
SEPTEMBER 1999 2457N O T E S A N D C O R R E S P O N D E N C E

q 1999 American Meteorological Society

On Discontinuities in the Sverdrup Interior

TOSHIHIRO SAKAMOTO

Department of Earth and Planetary Physics, Graduate School of Science, The University of Tokyo, Tokyo, Japan

14 July 1998 and 2 February 1999

ABSTRACT

A formulation of Sverdrup dynamics is presented based on a reduced-gravity model in place of the standard
approach using the vorticity equation. The integral conservation law of momentum is used to investigate solutions
that may include discontinuities. A surfacing line is interpreted as a ‘‘shock front’’ across which the jump
condition derived from this conservation law is satisfied.

1. Introduction

A reduced-gravity model is often used to describe
the large-scale wind-driven ocean circulation. Consider
a square basin on a b plane ranging 0 # x # 1 and
20.5 # y # 0.5 in nondimensional units. The gov-
erning equations for a steady, planetary geostrophic
flow in the oceanic interior can be written in dimen-
sionless form as

x2 fc 5 2hh 1 lt , (1)x x

2 fc 5 2hh , (2)y y

where h is the layer thickness, c is the transport stream-
function, f 5 1 1 by is the Coriolis parameter, t x 5
sinpy is the zonal wind forcing modeling the subtropics,
and b and l are nondimensional parameters. The bound-
ary condition is assumed to be

c 5 0, h 5 he 5 const at x 5 1. (3)

The standard procedure for solving this problem is to
make the vorticity equation (the Sverdrup relation) using
(1)–(2) and to integrate it afterward with respect to x
subject to (3). The result is

l
xc 5 c [ (1 2 x)t , (4)s yb

2 x2 f t
2 2 2h 5 h [ h 1 (1 2 x) (5)s e 1 2b f

y

(e.g., Welander 1966).
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Parsons (1969) and later Veronis (1973) and Huang
and Flierl (1987) extended the above basic model to the
case when layer outcropping occurs. Friction plays a
crucial role in their models because they shed light on
the separation of the western boundary current so that
the governing equations are

x2 fc 5 2hh 1 ec /h 1 lt , (6)x x y

2 fc 5 2hh 2 ec /h, (7)y y x

where e (K1) is the dimensionless friction coefficient.
They determined the position of the surfacing line by
matching the Sverdrup interior (4)–(5) with the fric-
tional interior layer, which is assumed to be created in
relation to outcropping. Instead of an explicit form of
the solution for the interior layer, they introduced a sim-
ple relation, the so-called (semi)geostrophic condition,
which represents the leading-order balance in the in-
terior layer. This is the reason why the expression for
the surfacing line is independent of the friction coeffi-
cient. It seems paradoxical, however, that the assump-
tion of the existence of the interior layer, however thin
it may be, is responsible to the derivation leading to the
geostrophic condition. Obviously, the same procedure
no longer works for the inviscid equations (1)–(2). Is
the surfacing line found by Parsons an intrinsic property
of the latter equations?

The potential difficulty arising from Parsons’ ap-
proach may stem from the use of the differential equa-
tions (6)–(7) to treat an outcrop that may give rise to
jump discontinuities in the dependent variables. How-
ever, such discontinuous solutions are possible as ‘‘weak
solutions’’ of the hyperbolic system (1)–(2) provided
that a basic integral conservation law is employed ap-
propriately. In this short note, we focus on a first integral
of motion in order to outline Sverdrup dynamics when
discontinuities are permitted. Of particular interest is
another physical interpretation of the surfacing line from
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FIG. 1. Contours of G for (a) l 5 0.13, he 5 0.785 and (b) l 5
0.53, he 5 0.51 (b 5 0.55 in common). Also shown is the asymptote
y 5 0 denoted by the dotted line. The region of negative values is
shaded.

the standpoint of the inviscid/hyperbolic problem. It
should be noted that integral conservation laws have not
been discussed extensively in large-scale ocean dynam-
ics. In fact, the major theories on the wind-driven cir-
culation are based on the vorticity equation. This is
probably because one, except for Dewar (1991), usually
assumes the Sverdrup interior to be continuous.

