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ABSTRACT

The purpose of this paper is to modify two-equation turbulence models such that they are capable of simulating
dynamics in the wave-enhanced layer near the surface. A balance of diffusion of turbulent kinetic energy (TKE)
and dissipation is assumed as the surface boundary condition for TKE following the suggestion of Craig and
Banner. It is shown that this theory, originally developed under the assumption of a macro length scale linearly
increasing down from the surface, fails for two-equation models such as the well-known k–« model. Suggestions
are made how to modify such models for overcoming this deficiency. The basic idea is to insert the analytic
solution of a model problem suggested by Craig into the dissipation rate equation and solve for the turbulent
Schmidt number of the dissipation rate equation, which may be formulated as a function of the production/
dissipation ratio. With this modification, the linear behavior of the macro length scale is properly reproduced
by the k–« model. It is shown how near-surface dissipation rate measurements under breaking waves can be
simulated by an extended k–« model considering a shear-dependent closure for the second moments. Finally,
the overall performance of this new model approach is tested with a typical upper mixed layer scenario in the
northern North Sea.

1. Introduction

With growing computer resources, complex turbu-
lence models have become more and more popular in
the field of numerical ocean modeling in recent years.
The need for such better models is given by an increas-
ing complexity of problems that have to be solved nu-
merically, ranging from small-scale pollution scenarios
in estuaries up to large-scale, long-term global climate
change predictions. Improved observation techniques
with highly sensitive and fast-responding sensors allow
for calibration and validation of new turbulence mod-
eling approaches also under field conditions. In the last
decade, enormous progress in the investigation of the
dynamics of the upper few decimeters of the ocean has
been achieved. After the logarithmic law for profiles of
velocity and turbulent quantities near the sea surface
had been accepted in the scientific community for a long
time, the picture is more precise now. Measurements of
various investigators proved the existence of a layer of
enhanced (with respect to the log law) turbulence below
breaking surface waves (see, e.g., Kitaigorodskii et al.
1983; Thorpe 1984; Osborn et al. 1992). More detailed
measurements showed that the turbulent dissipation rate
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has logarithmic slopes between 22.7 and 21.9 in this
wave-enhanced layer, in contrast to 21 for the loga-
rithmic law (see, e.g., Terray et al. 1996; Drennan et al.
1996; Anis and Moum 1995). The present view is that
below a near-surface layer of thickness in which allsz0

properties including the turbulent dissipation rate are
well mixed, a wave-enhanced layer with a thickness of
about 10 times the so-called surface roughness length
is situated. Below that, the ‘‘classical’’ law-of-the-wall
boundary layer scaling is established. Between these
three layers, intermediate states can be found. The wave-
enhanced layer is characterized by a shear production
orders of magnitude smaller than the turbulent dissi-
pation rate, whereas turbulence production and dissi-
pation are assumed to be of equal size in the log layer
below.

In their famous paper, Craig and Banner (1994) sug-
gested modeling the flux of turbulent kinetic energy due
to breaking waves into the water column as proportional
to the cube of the surface friction velocity. Additionally,
they found an analytical solution for an idealized model
problem for the wave-enhanced layer by simply ne-
glecting shear production of turbulence. Two years later
Craig (1996) published an analytical solution for an
idealized model problem that combines both the wave-
enhanced layer and the log layer below including the
transition zone between both of them. Since then, sev-
eral authors have included this new approach into their
models (see, e.g., Stacey and Pond 1997; D’Alessio et
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TABLE 1. Empirical constants for the standard k–e model with
surface wave breaking condition.

cm sk c1 c2 cw k

0.09 1.0 1.44 1.92 100 0.4

al. 1998; Canuto et al. 2001). These models, however,
all have in common that they diagnostically prescribe
the macro length scale of turbulence near the surface as
proportional to the distance from the surface.

