regions of enhanced density is deter-
mined by the intersection of the constant phase planes
in the internal wave field and the sloping boundary or
by the angle f defined by (3). From (2) it is found that
the angle f is zero when u 5 154.28 (or 153.18) for a
5 58 (or 208) and b 5 5.558 (22.28), respectively, cor-
responding to the curves in Fig. 3a. These angles u are
where the front, if one existed, would be directly up
and down the slope but, as seen in Fig. 3a, is where R
5 0, so there is no steepening or tendency to form a
front. Here R increases as u increases between 1608 and
1808 (the limit in which the waves are propagating at
normal incidence down the slope) and here the a 5 58
and a 5 208 curves are almost identical.

A similar trend of |R| is found for subcritical waves
(Fig. 3b) as u increases from 08 to about 1508 where |R|
again tends to zero. This is where the incident subcritical
waves become parallel to the boundary at u 5 uc. Using
(5) it is found that at a 5 58(or 208) and b 5 4.558
(18.28), uc 5 155.38 (or 154.58), respectively. No waves
exist for greater u.

4. Conclusions

The principal conclusions are that

1) when the ratio a/b of the slope angle a to the wave
angle b is kept constant, and the wave steepness s
is also unchanged, the fronts formed by the process
of internal wave reflection from a plane boundary
will become weaker as the angle of wave incidence,
u, defined in section 2a, increases from zero, but not
significantly so until u exceeds about 308 (see Fig.
3). Fronts will strengthen as u approaches 1808 (Fig.
3). The trends are not very sensitive to the choice
of the inclination of the boundary a if less than about
208.

2) Fronts become stronger as a approaches the critical
slope b. Fronts are expected to form over a broader
range of values a/b as u approaches 08 or 1808 (Fig.
2).

3) Subcritical waves with wave angle b near
sin21[(sina)/n], n 5 2, 3, . . . , may also form fronts,
although over ranges of a/b which probably become
relatively narrower as n increases. This is a conse-
quence of the interaction between the incident and
reflected components generating harmonics, ns,
which themselves become critical (e.g., see Fig. 2b).

The conclusions are subject to reservations concern-
ing the neglect of higher-order terms in wave steepness
s and the assumptions inherent in the methodology, par-
ticularly that the second-order terms are significantly
less than the first, clearly invalid when sR is large. The
calculations provide at best a strong indicator of the
relative conditions favorable for the formation of fronts,
which laboratory experiments have shown do form
when u 5 08 (Thorpe 1987) and 188 (Dunkerton et al.
1998). Further study, perhaps by further laboratory work
and numerical studies, is warranted.

The solutions for the density perturbation may be
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periodic in z, suggesting that high density gradients form
above z 5 0. While this may be so in the solutions, in
reality the tendency for internal waves to arrive irreg-
ularly or in groups (Thorpe 1999b) means that the in-
cident and reflected components overlap in space only
close to z 5 0, and interactions at greater distance may
be less significant.

The formation of such fronts in the ocean will be
affected by the coexistance of many internal waves with
a broad spectrum of frequencies, and hence a wide range
of b, and coming from a range of directions, u. Fronts
are likely to be formed only by the largest waves present
locally at a given time, and those with near-critical fre-
quencies traveling almost normal (i.e., within 6308) to
the boundary. The formation of fronts, and attendant
wave breaking and mixing, perhaps with the generation
of alongslope currents (Thorpe 1999a), will change the
density and velocity fields through which higher wave-
number waves travel, producing refraction and caustics
and promoting conditions akin to surf on the sea shore.
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APPENDIX A

The Orientation of Constant Phase Lines

Figure 1 shows a constant phase plane of the incident
internal wave and its line of intersection, AB, with the
sloping boundary. AC is a line of greatest slope on the
boundary that makes an angle a with the horizontal
plane BCD, where D is vertically below A. The constant
phase surface makes an angle AED 5 b with the hor-
izontal plane, and the line AB makes an angle f with
AC. This angle f defines the orientation of constant
wave phase lines on the slope. The angle u defines the
inclination of the incident wave to the slope. When u
is zero, the wave is normally incident and the incident
and reflected wave field becomes two-dimensional.
When u 5 p/2, the incident wave travels parallel to the
slope.

The angle f can be found in terms of other angles
as follows. Since angle EDA 5 p/2, ED 5 AD cotb
and since angle EFD 5 u, FD 5 AD cotb cscu. Since
angle ADC 5 p/2, CD 5 AD cota. Since FG is parallel
and equal to DC, BG 5 FG cotu 5 AD cota cotu. Hence
tanf 5 BC/AC 5 (BG 1 GC)/AD csca 5 (BG 1 FD)/
AD] sina 5 (cota cotu 1 cotb cscu) sina 5 cosa cotu
1 cotb cscu sina.