2. The integral conservation of momentum

The momentum equations (1) and (2) constitute a
hyperbolic system and are already in characteristic form
with the characteristics y 5 const and x 5 const. In
particular, (1) can be rewritten as

2d h
x2 fc 5 lt on y 5 const. (8)1 2dx 2

This equation can be integrated with respect to x from
the eastern boundary to give

2 2h hex2 fc 1 l(1 2 x)t 5 . (9)
2 2

This is a first integral of motion, the integral of mo-
mentum in the x direction, for the problem under con-
sideration. If (8) is integrated from x1 to x2 (0 , x1 #
x2 # 1 for definiteness), we have

x5x22h
x2 fc 5 l(x 2 x )t . (10)2 1[ ]2 x5x1

This relation may be regarded as the integral conser-
vation law of momentum in the x direction. We expect
that (9) and (10) remain valid even when discontinuities
occur in the interior; for an outcrop region, however, a
special treatment is needed as will be discussed later.

Here, the momentum flux in (10) is denoted by G:
2h

G [ 2 fc, (11)
2

which may be called tentatively the geostrophic func-
tion. From the integral (9), G can also be written as

2he xG 5 2 l(1 2 x)t (12)
2

so that G is determined provided that the wind forcing
and the boundary values of h are prescribed. Figure 1
shows the distribution of G for two pairs of (l, he). It
is found that negative values of G are seen when /l2he

becomes small. If we set G 5 gc [ const, the isolines
of G are represented in parametric form as

2h 1ex 5 X(y) 5 1 2 2 g . (13)c x1 22 lt

We note that y 5 0 is also an isoline of G as confirmed
from (9), although (13) is invalid there. Actually, the
two straight lines x 5 1 and y 5 0 are the asymptotes
of (13) on which G 5 /2 (see Fig. 1).2he

In the continuously differentiable part of the basin,
the familiar Sverdrup interior can be reproduced from
the integral (9) straightforwardly. Differentiating (9)
with respect to y leads to

hhy 2 fcy 2 bc 5 2l(1 2 x) .xt y (14)

Comparing this with (2), we have

l
xc 5 (1 2 x)t , (15)yb
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which is indeed the Sverdrup function cs given in (4).
The corresponding expression for h is immediately ob-
tained again from (9) with (15) as

2 fl
2 2 x xh 5 h 2 2l(1 2 x)t 1 (1 2 x)t (16)e yb

and hence proves to be the same as hs in (5).

3. The possibility of discontinuities

From the definition (11) with (13), we have the con-
servation law of G:

dG
5 0 on x 5 X(y), (17)

dy

or equivalently,

h[hy 1 X9(y)hx] 2 f [cy 1 X9(y)cx] 2 bc 5 0, (18)

where
x2 th yeX9(y) 5 2 g (19)c x 21 22 l(t )

corresponds to the characteristic speed. Equation (17)
is formally in characteristic form in the sense that the
characteristic x 5 X(y) carries information from a lat-
itude circle on which boundary values must be pre-
scribed [cf. (8)]. Using (19) and (13), the Sverdrup func-
tion (15) may be represented as

l
xc 5 X9(y)t . (20)

b

Substitution of (20) into (18) yields

X9(y)(hhx 2 fcx 2 ltx) 1 (hhy 2 fcy) 5 0, (21)

which is the linear combination of the original equations
(1)–(2); the multiplier (X9, 1) is obviously the direction
vector for the trajectory x 5 X(y). It turns out, therefore,
that the conservation equation (17) is consistent with
the original system (1)–(2) under the Sverdrup con-
straint (15).