Such an approach is not possible when two-equation
turbulence models are used where, besides the turbulent
kinetic energy, a prognostic equation for the length scale
is calculated. In oceanography, two approaches for such
two-equation models are frequently applied, the k–«
model [see Rodi (1980)] and the q2–q2l model (Mellor
and Yamada 1982). The k–« model directly calculates
the turbulent dissipation rate « from which the macro-
length scale can be derived, whereas the q2–q2l model
calculates the product of turbulent kinetic energy and
the macrolength scale. Both models have often been
criticized for their high degree of empiricism (Rodi
1987; Mellor and Yamada 1982), but all alternative,
algebraic approaches are based on at least as many em-
pirical assumptions. The advantages of especially the
k–« model are its physical soundness and high numerical
robustness as recently shown by Baumert and Peters
(2000) and Burchard and Bolding (2001). They are both
calibrated such that they reproduce for steady-state con-
stant stress boundary layers the logarithmic law of the
wall with a macro length scale proportional to the dis-
tance from the surface. It can therefore not be expected
that these two models automatically reproduce the cor-
rect solutions for the wave-enhanced layer, when only
the boundary conditions are properly chosen.

The present paper deals with this problem of gener-
alizing these two-equation turbulence models to the case
of a wave-enhanced layer situated above a classical law-
of-the-wall layer. For the construction of these modi-
fications, the analytical solution of Craig (1996) is ex-
ploited; see sections 2 and 3. This is also used for the
formulation of a generalized flux boundary condition
for the turbulent dissipation rate «. The performance of
the modified k–« model is then extensively tested for
an idealized model problem; see section 4. Specifically,
the numerical discretization is discussed (section 4a),
the failure of the unmodified model is shown (section
4b), the sensitivity to numerical resolution is investi-
gated (section 4c), and the performance with higher-
order second-moment closures is tested (section 4d).
Near-surface dissipation rate measurements, which have
been normalized by Terray et al. (1999) are reproduced
with the complete modified model (section 5). Finally,
the surface mixed layer dynamics in the northern North
Sea during four days in spring 1976 are simulated in
order to test the capability of the modified model to
perform well under highly variable realistic conditions
and to demonstrate the potential impact of surface wave
breaking on upper mixed layer dynamics (section 6).

2. Analytical solution of the idealized wave-
breaking problem

Building up on the Craig and Banner (1994) theory
of surface wave breaking assuming a balance of TKE

diffusion and dissipation, Craig (1996) suggests an ap-
proximate solution for the generalized case of the water
column extending from the surface down to the ‘‘law-
of-the-wall’’ layer under the wave-enhanced layer. In
order to construct an idealized model problem for which
an exact analytical solution is available, we slightly
modify the original model equations.

The upward-pointing vertical coordinate z is here con-
structed such that z 5 0 is located at the base of the
unresolved surface layer (zone of bubble entrainment)
with thickness . Here, the surface boundary conditionssz0

are applied. For simplicity, z9 5 2z denotes the distance
from this upper boundary. In the following, dynamic
equations for momentum u and turbulent kinetic energy
k are given for a nonstratified water column:

] u 2 ] (n ] u) 5 0, (1)t z t z

nt] k 2 ] ] k 5 P 2 « (2)t z z1 2sk

with eddy viscosity
2k

n 5 c , (3)t m «

macro length scale
sL 5 k(z9 1 z ),0 (4)

and dissipation rate
3/2k

0 3/4« 5 (c ) . (5)m L

The parameter cm, which may be a complex function of
mean flow parameters (see section 4d), results from al-
gebraic second-moment turbulence closures. In the stan-
dard k–« model that leads to an analytical solution of
the wave-enhanced layer, the so-called stability function
cm is set to the constant value cm 5 ; see Table 1. In0cm

comparison to Craig (1996), the shear production is
modified:

3(u*)sP 5 a , (6)
sk(z9 1 z )0

where a may be zero or unity, depending on whether
wave breaking only is considered (Craig and Banner
1994) or the general case of combining the wave-en-
hanced and the law-of-the-wall layer (Craig 1996). For
a 5 1, the production for (6) is taken from the analytical
solution for the law of the wall without wave breaking.
For the full definition of P,

2P 5 n (] u) ,t z (7)
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an analytical solution could not be found. At the surface
the following boundary conditions for momentum,

2n ] u 5 (u*) , z 5 0t z s (8)

and turbulent kinetic energy,

nt 3] k 5 c (u*) , z 5 0. (9)z w ssk

are applied. The latter had been first proposed by Craig
and Banner (1994) and models injection of turbulent
kinetic energy due to surface wave breaking. The em-
pirical parameter cw should depend on the wave age and
has been estimated to be cw 5 100 for fully developed
waves. For cw 5 0, the classical boundary condition for
no wave breaking is retained.

