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ABSTRACT

A stochastic theory of tracer transport in compressible turbulence has recently been developed and then applied
to the ocean case because stratified flow in isopycnal coordinates is analogous to compressible flow with the
isopycnal layer thickness playing the role of density. The results generalize the parameterization of Gent and
McWilliams in the sense that the eddy-induced transport velocity (i.e., the bolus velocity, which is directly
related to the thickness–velocity correlation) is given by downgradient Fickian diffusion of thickness with a
general mixing tensor K. This result is however dependent on an imprecise postulate relating the Lagrangian to
the Eulerian mean velocities. In this paper the authors show that this postulate is unnecessary in a certain flow
regime. This regime exists whenever the effect of thickness–velocity correlations dominates over the effect of
relative vorticity–velocity correlations. The primary example is planetary geostrophic turbulence, but it may
also exist in homogeneous quasigeostrophic turbulence. The bolus velocity is modified and becomes equivalent
to upgradient diffusion of potential vorticity along isopycnals with the same mixing tensor K. This changes the
conceptual basis of the bolus velocity parameterization of Gent and McWilliams at least in this regime, but
practically, the effective change is of rather small magnitude.

1. Introduction

The bolus velocity, defined in isopycnal coordinates as

z9u9̃r
u* 5 , (1)

z̃r

where u is the horizontal velocity, zr is the isopycnal
thickness, and the tilde represents an average along
an isopycnal surface, plays an important role in tur-
bulent tracer transport. It is important because average
tracer quantities are advected not just by the Eulerian
mean velocity ũ but by the total transport velocity
given by

û 5 ũ 1 u*.

[We note, however, that only that part of u* associated
with the divergent component of thickness flux is ef-
fective in tracer transport—see Greatbatch (1998) and
the comments below regarding gauge fields.] This was
originally realized in the atmospheric community [for
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a review, see Andrews et al. (1987)] but not highlighted
in the ocean case until Gent et al. (1995), when the idea
was introduced in connection with the mesoscale tur-
bulence parameterization of Gent and McWilliams
(1990, henceforth referred to as GM90).

The bolus velocity is a turbulence correlation and
therefore needs to be specified by some type of turbu-
lence theory. In the absence of a theory, GM90 have
parameterized it as

1
u* 5 2 ] (k= z̃), (2)r rz̃r

where =r is the horizontal gradient in isopycnal coor-
dinates and k is a scalar diffusivity coefficient. In the
case that k is constant, or at least independent of r, this
amounts to simple Fickian diffusion of thickness along
isopycnal surfaces, which is a plausible choice from the
point of view of baroclinic instability. To go beyond
this one needs some sort of turbulence theory; the sim-
plest type is embodied in a stochastic model of turbu-
lence (Monin and Yaglom 1971). Such a model is behind
simple one-point or mixing-length theories, which are
still important in practice and which form the foundation
for more elaborate turbulence closures. A stochastic
model is of interest because it makes minimal assump-
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tions about the nature of the turbulence: It only assumes
that turbulence exists and that it is random and Mar-
kovian, that is, that turbulence statistics are independent
of its past history. These assumptions are expected to
apply in fluid turbulence provided time averages are
taken over timescales much longer than the Lagrangian
integral timescale and the turbulence is not strongly in-
homogeneous. Such minimal dependence on the details
of the turbulence is important in view of the large un-
certainties prevailing in geostrophic turbulence models.
However, until recently it was not possible to apply a
stochastic theory to the case of ocean mesoscale tur-
bulence because the theory assumed incompressible
flow or a divergence-free velocity field. Because the
ocean is strongly stratified, it is believed that mesoscale
turbulence is highly nonisotropic, with mixing confined
to isopycnal layers. It is therefore most natural to deal
with the turbulence in isopycnal coordinates, in which
case the two-dimensional velocity field is generally di-
vergent and this requires a compressible stochastic the-
ory of turbulence.

Such a theory, applicable to tracer transport, was re-
cently developed by Dukowicz and Smith (1997, hence-
forth referred to as DS) and it validated the parameter-
ization of GM90 in general terms. The weak point of
the theory is a postulate that relates Lagrangian to Eu-
lerian mean velocities. The present paper presents a fur-
ther development of the theory for the ocean case, which
avoids the need for the aforementioned postulate under
certain conditions, and this allows us to go beyond the
conceptual basis of the bolus velocity parameterization
of GM90 when these conditions prevail.