The characteristic equation (17) suggests an important
hyperbolic property of the Sverdrup interior: Discon-
tinuous derivatives of G and hence discontinuities in h
and c are possible on the characteristic x 5 X(y) (e.g.,
Whitham 1974, chap. 5). This means that, when dis-
continuities occur at a point x 5 X1 (yi) along a particular
initial latitude circle y 5 yi, information on those dis-
continuities propagates along the characteristic curve x
5 X1(y). From the integral conservation law (10), the
required ‘‘jump condition’’ across this characteristic is
found to be

5 0,X (y)11[G]
X (y)21

(22)

where y is treated as a parameter. Keeping this idea in
mind, we can include an outcrop in the Sverdrup interior
straightforwardly as will be shown in the next section.

It should be pointed out, however, that discontinuities

in the flow must be associated with a delta-function
structure of the wind forcing in the 1.5-layer model.
Here, we avoid this difficulty by implicitly assuming
that compensating transport occurs in the lower layer;
a similar analysis of the 2-layer equations is presented
in section 5.

4. Inclusion of an outcrop

Since over the outcrop h 5 c 5 0 indicating that gc

5 0 in (13), the surfacing line must be the zero contour
of G:

2hex 5 X (y) [ 1 2 (23)0 x2lt

(see Fig. 1). Similarly, a surfacing line for a zonal wind
of the general form t x(x, y) is represented implicitly by

1 2hext (x, y) dx 5 . (24)E 2lX (y)0

From this expression, we can confirm some well-known
qualitative features of a surfacing line; that is, it shifts
eastward as /l decreases and does not exist where t x2he

# 0. We note that the equation for the surfacing line
may be derived from the zonal momentum equation (1).

Since there exists only one surfacing line over the
basin (see Fig. 1) and since h ± 0 at the eastern bound-
ary, the outcrop lies west of the surfacing line. There-
fore, we have the following useful rule for determining
the location of an outcrop geometrically: For the hy-
perbolic system (1)–(2), outcropping may occur where
G # 0. In the domain G # 0, the values of h, c, and
G must be replaced by 0. Accordingly, the double-val-
ued parts of the solutions for h and c are replaced by
corresponding jump discontinuities. These discontinu-
ities are acceptable for the reason mentioned in the pre-
ceding section. In this way, we may avoid the break-
down of the original equations (1)–(2) over the outcrop.
In fact, using (15), (16), and (23), we can verify that

2 2h 0s 2 fc 2 2 f · 0 5 0 on x 5 X (y), (25)s 01 2 1 22 2

or concisely

5 0.X (y)10[G]
X (y)20

(26)

That is, the jump condition (22) is satisfied across the
surfacing line. Now the formal correspondence between
the present analysis and the matching procedure devel-
oped by Parsons (1969) becomes clear.

Finally, to get a physically consistent solution, the
constant he may be determined from the prescribed total
volume (Parsons 1969). In Fig. 1, the values of he have
been chosen so that the total volume is unity.

Therefore, we are successful in reproducing the sur-
facing line in Parsons’ model using the inviscid equa-
tions (1)–(2) subject to (3) without further approxima-
tions. The integral conservation law of momentum (10)
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is employed in order to take into account discontinuities
in the solution. We have shown that the surfacing line
must lie on one of the G contours and appears as a
‘‘shock front’’ across which the jump condition (26) is
satisfied.

5. The 2-layer model

The 2-layer planetary geostrophic equations corre-
sponding to (1)–(2) are

xh p 2 fc 5 lt , (27)1 x 1x

h p 2 fc 5 0, (28)1 y 1y

h (p 2 h ) 2 fc 5 0, (29)2 1 x 2x

h (p 2 h ) 2 fc 5 0, (30)2 1 y 2y

where p is the depth-independent pressure and an ob-
vious notation is used for the quantities for each layer.
The boundary condition is

c 5 c 5 0, p 5 p 5 const,1 2 e

h 5 h 5 const at x 5 1. (31)1 e

With the moving lower layer, the Sverdrup function (4)
means the barotropic transport, that is,

c1 1 c2 5 cs, (32)

so that the smoothness of the Ekman pumping is guar-
anteed.