For achieving a problem for which an analytical so-
lution can be found, lower boundary conditions have to
be fixed at infinite depth:

2n ] u 5 (u*) , z 5 2`, (10)t z s

n ] k 5 0, z 5 2`. (11)t z

For Eqs. (1)–(6) with boundary conditions (8)–(11), the
steady-state analytical solution by Craig (1996) is given:

2/31/2 2m2 s(u*) 3s z9 1 zs k 01/4k 5 a 1 c c (12)m w1/2 s1 2 1 2[ ]c 2 zm 0

1/2 2m3 s(u*) 3s z9 1 zs k 01/4« 5 a 1 c c (13)m ws s1 2 1 2[ ]k(z9 1 z ) 2 z0 0

with
1/23 c sm k2m 5 . (14)

22 k

It should be noted that the notation for m deviates from
that used by Craig and Banner (1994) and Craig (1996),
where 3m corresponds to m here. For a 5 0 and cw .
0, this is identical with the analytical solution presented
by Craig and Banner (1994) for a 5 1 and cw 5 0, and
the law of the wall is obtained. For the general case, a
5 1 and cw . 0, the wave-enhanced upper layer and
the log layer below can be identified from this solution
for k and «: for z9 k , the first term in the brackets,sz0

and thus the log law, dominates. For z9 → 0, the second
term, and thus enhanced turbulence, is dominant, if the
standard values in Table 1 are used. With these empirical
parameters, a value of 2(m 1 1) 5 22.68 results, which
is just within the predictions for the logarithmic slope
of the turbulent dissipation rate.

3. Modification of the dissipation rate equation

In the well-known k–« model, the following dynamic
equation for the turbulent dissipation rate « is used (see
Rodi 1980):

n «t] « 2 ] ] « 5 (c P 2 c «), (15)t z z 1 21 2s k«

where c1 and c2 are empirical parameters (see Table 1).
The parameter s« is not independent. Inserting the an-
alytical solution for k and «, Eqs. (12) and (13), re-
spectively, together with the expressions for nt and P,
(3) and (6), respectively, into the dissipation rate equa-
tion (15) leads for a 5 1 and cw 5 0 to the classical
value

2k
s 5 s 5 ø 1.111. (16)« «1 1/2c (c 2 c )m 2 1

This is a well-known result for the logarithmic boundary
layer; see for example Rodi (1980) and Burchard et al.
(1998).

a. Modification of the turbulent Schmidt number for «

Also for the ‘‘pure’’ wave breaking case with cw .
0 and a 5 0, an exact value for s« can be found by
inserting the analytical solution for k and « into the
dissipation rate equation (15):

24 k
s 5 s 5 m 1 1 (m 1 1) ø 2.4. (17)« «0 1/21 23 c c2 m

This is a new result, without which the reproduction of
the wave breaking phenomenon with the k–« model
would be inaccurate. However, for the general case, with
wave breaking parameterization and consideration of
shear production, that is, with cw . 0 and a 5 1, the
derivation of a suitable Schmidt number for the dissi-
pation rate is more problematic since (due to the vari-
ation of s« with z) now a complex integral has to be
solved. After inserting again the analytical solutions for
k and « into the dissipation rate equation (15) and solv-
ing the integral numerically, s« may be described as a
function of P/«, where the cases (16) and (17) are in-
cluded as P/« 5 0 and P/« 5 1, respectively. In order
to obtain this dependency on P/«, the fact that the ex-
pression in the brackets of Eq. (13) equals «/P with P
from Eq. (6) has been exploited. The result is shown in
Fig. 1 for sk 5 1. It can be seen that the curve for s«

is close to a linear interpolation between P/« 5 1 and
P/« 5 0.