2. Stochastic theory

The stochastic theory (DS) assumes that infinitesimal
fluid parcels (particles) may be represented by a general
conditional probability density function p(x, t | y, t0)
such that the probability of finding a particle in volume
dx centered around point x at time t, given that it was
in volume dy centered around point y at time t0, t $
t0, is p(x, t | y, t0) dx. The assumption of Markovian
statistics allows one to write down a Fokker–Planck
equation for the time evolution of the probability density
function. Specifying the appropriate choice for the prob-
ability density function (DS) leads to a theory of tur-
bulent transport in a compressible medium. We apply
the theory to the continuity and tracer equations of in-
terest for the ocean, in which case the equations in is-
opycnal coordinates take the form

] h 1 = · hu 5 0, (3)t r

] hf 1 = · hfu 5 0, (4)t r

where the thickness is written as h ([zr) for conve-
nience and f represents any tracer concentration per
unit volume satisfying the equation

Dtf 5 ]tf 1 u · =rf 5 0, (5)

where u is the two-dimensional horizontal velocity on
the isopycnal surface. These equations manifestly have
the form of two-dimensional compressible equations to
which the stochastic theory is applicable. The theory
gives equations for the evolution of averaged quantities,
which are defined as

h̃(x, t)f̂(x, t)

5 dy h(y, t )f(y, t )p(x, t | y, t ), (6)E 0 0 0

where the tilde indicates that the average is taken on an
isopycnal surface. Applying the theory to Eqs. (3) and
(4), we obtain

21] h̃ 1 = · h̃(v 2 h̃ = · K h̃) 5 0, (7)t r r

21 21] f̂ 1 (v 2 h̃ = · K h̃) · = f̂ 5 h̃ = · K h̃ · = f̂, (8)t r r r r

where for convenience we have defined to be a thick-f̂
ness-weighted average given by

5 ˜f̂ hf/h̃, (9)

and the vector v, which we will refer to as the Lagrang-
ian mean velocity, is defined by

21v(x, t) 5 lim Dt dz (z 2 x)p(z, t 1 Dt | x, t), (10)E
Dt→0

and where K is a symmetric tensor given by

1
21K(x, t) 5 lim Dt dz (z 2 x)(z 2 x)p(z, t 1 Dt | x, t).E2 Dt→0

(11)

In the above equations x, y, z are to be interpreted as
two-dimensional position vectors in the horizontal pro-
jection of an isopycnal surface. The limit as Dt → 0
makes sense only for timescales much longer than the
Lagrangian integral timescale, in which case K is also
positive definite and therefore has the properties of a
turbulent diffusivity.

Alternatively, we may simply construct equations for
averaged quantifies by decomposing all quantities into
average and fluctuating components, such that for any
quantity w ˜w 5 w̃ 1 w9, f9 5 0,̂w 5 ŵ 1 w0, f0 5 0,

w* [ h9w9/h̃ 5 w9 2 w0,˜
ŵ 5 w̃ 1 w*,

substituting into Eqs. (3) and (4), and averaging the
resulting equations, to obtain

] h̃ 1 = · h̃(ũ 1 u*) 5 0, (12)t r

21] f̂ 1 (ũ 1 u*) · = f̂ 5 2h̃ = · h̃u0f0, (13)̂t r r

where we have made use of (1). Comparing (12)–(13)
to (7)–(8), we observe that
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h̃u* 5 h̃(v 2 = · K 2 ũ) 2 K · = h̃r r

1 k 3 = c, (14)r

h̃u0f0 5 2h̃K · = f̂ 1 ck 3 = f̂̂ r r

1 k 3 = x, (15)r

where k is the unit vector in the vertical direction and
c, x are arbitrary scalar gauge fields, which are not
specified by the stochastic theory. We will not focus on
these fields henceforth since they play no role in tracer
transport, except in section 7 where we will indicate a
possible relationship among them. It is important, how-
ever, to keep the gauge fields in mind when comparing
parameterizations to corresponding experimentally or
computationally derived turbulence correlations. Note
also that we have implicitly assumed that it is permis-
sible to directly compare Eqs. (12)–(13) to (7)–(8). This
may not be the case in general since the averages in
(12) and (13) cannot all be the same as those specified
in (6) and (9), namely, probability averages on an is-
opycnal surface, since such averages apply only to quan-
tities satisfying the advection equation (5) [e.g., ũ in
(12) and (13) cannot be a probability average since u
does not satisfy (5)]. We have therefore implicitly in-
voked a form of the ‘‘ergodic hypothesis’’; that is, we
have made the assumption that isopycnal probability
averages are approximately equivalent to isopycnal Eu-
lerian averages.