Adding the upper-layer equations, (27) and (28), to
the lower-layer equations, (29) and (30), gives

xH(p 2 h ) 1 h h 2 fc 5 lt , (33)1 x 1 1x sx

H(p 2 h ) 1 h h 2 fc 5 0, (34)1 y 1 1y sy

respectively, where H is the total depth. These equations
are already in characteristic form, as in the case of the
reduced-gravity equations, leading to the following in-
tegral conservation laws of momentum:

l f
x5x x x2[P ] 5 (x 2 x ) t 2 t , (35)2 x5x 2 1 y1 1 2H b

y5y2
l f

y5y x x2[P ] 5 2 (1 2 x) t 2 t , (36)2 y5y y1 [ ]H b y5y1

where

2h1P [ p 2 h 1 . (37)2 1 2H

In the nonoutcrop region, px and py may be eliminated
from (27) and (28) using (33) and (34), respectively.
Integrating the resulting equations, we have

x2 h h2 1x5x x2[G ] 5 lt 2 fc dx, (38)2 x5x E sx1 1 2H Hx1

y2 h1y5y2[G ] 5 2bc 2 fc dy, (39)2 y5y E 1 sy1 1 2Hy1

where

2 3h h1 1G [ 2 2 fc , (40)2 12 3H

which is the 2-layer analog of G in (11). Again, we
assume that these integral conservation laws hold even
for discontinuous solutions. If it is also assumed that h1

and c1 are at most as singular as the step function, the
above integral constraints yield the following jump con-
ditions:

2h1[p] 5 h 2 , (41)1[ ]2H

2 3h h1 1f [c ] 5 2 . (42)1 [ ]2 3H

An outcrop may be included in the present 2-layer sys-
tem by defining a surfacing line as a front across which
(42) is satisfied.

From the definition (40) with (38), we have the con-
servation law of G2:

dG2 5 0 on x 5 X(y), (43)
dy

where X(y) satisfies

X(y)l f
x x xt 2 t h dx 1 l[1 2 X(y)]t 5 g [ const.y E 1 c1 2H b 1

(44)

Hence, when H is finite, characteristic curves for G2

cannot always be determined in advance because (44)
depends on the solution h1.

As a simple example, we consider the case when the
lower layer is assumed to be in no-motion unless oth-
erwise it outcrops. That is, the solution is given by

l
xc 5 c [ (1 2 x)t , (45)1 s b

f
2 2 2 x xh 5 h [ h 2 2l t 2 t (1 2 x) (46)1 s e y1 2b

in the compensated region [cf. (4) and (5)] and

c1 5 0, h1 5 0 (47)

in the outcrop. We must replace the double-valued part
of this solution by a suitable front, that is, a surfacing
line x 5 X0(y). Applying (45)–(47) to the jump con-
dition (42), we have
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FIG. 2. Surfacing lines in the two-layer model for different values
of H when the lower layer is perfectly compensated: (a) H 5 20, (b)
H 5 10, (c) H 5 5, and (d) H 5 3.

2 3h hs s2 2 fc 5 0 on x 5 X (y), (48)s 02 3H

hence the surfacing line is represented by
3/2

2h 1 fe x 2 x x2 l(1 2 x)t 2 h 2 2l t 2 t (1 2 x)e y1 2[ ]2 3H b

5 0. (49)

Figure 2 illustrates some surfacing lines for different
values of H calculated numerically using (49). The value
of he for each case is chosen so that the total volume
of the upper layer is unity under the assumption that
the outcrop lies west of the surfacing line, as before.

For H 5 20, the configuration of the surfacing line is
in good qualitative agreement with that for the reduced-
gravity model as expected. As H decreases, the outcrop
shifts southward and can even be detached from the
northern boundary. Kamenkovich and Reznik (1972)
carried out perturbation analysis of 2-layer planetary
geostrophic equations in order to obtain asymptotic so-
lutions in powers of 1/H. They correctly predicted the
northwestward deflection of the separated boundary cur-
rent near the northern boundary. We note that (49) is
exact for any H provided that the submerged portion of
the lower layer is completely compensated, although
compensation may be imperfect in reality when H is
small.
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