Equations (16) and (17) could of course also have
been used for calculating c1 or c2. However, the value
for c2 has been determined as c2 ø 2 by experiments of
freely decaying turbulence behind a grid. The value for
c1, which is more difficult to estimate, has been fixed
on dimensional grounds by Tennekes (1989) (see also
Baumert and Peters 2000) as c1 5 1.5, a value similar
to the one used here (see Table 1). All these consider-
ations assume c1 and c2 to be empirical constants. Re-
cently, Canuto et al. (1999) derived new expressions for
c1 and c2 by analyzing two-point closure models for
Reynolds stresses. As a result of that new theory,
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FIG. 1. The Schmidt number s« as it occurs in the dissipation rate
equation for sk 5 1. Shown are numerical solution of the idealized
analytical problem and a linear fit.

c2 5 11/6 is still a constant similar to the empirical
value, but c1 is a function of the invariants of the flow,
the turbulent kinetic energy, and the shear production.
It will be the task of future investigations to check how
such advanced models reproduce dynamics of surface
wave breaking. It should be further noted that there are
more advanced formulations for the vertical fluxes of
turbulent kinetic energy and its dissipation rate. Canuto
et al. (1994) derived a complex algebraic closure for
the third-order correlators associated with vertical TKE
fluxes. The potential of such formulations should be
investigated as well.

b. New surface boundary condition for «

In order to carry out numerical simulations of the
wave-enhanced layer with the k–« model, a surface
boundary condition for the dissipation rate « has to be
derived. Burchard and Petersen (1999) have shown re-
cently that the use of flux boundary conditions rather
than Dirichlet boundary conditions is advantageous,
since (i) the stress-free near-surface dynamics in open
channel flow are better reproduced and (ii) the numerical
accuracy is much higher. By using the analytical solu-
tions for k and «, (12) and (13), such a flux boundary
condition for « can be derived:

0 3/4n n 3 s (c )t t k m0 3/4 s 3 3/22 ] « 5 2 (c ) c (u ) 1 kkz m w5 *[ ]s s 2 c« « m

2 s 24 k (z9 1 z ) . (18)0 6

This is a generalization of the flux boundary condition
suggested by Burchard and Petersen (1999), which is
obtained by setting cw 5 0.

4. Idealized numerical simulations

Since indefinite depth is not realizable in a numerical
model, a water depth D of 3000 times larger than the
roughness length z0 (here D 5 50 m and z0 5 0.0166
m2s) is applied for the idealized model simulations. It
is assumed that near-bed processes play a negligible role
for the wave-enhanced layer. In this section, the standard
value for the turbulent Schmidt number for TKE, sk 5
1, is used. For all simulations in this paper, the new
surface boundary condition for the turbulent dissipation
rate, (18), has been applied.

The model is driven with a constant surface friction
velocity, which in this case was 5 0.01 m2s. Aftersu*
initializing the velocity with u 5 0, it took about 5 days
of simulation in order to reach a steady-state solution
with a constant shear stress over the whole water col-
umn.

a. Numerical discretization

For the discretization the water column is divided into
N not necessarily equidistant intervals hi. The grid is
staggered, mean flow properties such as velocity or den-
sity are positioned in the layer centers, and turbulent
quantities such as eddy viscosity nt, turbulent kinetic
energy k, or turbulent dissipation rate « are located at
the layer interfaces. The vertical diffusion terms are
discretized semi-implicitly in time. The sink terms in
the equations for turbulent properties such as k and «
are discretized quasi-implicitly in order to guarantee
positivity of these quantities also for relatively large
time steps.

For the numerical solution, a zooming of layers ac-
cording to the following formula has been applied:

h 5 (g 2 g )D, i 5 1, · · · , N (19)i i i21

with

i
tanh (d 1 d ) 2 d 1 tanh(d )l u l l[ ]N

g 5 2 1,i tanh(d ) 1 tanh(d )l u

i 5 0, · · · , N (20)

where D is the height of the water column, N the number
of layers, and dl and du zooming parameters. For du 5
dl 5 0, the discretization is equidistant, and for dl 5 0
and du . 0, the grid is refined towards the surface.
Further details of the numerical discretization can be
found in Burchard et al. (1999).
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FIG. 2. Results of a numerical simulation of the wave-enhanced layer obtained by the nonmodified k–« model
compared to analytical solutions for the log law and the wave-enhanced layer. Shown are profiles of nondimensional
eddy viscosity, turbulent kinetic energy, and turbulent dissipation rate.