To make use of (7)–(8) we must specify the Lagrang-
ian mean velocity v. In the case of divergence-free flow,
=r · û 5 0, Monin and Yaglom (1971) introduced the
postulate

v 5 ũ 1 =r · K. (16)

It is argued in DS that (16) is also the simplest plausible
postulate in the case of divergent flow, =r · û ± 0.
Therefore, substituting (16) into (14), one obtains

K · = h̃r
u* 5 2 1 gt, (17)

h̃

a generalized downgradient Fickian diffusion of thick-
ness, in general agreement with GM90, and where we
have indicated by the notation ‘‘gt’’ that gauge terms
may be present. Note that this prediction of the bolus
velocity (17) does not come directly from stochastic
theory but is dependent on the accuracy of the postulate
(16). Equation (15), however, appears to be a robust
prediction of the stochastic theory because it does not
depend on the postulate (16).

3. Potential vorticity

We now take advantage of the fact that the potential
vorticity,

( f 1 z)
q 5 , (18)

h

where f is the Coriolis parameter (planetary vorticity)
and z 5 k · (=r 3 u) is the relative vorticity, obeys (5)
and therefore may be viewed as a tracer for the purpose
of the stochastic theory (see DS for a comment on q as
an active tracer). Therefore, according to (15), we have

5 2h̃K · =rq̂ 1 gt,̂h̃u0q0 (19)

where the thickness-weighted mean potential vorticity
has the special form q̂ 5 ( f 1 ). We now make21h̃ z̃
use of the following identity relating thickness-weighted
to unweighted correlations (which, to our knowledge,
appears here for the first time),

[ 1 ,̂q̂h9u9 2h̃u0q0 z9u9˜ ˜ (20)

together with (1) and (19), to give

K · = q̂ z9u9̃r
u* 5 1 1 gt

q̂ h̃q̂

K · = h̃ K · = ( f 1 z̃) z9u9̃r r
5 2 1 1 1 gt. (21)

h̃ ( f 1 z̃) h̃q̂

Note that we have in effect substituted the identity
(20) for the Monin and Yaglom postulate (16) to ob-
tain a revised version of the bolus velocity originally
given by (17). In other words, instead of the postulate
(16), we have an alternative expression consistent
with the stochastic theory for the Lagrangian mean
velocity,

K · = h̃ K · = q̂ z9u9̃r r
v 5 ũ 1 = · K 1 1 1 1 gt, (22)r h̃ q̂ h̃q̂

which is obtained by combining (14) and (21).
Seemingly, we have not gained much in expressing

the bolus velocity as in (21) because it appears that we
have traded one turbulent correlation for another. How-
ever, as we will see next, there exist important parameter
regimes in which we expect to dominate over˜q̂h9u9

, namely, in the planetary geostrophic regime, andz̃9u9
in homogeneous mesoscale (quasigeostrophic) turbu-
lence. In these situations there is an approximate balancêq̂h9u9 ø 2h̃u0q0,˜
and we are justified in neglecting terms containing

in (21) and (22). This is the situation to which thez̃9u9
theory that follows will apply.