APPENDIX B

First-Order Solution

Exact wave solutions of the equations of motion and
density conservation can be found in a fluid in a mean
state of rest and with uniform buoyancy frequency, N.

The equations of motion in a tilted frame of reference
are given by Thorpe (1997, appendix a). The solutions
for the three (u, y , w) components of velocity in the x,
y, z frame of reference and for the density perturbation
r for the incident and reflected waves, which satisfy the
boundary condition wI 1 wR 5 0 (subscripts I and R
stand for the incident and reflected wave, respectively)
at the sloping plane z 5 0, are uI 5 (ak/g)(sbcb 2
rs a c a )c I , y I 5 (alc b /s b )c I , w I 5 2akrc I , r I 5
2(aksbN 2r0/gsg)(sacb 2 rsbca)sI; uR 5 (ak/g)(sbcb 1
rs a c a )c R , y R 5 (alc b /s b )c R , w R 5 akrc R , r R 5
2(aksbN 2rO/gsg)(sacb 1 rsbca)sR (Thorpe 1997).

Here sI 5 sin(kx 1 ly 1 mIz 2 st), cR 5 cos(kx 1
ly 1 mRz 2 st), etc., and ak 5 2ssg2/[ksbcb(sacb 2
rsbca)2] where s is the incident wave steepness Am; A
is the amplitude of the incident internal wave with ver-
tical wavenumber m 5 kIsa 1 mIca. The steepness is
a crucial measure of the waves, isopycnals being vertical
in the internal wave field if s 5 1 (Thorpe 1987). The
first-order density perturbation on the slope is (rI 1 rR)
at z 5 0, and is given by (1).

APPENDIX C

Second-Order Solution

The equations for the second-order velocity (u2, y 2,
w2) and density r2 components can be reduced to two
equations for w2 and r2 by elimination of u2 and y 2:

3 2 2[] /]t ]z 1 N s (s ]/]z 2 c ]/]x)]ra a a 2

22 (N r /g)]/]t[s ]/]x 1 c ]/]z]w0 a a 2

2 25 2] I /]t]z 1 (N r s /g)(]I /]x 2 ]I /]z), (C1a)4 0 a 3 1

2 2 2 2 2 2 2] ¹ w /]t]x 1 (g/r )]/]x[c (] /]x 1 ] /]y ) 2 s ] /]x]z]r2 0 a a 2

2 2 2 25 2(] /]x 1 ] /]y )(]I /]x 2 ]I /]z)3 1

21 ] /]y]z(]I /]x 2 ]I /]y),2 1 (C1b)

where ¹2 5 ]2/]x2 1 ]2/]y2 1 ]2/]z2, and I1 5 FI(uR)
1 FR(uI) with the operator FI 5 uI]/]x 1 y I]/]y 1
wI]/]z; FR is similarly defined, and, I2, I3, and I4 are
found by substituting the incident and reflected com-
ponents y, w, and p, respectively, defined in appendix
B. Since the incident and reflected wave solutions are
exact, all the I, I and R, R product terms vanish iden-
tically leaving only the I, R products. The terms in r2

in (C1a) and (C1b) are eliminated to give an equation
for w2 in terms of the products of derivatives of the
first-order terms. This has the solution

w2 5 W1{cos[2kx 1 2ly 1 (mI 1 mR)z 2 2st]

2 cos[2kx 1 2ly 1 m2z 2 2st]}, (C2)

which satisfies w2 5 0 at z 5 0, where W1 is a function
of a, b, and u and is proportional to s2(s/k). Here

m2 5 2 2 2 2 2 1/222k[s c 1 {(1 2 4s )[4s 1 (l/k) (4s 2 s )]} ]a a b b b a

2 24 (4s 2 s ).b a (C3)
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The solution w2 is subsituted into (C1b) to give an
equation for r2. This is integrated to give second-order
density terms periodic in x, y and t: 2r2 5 P1 sin[2kx
1 2ly 1 (mI 1 mR)z 2 2st] 1 P2 sin[2kx 1 2ly 1
m2z 2 2st], where P1 and P2 are easily calculated, but
long, analytical functions of a, b, and u, and are pro-
portional to s2r0. There are also second-order density
terms independent of x,y and t, but which are sinusoidal
in z (Thorpe 1987); however, these do not contribute to
the density variations along the slope with which we
are concerned here. The x,y, t periodic second-order
density term can be written r2 5 r0s2q2 sin[2(kx 1 ly
2 st)] at z 5 0.
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