FIG. 3. Results of a numerical simulation of the wave-enhanced layer obtained by the modified k–« model with
constant cm compared to analytical solutions for the log law and the wave-enhanced layer. Shown are profiles of
nondimensional eddy viscosity, turbulent kinetic energy, and turbulent dissipation rate.

b. Simulation results for high numerical resolution

The simulations in this section were carried out with
high numerical resolution with Dz/z0 , 0.1 at the sur-
face, which was obtained by choosing adequate values
for N and du with N 5 1000 and du 5 3.

The need for adapting s« in order to reproduce surface
wave breaking is shown in Fig. 2, where the analytical
solution is compared to the application of the k–« model
with unmodified turbulent Schmidt number s« 5 s«1

from Eq. (16). It can be seen that the results for k and
« significantly deviate from the analytical solution in
the wave-enhanced layer. One might define the depth
of the wave-enhanced layer as the depth where the ratio
P/« first deviates less than 1% from unity. This is the
case at about z 5 2190 for the analytical solution,sz0

but at only about z 5 27 for the unmodified k–«sz0

model, which results in a difference of the factor of
about 27.

In contrast to that, when using the modified k–« mod-
el, the analytical and the numerical solutions are almost
identical if the spatial resolution of the numerical model
is sufficiently fine (see section 4a). Small deviations
between numerical result and analytical solution are

mainly due to the fact that the linear fit to s« has been
used instead of the more exact numerical solution (see
Fig. 1). Finally, numerical solutions of the complete
problem with shear production from (7) instead of (6)
are shown in Fig. 3. It should be noted again that an
analytical solution for this problem could not be found.
It can be clearly seen here that the numerical solution
is now sufficiently close to the idealized analytical so-
lution given as Eqs. (12) and (13).

c. Sensitivity to numerical resolution

It would be a desirable property of this model to
numerically calculate sufficiently accurate results also
for rather coarse vertical resolution. This is important
in order to allow for the implementation of this wave-
breaking parameterization into three-dimensional mod-
els. Here, the same discretization from the previous sec-
tion is used, changing the zooming parameter du such
that the ratio Dz/z0 varies. Different near-surface reso-
lutions with Dz/z0 5 0.1, 0.3, 1.0, 3.0 are tested for
which the results are shown in Fig. 4. It seems to be
necessary to resolve the surface roughness length with
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FIG. 4. Results of a numerical simulation of the wave-enhanced layer obtained by the modified k–« model compared
with various vertical resolutions. Shown are profiles of nondimensional eddy viscosity, turbulent kinetic energy, and
turbulent dissipation rate.

more than one grid box. With typical roughness lengths
of z0 ø 0.2 m at about wind speeds of around 15 m s21

(see Gemmrich and Farmer 1999), a near-surface ver-
tical resolution of the order of 0.1 m would be needed.
This means that estuarine or coastal sea applications can
indeed be carried out with this model if surface-fitted
coordinates, such as s coordinates, with zooming to-
ward the surface are used. The high-resolution steady-
state simulations presented here could be carried out
with time steps of Dt . 200z0/u*, which would result
in time steps up to 1 h for z0 ø 0.2 m and u* ø 0.01
m s21.

d. Shear-dependent stability functions

So far a constant empirical value for the stability
function cm has been used in order to allow for com-

parisons with an analytical solution for the turbulence
dynamics in the wave-enhanced layer. However, when
a proper algebraic second-moment turbulence closure is
carried out, this stability function can be expressed as
a function of two dimensionless parameters, the shear
number and the buoyancy number, respectively:

2 2k k
2 2a 5 S , a 5 N , (21)M N2 2« «

where S2 5 (]u)2 1 (]y)2 is the squared shear frequency
(here u is the northward and y the eastward velocity
component) and N2 5 2g/r0]zr the Brunt–Väisälä fre-
quency (with density r, constant reference density r0,
and gravitational acceleration g). Recently, Canuto et
al. (2001) suggested such a new set of stability func-
tions, cm and , which consider more effects of shearc9m
and stratification:

0.1070 1 0.01741a 2 0.00012aN Mc 5 ,m 2 21 1 0.2555a 1 0.02872a 1 0.008677a 1 0.005222a a 2 0.0000337aN M N N M M (22)
0.1120 1 0.004519a 1 0.00088aN Mc9 5 .m 2 21 1 0.2555a 1 0.02872a 1 0.008677a 1 0.005222a a 2 0.0000337aN M N N M M

Here is used for calculating the eddy diffusivity ,c9 n9m t

which is applied for the turbulent mixing of tracers such
as temperature and salinity:

2k
n9 5 c9 . (23)t m «

The dependence of this formulation for cm on P/« 5
cmaM is shown in Fig. 5. For an intensive analysis of
these new functions in comparison to others, see Bur-
chard and Bolding (2001).