4. Planetary geostrophic regime

Consider the planetary geostrophic (PG) regime in
which the flow is on the gyre or planetary scale and is
characterized by geostrophic balance and the conser-
vation of planetary potential vorticity, q` 5 f/h. An
illuminating discussion of this regime is given by Ped-
losky (1984). Furthermore, de Verdière (1986) dem-
onstrates that this regime is subject to baroclinic insta-
bility, and therefore contains turbulence. Given that we
have exact geostrophy:
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1
f k 3 u 5 2 = p, (23)rr0

where p is the Montgomery potential and r0 is a con-
stant reference density, we may follow an argument in
Greatbatch (1998) comparing thickness-weighted and
unweighted averages of (23), to obtain

q̂` ,̂h9u9 5 2h̃u0q0˜ ` (24)

where q̂` 5 f/h̃. Alternatively, it is easy to show that
(20) reduces to (24) when q 5 q`. Comparing (24) to
(20), we see that in the PG limit we can neglect z̃9u9
in (20), which is the condition for the validity of our
theory. This result is independent of the type of aver-
aging used. Using this result, (21) becomes

K · = q̂r `
u* 5 1 gt,

q̂`

K · = h̃ K · = fr r
5 2 1 1 gt,

h̃ f

K · = h̃ b Kr 125 2 1 1 gt, (25)5 6h̃ f K22

where b 5 ]y f. We observe that this is the same as (17)
except that the bolus velocity is augmented by a velocity
contribution proportional to b. In the case of isotropic
mixing, K 5 k I, k . 0, this term corresponds to a
poleward component of bolus velocity in each hemi-
sphere. We also have the following result for the La-
grangian mean velocity:

K · = fr
v 5 ũ 1 = · K 1 1 gt, (26)r f

which is a modified form of the Monin and Yaglom
postulate, exact in the PG regime.

5. Mesoscale regime

According to the multiscale analysis of Pedlosky (1984),
synoptic-scale (mesoscale) dynamics are given by the qua-
sigeostrophic (QG) equations, modified by weak coupling
to the gyre-scale dynamics (planetary geostrophy), de-
pending on the scale separation between the gyre scale
and the mesoscale. In quasigeostrophy we have

1
u9 5 k 3 = p9,rf r0 0

1
z9 5 = · = p9, (27)r rf r0 0

where f 0 is the ‘‘local’’ Coriolis parameter, taken to be
constant. Gill (1982) shows that quasigeostrophy is val-
id provided (i) «L 5 bL/ f 0 K 1, (ii) t f 0 k 1, and (iii)
Ro 5 U/ f 0L K 1, where L is a horizontal length scale
such as the Rossby radius, and t and U are characteristic
time and velocity scales, respectively.

Assume solutions of the form p9 5 Pei(kx1ly2vt) , as
in Killworth (1997), where i 5 21, k, l are the hor-Ï
izontal wavenumbers, v is the frequency, in general
complex to allow for growth of instabilities, and P is
a complex amplitude. The spatial average, in the limit
of averaging over very many wavelengths, is given by

2 21 iP*P(k 1 l ) 2l
z9u9 5 Re(z9u9*) 5 Re 2˜

2 2 5 61 22 2 f r k0 0

5 0, (28)

where the asterisk here denotes a complex conjugate.
Thus, the quasigeostrophic vorticity and velocity fluc-
tuations tend to be uncorrelated in a spatial average.
This will be true for both a single wave and a linear
combination of these waves. Moreover, since we are
taking only spatial averages, the same result will be true
for a general Fourier transform of the vorticity and ve-
locity fluctuations with respect to the spatial coordinates
at any instant in time.

A more general form of this result may be obtained
without resorting to Fourier transforms. Consider the
general spatial average for the correlation:

1
z9u9 5 k 3 dx dy (= · = p9)= p9, (29)˜ E r r r2 2f r A0 0 A

where A is some arbitrary convex averaging area on an
isopycnal surface. Noting the identity

(=r · =rp9)=r p9 5 =r · T, (30)

where T is the traceless tensor given by

1
T 5 = p9= p9 2 (= p9 · = p9) I,r r r r2

and I is the two-dimensional unit tensor, we observe that
the area integral in (29) may be transformed by the
divergence theorem into a line integral around the
boundary of the area A. Since there is no contribution
from the interior, the correlation will scale with the ratio
of the periphery length to the area, which may always
be made small by choosing a suitably large averaging
area A. That is, in quasigeostrophic flow,

lim z9u9 5 0, (31)˜
A→`

in a spatial average. This is analogous to the average
in (28) except that in this case no assumption of linear
waves is required, and it demonstrates that vorticity and
velocity fluctuations are essentially uncorrelated pro-
vided the averaging scale is sufficiently large. The av-
eraging scale is not specified but it should clearly be
large in comparison to the eddy scale and small com-
pared to the domain size. Since we expect the eddy scale
to be set by the internal radius of deformation, there
should be no difficulty in choosing an averaging scale
that is large compared to the eddy scale but small com-
pared to the basin scale. In general, the correlation will
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not be exactly zero but it will be small in the sense that
it can always be reduced as much as necessary as the
averaging area is increased.