The simulation of the idealized wave-enhanced layer
with this new shear-dependent cm shows that the near-
surface mixing is further enhanced (see Fig. 6), although

the logarithmic slope of the dissipation rate is now
slightly smaller than for the constant cm. Even if cur-
rently no near-surface measurements of turbulence are
available that are accurate enough to give preference
for one or the other formulation of cm, the Canuto et al.
(2001) formulation should be applied because of its
higher turbulence closure level.

5. Reproducing near-surface dissipation rate
measurements

Terray et al. (1999) scaled three different sets of near-
surface dissipation rate measurements under breaking
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FIG. 5. Stability function cm from Canuto et al. (2001) as function
of the P/« ratio in comparison to the standard value for cm.

FIG. 6. Results of a numerical simulation of the wave-enhanced layer obtained by the modified k–« model with
constant cm and with cm from Canuto et al. (2001). Shown are profiles of nondimensional eddy viscosity, turbulent
kinetic energy, and turbulent dissipation rate.

waves such that they more or less collapse into one
curve. The scaling of depth was made by using the
significant wave height Hs. By comparing the Craig and
Banner (1994) model to these data, they found a /Hs

sz0

ratio of 0.85. In Fig. 7, this comparison is reproduced
with the k–« model equipped with the Canuto et al.
(2001) shear-dependent stability function cm. It can be
seen that most of the data fall within the two simulated
curves given by /Hs 5 0.25 and /Hs 5 1. It shoulds sz z0 0

be noted that recent results of Gemmrich and Farmer
(1999) contradict the assumption of a fixed /Hs ratio,sz0

as there a ratio of less than 0.05 had been measured in
the open ocean. Since is the significant height of air-sz0

bubble entrainment into the water due to wave breaking,
it is not necessarily related to the significant wave
height. However, in this modeling paper this discussion
will not be continued because the surface roughness
length is the relevant model parameter that has to be
calculated outside the model and then used as model
input. It is unfortunately the significant wave height that

is part of standard oceanic measurements and not the
surface roughness length.

The upper model boundary is here located at the bot-
tom of the unresolved surface layer of height , the air-sz0

bubble entrainment zone, in which the turbulent dissi-
pation rate is assumed to be constant. At this location,
where the vertical coordinate z of the model is set to zero,
the macro length of turbulence is fixed to L 5 k . Thissz0

is in accordance to the arguments of Terray et al. (1999)
that the length scale should increase proportionally to the
distance from the surface. This approach of excluding an
unresolved surface layer from the model domain is anal-
ogous to the treatment of the bottom boundary layer in
many models. In such models, the lower model boundary
is located where the extrapolation of the logarithmic ve-
locity is zero. Below that theoretical location the unre-
solved viscous sublayer is situated.

6. Mixed layer in the northern North Sea

Finally, the ability of the model to perform realistic
mixed layer simulations is demonstrated. Near-surface
dissipation rate observations over a period of the order
of some days are not available yet. Therefore, a classical
observational dataset, the so-called FLEX’76 (Fladen-
ground Experiment 1976) from the northern North Sea
is reproduced here. A 4-day period in May 1976 will
be simulated, which is characterized by a period of weak
winds with increasing thermal stratification; a subse-
quent storm with more than 12 hours duration, which
homogenizes the water column down to about 50 m;
followed by another weak-wind period. The water depth
at the site (588559N and 08329E) is about 145 m. From
April to November a thermocline is established, which
separates the surface mixed layer from the bottom mixed
layer. Tidal currents with an M2 amplitude of about 0.2
m s21 create turbulence in the bottom mixed layer due
to bottom friction. Here, the dynamics of the whole
water column is simulated, but the analysis is focused
on the surface mixed layer. For more details about the
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FIG. 7. Observations and simulations of turbulent dissipation rate in the wave-enhanced layer. The
observations of Terray at al. (1996), Drennan et al. (1996), and Anis and Moum (1995) are normalized
by surface TKE flux and significant wave height (see Terray et al. 1999). The simulations have been
carried out with the k–« model using the modified Schmidt number s« with surface roughness length
to wave height ratios of 1, 0.5, and 0.25. The shear-dependent stability function cm by Canuto et al.
(2001) has been used here. As comparison, the log law with s« 5 s«1 and the pure wave breaking
case (no shear production) with s« 5 s«0 are shown as well.

FLEX’76 dataset, see Soetje and Huber (1980) and Bur-
chard et al. (1999) and the references therein.

For this simulation, a set of equations is used of which
the equations presented above is a specialization for
nonrotational, nonstratified flow. Here, six diagnostic
equations for the two velocity components u and y, the
temperature T and salinity S, and the turbulent quantities
k and « are calculated. The density r is then calculated
from T and S by means of the equation of state. All
equations are discussed in detail in Burchard and Bold-
ing (2001) and are thus not given here. In addition to
the wind forcing, the dynamics of the water column are
now driven by surface heat fluxes, solar radiation, and
tidally dominated surface slopes. Since now also pro-
duction and destruction of turbulent energy by stratifi-
cation are important, the Schmidt number s« for the
turbulent dissipation rate « is a function of the nondi-
mensional parameter (P 1 B)/«, where B 5 2 N2 isn9t
the buoyancy production of turbulence.

For estimating the sea surface roughness , an ad-sz0

aptation of the Charnok (1955) formula to the sea sur-
face is used:

s 2(u )
s *z 5 a , (24)0 g

with the dimensionless parameter a 5 1400 (Craig and

Banner 1994). Just to give a feeling for this formula:
By using the Kondo (1975) bulk formulae for estimating
the air–sea fluxes, under the assumption of no temper-
ature difference between sea and air, a wind speed at
10 m above the sea surface of U10 5 5 m s21 results in

5 0.005 m and a wind speed of U10 5 25 m s21sz0

results in 5 0.19 m. This seems to underestimatesz0

realistic conditions since Gemmrich and Farmer (1999)
measured 5 0.2 at wind speeds of only U10 5 15 msz0

s21. Since the aim of this mixed layer simulation is the
qualitative investigation of the wave-breaking parame-
terization inside the k–« model, a higher value for a
will not be used.

The forcing during the four days of simulation and
the resulting surface roughness length (which has here
been limited by a lower bound of 0.02 m) and simulated
sea surface temperature are shown in Fig. 8. The sim-
ulated sea surface temperatures, here represented by the
value of the uppermost grid box, are nearly identical,
with (cw 5 100) and without (cw 5 0) wave breaking
parameterization. This is caused by the fact that the near-
surface temperature gradients are weak and therefore do
not create increased vertical fluxes due to higher eddy
viscosities (see Fig. 9). Therefore it does not matter at
which height near the surface the sea surface temper-
ature is defined in order to be compared with the ob-
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FIG. 8. Time series of surface friction velocity, surface roughness length, solar radiation and surface
heat loss, and simulated and observed sea surface temperature before, during, and after a storm at
the FLEX’76 central station.

served bulk sea surface temperature. The observations
are, in principle, reproduced by the model. Deviations
may be explained by wrong estimates of air–sea fluxes,
horizontal advection, or inaccurate measurements.

A closer inspection of the simulated current speed pro-
files before, during, and after the storm (see Fig. 9) reveals
that the model indeed predicts a wave-enhanced layer.
During the storm this wave-enhanced layer can be clearly
seen in the near-surface current speed, which is due to
increased vertical mixing significantly smaller with wave
breaking parameterization. The vertical mean transport is
of course the same with and without wave breaking since
the boundary condition for momentum is not affected by
the wave breaking parameterization—other than the log-
arithmic representation of the vertical axis would suggest.

In contrast to that, the current speed profiles are hardly
affected by wave breaking during calm wind conditions.