The question becomes, is this result useful for QG
turbulence? Typically, turbulence correlations are most
meaningful in an ensemble average. However, ensemble
averages are mainly a theoretical concept, and typically
space or time averages are substituted for practical rea-
sons. This is justified by the ‘‘ergodic hypothesis’’
(Monin and Yaglom 1971), which allows substitution
of time averages for ensemble averages in stationary
turbulence and spatial averages for ensemble averages
in homogeneous turbulence. Therefore, the result (31)
may be taken as an indication that in homogeneous
quasigeostrophic turbulence the correlation will likelyz̃9u9
be small in comparison with , and therefore that˜q̂h9u9
our theory will be valid in such a situation.

There is at least one type of quasigeostrophic flow
where our theory will not apply. Consider a very strong-
ly stratified flow (gravity g → `) or a constant-depth
barotropic flow with a rigid-lid boundary condition, de-
scribed by the barotropic vorticity equation. For such a
flow (i.e., where the rigid-lid approximation is valid),
the thickness h is nearly constant and will be veryh̃9u9
nearly zero in any average. Therefore, the dominant
balance assumed for (20) in this paper will collapse,
and instead we will have ̂z9u9 ø h̃u0q0,˜
which shows that the relative vorticity–velocity corre-
lation need not be zero, in general, in a time or ensemble
average. In view of (31), which shows that the spatial
average is expected to be zero, this is tantamount to
saying that such barotropic turbulence must be inho-
mogeneous since we cannot relate the spatial average
to the ensemble average. It is possible to apply the sto-
chastic theory result (15) to this new balance. However,
this will imply the need for constraints on the diffusivity
tensor K under certain circumstances. Consider a re-
entrant zonal channel in a statistically steady state where
all the mean quantities must be zonally uniform. It is
then easy to show that 5 )/]y, and therefore˜ ˜z9y9 2](u9y9
that the cross-channel integral of must always van-z̃9y9
ish because of the boundary condition y9 5 0 on the
north and south boundaries. This, therefore, implies the
existence of a global constraint on any parameterization,
whereas the present parameterization, like most others,
is local when K is prescribed a priori.

In summary, using (21) we obtain a result that is
expected to be valid in PG turbulence and in homo-
geneous QG turbulence:

K · = q̂r
u* 5 1 gt

q̂

K · = h̃ K · = ( f 1 z̃)r r
5 2 1 1 gt, (32)

h̃ ( f 1 z̃)

where f 1 → f in the PG case. This is our principalz̃

result. It is derived using only (15), a robust prediction
of stochastic theory, the identity (20), and the fact that

K in certain situations, as discussed above.˜ ˜|z9u9| |q̂h9u9|
The transformation of this result to z coordinates is use-
ful for practical applications and is given in the appen-
dix.

The bolus velocity in this form represents a flux of
tracer up the potential vorticity gradient, which results
from a modification of (17) given by the second term
on the right-hand side of (32), the so-called b velocity.
However, this modification is typically of very small
magnitude (as will be seen in section 6) and will there-
fore have little practical impact, except for the fact that
it importantly changes the conceptual basis for the pa-
rameterization of bolus velocity, from being based on
the mixing of thickness as in GM90 to being based on
the mixing of potential vorticity, as previously sug-
gested by Treguier et al. (1997).

6. The b velocity

The b velocity,

K · = fr
u* 5 , (33)b f

predicted in (25) and appearing in (26), and in a more
general form in (32), is a striking consequence of the
present theory. It is a rigorous prediction in situations
where K , assuming that the stochastic the-˜ ˜|z9u9| |q̂h9u9|
ory is valid. We will now discuss it in more detail.

We can understand the appearance of this velocity
component from elementary considerations by adapting
an argument due to Rhines (Rhines and Holland 1979).
Consider a fluid particle moving in a turbulent velocity
field. Since the potential vorticity is conserved along a
trajectory, at any time t along the trajectory we have

q(t) 5 q̂(t) 1 q0(t) 5 q̂(0) 1 q0(0), (34)

where the q0(0), for example, indicates the initial con-
dition. For a sufficiently small time increment, this may
be rewritten as follows:

q0(t) 5 q̂(0) 2 q̂(t) 1 q0(0) ø 2Dx · =q̂, (35)

where Dx 5 x(t) 2 x0(0) is the displacement of the
particle, and q0(0) has been absorbed into the definition
of x0(0). We now multiply both sides by hu0 and take
some appropriate average (we retain the tilde sign to
indicate that this is still an isopycnal average) to obtain̂h̃u0q0 5 2h̃u0Dx · =q̂.̂ (36)

Rhines and Holland (1979) identify the correlation on
the right-hand side with the Lagrangian diffusivity ten-
sor:

h̃K [ .h̃u0Dx̂ (37)

From experience we expect this to be a positive-definite
quantity (consider the turbulent dispersion of a dye re-
leased from a concentrated source). Note that (36) and
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(37) are equivalent to (19), but obtained more trans-
parently and with less rigorous arguments. In the PG
regime, where q 5 f/h, and therefore q̂ 5 f/h̃ (we have
dropped the subscript ` for simplicity), Eq. (35) may
be written out as q0 ø 2bDy/h̃ 1 (Dx · =h̃)/h̃2. Thus,
there are two components to the potential vorticity fluc-
tuation: the first one is due to the change in the planetary
vorticity f, and the second one is due to a change in
mean thickness h̃ along the trajectory. We will now
assume that the mean thickness is constant since we
wish to focus on the first component. This implies that
meridional fluid parcel displacements are always neg-
atively correlated with potential vorticity fluctuations.
Alternatively, since q0 5 2(h9/h)( f/h̃), fluid parcels dis-
placed poleward will be stretched while parcels dis-
placed away from the poles will be flattened relative to
their mean thickness. Now, because the right-hand side
of (37) is positive-definite and the diffusivity tensor is
likely to be diagonally dominant, velocities y0 will be
positively correlated with displacements Dy. Therefore,
the meridional potential vorticity–velocity correlation
will always be negative. Because of Eq. (24), this im-
plies that the associated bolus velocity will always be
poleward. This is the content of Eq. (33); it shows that
the b velocity is inherent in the PG regime provided
that turbulence is present. Note that the apparent sin-
gularity at the equator is merely due to the fact that the
b velocity given in (33) is valid only in the PG regime,
which excludes the equator.

The existence of the b velocity has been specifically
confirmed by Lee et al. (1997) in an eddy-resolving
channel experiment performed with a three-layer iso-
pycnal model. Using an appropriate buoyancy forcing,
they obtained essentially constant mean thickness in the
middle layer so that the predominant contribution to
bolus velocity was due to (33). Using the value k ;
1000 m2 s21, which they measure in the top and bottom
layers and the values b ; 2 3 10211 m21 s21 and f ;
0.83 3 1024 s21 characteristic of the center of the chan-
nel, (33) predicts a northward velocity ; 0.024 cmy*b
s21, in reasonable agreement with the value ; 0.05y*b
cm s21, which they find in the experiment. As pointed
out by Killworth (1997), this is a rather small velocity
[even compared to the total bolus velocity—we typically
find that u* ; O(1 cm s21) in eddy-resolving calcula-
tions].

There is an alternative but equivalent way to arrive
at the b velocity. Welander (1973), Rhines (1979),
Rhines and Holland (1979), Tung (1986), and Great-
batch (1998) propose closely related parameterizations
of the momentum equations based on the turbulent flux
of potential vorticity. In the u-momentum equation there
then appears a ‘‘friction force that is everywhere di-
rected westward,’’ equal to 2bK22 (Welander 1973).
When balanced against the Coriolis term, this results in
the b velocity of Eqs. (25), (33). From the atmospheric
perspective, Tung (1986) points out that the presence
of this term has important physical implications. With-

out this term, the winter stratospheric westerly jet would
reach unrealistically large velocities and the temperature
near the winter pole would be too low. It is of interest
to note that the b velocity is associated with the presence
of diabatic heating in the experiments of Lee et al.
(1997) and in the atmospheric context of Tung (1986).
Without diabatic heating it is likely that a statistical
equilibrium consistent with the continuity and momen-
tum equations would not be possible, and a poleward
thickness flux would be prohibited.

From a theoretical perspective, a remarkable result
by Killworth (1997) gives a bolus velocity that is equiv-
alent to (25), and therefore also predicts the b velocity
of (33), but from consideration of linear waves alone,
in a perturbation theory about a slowly varying mean
velocity. This in effect extends to turbulence a result
derived from linear stability theory. However, a justi-
fication for the role of linear terms in turbulent mixing
problems has been given by G. M. Lilley in Morris et
al. (1990) for the case of incompressible flow. This the-
ory, therefore, lends powerful independent support for
the existence of the b velocity. It is not the object of
this paper to discuss the pros and cons of the Killworth
(1997) theory and the present theory. There is, however,
an important difference between these two theories that
is worth pointing out. The Killworth theory derives a
form of the diffusivity k that is proportional to the in-
stability growth rate and therefore requires that the un-
derlying mean flow be unstable for k to exist; the present
theory merely assumes that fully developed turbulence
is present, in which case k is formally given by (11).
It should be noted that, when there is no turbulence,
then k is zero. In other words, the present theory, unlike
the Killworth theory, makes no statement about the or-
igin of the turbulence. It does require an independent
specification of k, in common with other parameteri-
zations of its type, but then it leaves open the possibility
that a future, more general type of turbulence theory
will become available that will predict k prognostically.
Until that time, it is quite possible to have seemingly
paradoxical situations arising from an ignorance of what
the value of k may be.

Nevertheless, there is a connection with baroclinic
instability in the present theory, in common with the
Killworth (1997) theory. Let us consider the linearized
eddy continuity equation:

d̃
h9 1 u9 · = h̃ 1 h̃= · u9 1 h9= · ũ 5 0, (38)r r rdt

where d̃/dt [ ]t 1 ũ · =r. This is the same as the equa-
tion in the Killworth theory except that the last term on
the right-hand side was neglected. In the PG regime,
geostrophic balance implies

f =r · ũ 1 5 0, f =r · u9 1 by9 5 0, (39)bỹ

where y9 is the meridional fluctuating velocity com-
ponent. Multiplying the continuity equation by h9, mak-
ing use of (39), and taking an average we obtain
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2̃d̃ h9 h̃b ỹb
2̃5 2h9u9 · = h̃ 1 h9y9 1 h9˜ ˜rdt 2 f f

ỹb
2̃5 h9u9 · x 1 h9 , (40)˜

f

where

 2] h̃xh̃= q̂r `  x 5 5 . h̃bq̂` 2] h̃ 1 y f 

Substituting from (1) and (25), we obtain

2̃d̃ h9 ỹb
2̃5 x · K · x 1 h9 , (41)

dt 2 f

where we observe that the first term on the right-hand
side is always positive because, as stated previously, K
is positive-definite. Neglecting the second term on the
right-hand side, as in the initial phase of the growth of
an instability, is consistent with the idea that eddy var-
iance will increase as a result of the instability, and it
therefore associates the bolus velocity parameterization
in the form given by (25), that is, including the b-ve-
locity correction, with the presence of baroclinic insta-
bility, consistent with Killworth (1997).

Finally, it might be tempting to ascribe the existence
of the b velocity to Rossby waves because of its b
dependence. This is clearly incorrect, as is obvious from
the above analysis, but it is possible to demonstrate this
more directly. Let us consider the case of pure Rossby
waves when the gradient of mean thickness vanishes.
Equation (40) in the limit of slowly varying mean ve-
locities then becomes

2̃d̃ h9 h̃b
2 h9y9 ø 0. (42)˜

dt 2 f

Since Rossby waves in this regime are stable and are
neither dissipative nor dispersive, we expect the vari-
ance of the thickness to be unchanged, and therefore

h9y9 ø 0.˜
Thus the Rossby wave contribution to the bolus velocity
is negligible in this case. This therefore demonstrates
that planetary Rossby waves are not responsible for the
b velocity.

7. The gauge

It is now possible to restore the gauge. Since the
vorticity–velocity correlation is assumed smallz̃9u9
compared to other terms in (20), we neglect it in that
equation, and using (14) and (15) for the case of po-
tential vorticity, we must have

= · Kh̃ K · = q̂ k 3 = (x 1 q̂c)r r r
v 2 5 ũ 1 2 .

h̃ q̂ h̃q̂
(43)

One way to view the gauge fields is as arbitrary degrees
of freedom arising in Eqs. (7) and (8), as well as in (12)
and (13). The left-hand side of Eq. (43) represents the
total tracer transport velocity in Eq. (8). If we substitute
this in (7) and (8) we have the rather unsatisfactory
situation that our equations depend on the gauge. The
simplest postulate that allows the total tracer transport
velocity, as well as the continuity and tracer transport
equations, to be independent of gauge is

x 1 q̂c 5 const, (44)

which we will henceforth adopt. Relating the two gaug-
es, x and c, as in (44) implies that the potential vorticity
system contains only a single gauge.

8. Summary of results

Using (43) and (44), (14) and (15) may be put in the
form

K= q̂ k 3 = cr r
u* 5 1 , (45)

q̂ h̃̂h̃u0q0 5 2h̃K · = q̂ 2 k 3 q̂= c. (46)r r

Therefore, the bolus flux h̃u* retains an arbitrary ro-
tational component specified by the gauge c in addition
to the largely irrotational potential vorticity term [see
(32), where the dominant thickness-mixing term is ir-
rotational for constant, isotropic K], as seems to be ob-
served in various simulations (e.g., Bryan et al. 1999).
The total transport velocity becomes

= · Kh̃ K · = q̂r r
v 2 5 ũ 1 . (47)

h̃ q̂

Substituting the above in (12) and (13), with takenf̂
to be q̂, we have

K · = q̂r
] h̃ 1 = · h̃ ũ 1 5 0, (48)t r 1 2q̂

K · = q̂r
21] q̂ 1 ũ 1 · = q̂ 5 h̃ = · h̃K · = q̂, (49)t r r r1 2q̂

and similarly, substituting (45) and (15) in (13), we have
for an arbitrary tracer

K · = q̂r
21] f̂ 1 ũ 1 · = f̂ 5 h̃ = · h̃K · = f̂. (50)t r r r1 2q̂

Therefore, the total transport velocity and the thickness
and tracer transport equations are all independent of
gauge, as remarked previously.

In summary, assuming the validity of the stochastic
theory, we have deduced that under certain conditions
the bolus velocity corresponds within a gauge to a flux
directed up the potential vorticity gradient and is char-
acterized by a general symmetric diffusivity tensor K.
This is expected to be true in planetary geostrophic
turbulence and also in homogeneous quasigeostrophic
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turbulence, that is, whenever K . This result˜˜|z9u9| |q̂h9u9|
is corroborated by the calculations of Lee et al. (1997)
and supports their thesis regarding the role of gradients
of potential vorticity in determining the bolus velocity.
The direct relationship of the bolus velocity with po-
tential vorticity substantially modifies the conceptual
basis of the GM90 parameterization, and agrees with
the theoretical proposals of Killworth (1997) and Tre-
guier et al. (1997), although only within the regimes
discussed above. However, the resulting modification of
the bolus velocity is quite small in magnitude and we
expect that it will have little practical effect in simu-
lations. Furthermore, we have postulated that gauge
fields are related according to (44), which renders the
total transport velocity and the thickness and tracer
transport equations to be independent of gauge, a result
that is highly desirable from a theoretical point of view.
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APPENDIX

Transformation to z Coordinates

This transformation is greatly facilitated by the for-
mulas given by de Szoeke and Bennett (1993). Defining
z̃ to be the average depth of an isopycnal surface and

to be the inverse function to z̃ [ 5r̃ r̃(x, y, z̃(x, y, r, t)
r], such that h̃ 5 ]r z̃ 5 Eq. (32) transforms into1/] r̃,z

1 K K ] r̃] q̂ 2 ] r̃] q̂11 12 z x x zu* 5 1 gt, (A1)[ ][ ]q̂] r̃ K K ] r̃] q̂ 2 ] r̃] q̂z 12 22 z y y z

where

q̂ 5 2 ]yũ) 2 ]x ]zũ 1 ]z (A2)] r̃( f 1 ] ỹ r̃ ] r̃ ỹ .z x y

Additional details regarding the transformation are
available in DS.
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