For all wind conditions, the wave-enhanced layer can
be clearly seen in the profiles of eddy diffusivity, tur-
bulent kinetic energy, and turbulent dissipation rate. The
height of the wave-enhanced layer strongly depends on
the surface roughness as a function of surface friction
velocity. It should be noted that the shape of the tur-
bulent quantities near the surface appear slightly dif-
ferent here in comparison to the previously discussed
idealized experiments. This is merely due to the differ-
ent scaling of the vertical axis. Here, the distance from
the lower end of the unresolved surface layer of height

is shown in contrast to the previous plots where thesz0

distance from the surface has been used.
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FIG. 9. Profiles of simulated current speed, simulated and observed temperature, and simulated eddy diffusivity, turbulent
kinetic energy, and turbulent dissipation rate before (left), during (middle), and after (right) a storm at the FLEX’76 central
station. The simulations have been carried out with and without wave breaking parameterization. The vertical axis is logarithmic
and for the turbulent quantities the horizontal axis as well.

One interesting feature is that the eddy viscosity after
the storm is nearly as big as during the storm. This can
be explained with the additional nighttime convective
mixing due to the unstable thermal stratification after
the storm caused by strong surface heat losses.

It should be noted that a fine vertical resolution near
the surface had to be used in order to resolve the wave-
enhanced layer also during weak-wind phases with a
small surface roughness length. In order to resolve the
minimum roughness length of 5 0.02 m, we had tosz0
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use N 5 200 vertical layers with a surface zooming
parameter of du 5 3.5. This resulted in a height of the
surface layer of less than 0.01 m such that according to
the study performed in section 4c a sufficient resolution
was reached. In spite of the fine vertical resolution, nu-
merically stable results could be produced with rela-
tively large time steps of Dt 5 120 s.

7. Discussion and conclusions

The well-known k–« two-equation turbulence model
has been modified such that the analytical concept of a
wave-enhanced layer located on top of the classical law-
of-the-wall layer is reproduced. In order to achieve this,
two features of the dissipation rate equation for « had
to be modified: the surface boundary condition and the
turbulent Schmidt number s«. Both are derived with the
aid of the Craig (1996) analytical approach for this prob-
lem and are generalizations of the pure law-of-the-wall
situation. For the flux boundary condition a flux pro-
portional to the TKE injection due to breaking waves
is added. The turbulent Schmidt number s« is now a
function of the turbulence production to dissipation rate
ratio and can be closely approximated by a linear in-
terpolation between the law-of-the-wall and the pure
wave breaking case.

In contrast to the model with unmodified s«, macro
length scales proportional to the distance from the sur-
face could be obtained. This is also the case when the
model is extended with a shear-dependent algebraic sec-
ond-moment closure recently suggested by Canuto et
al. (2001). Near-surface dissipation rate measurements
could be sufficiently simulated with this extended mod-
el. Furthermore, the new model has proven to be nu-
merically stable and could perform a mixed layer sim-
ulation over a couple of days. It can therefore be con-
cluded that these modifications to the classical « equa-
tion are reasonable. Without the possibility of adapting
the well-tested k–« model to surface wave breaking,
further development of this model would have to be
questioned. The method discussed in this paper, insert-
ing the analytical solution of an idealized model prob-
lem into the dynamic equations under consideration,
could be later applied to more advanced versions of
turbulence models, such as the higher-order parameter-
ization of the TKE flux according to Canuto et al. (1994)
or the modifications of the empirical parameters in the
dissipation rate equation according to Canuto et al.
(1999).

The application of modified wave-breaking boundary
conditions to two-equation models has already been sug-
gested by others; see Baumert et al. (2000) for the k–«
model. However, the empirical parameters in the length
scale–related transport equation have not been adapted
in this model. Since they are fitted to represent the law
of the wall, which is violated by surface wave breaking,
a proper reproduction of the wave-enhanced layer can-
not be expected, as shown in section 4b for the k–«

model (see also Fig. 2). The approach presented here
could serve as a guideline for how to solve this problem
for the q2l equation in the Mellor and Yamada (1982)
two-equation model.

One remaining problem with applying the modified
k–« model to realistic scenarios or three-dimensional
models is the need for a near-surface model resolution
at least of the order of the surface roughness length. For
rather smooth sea surfaces under weak-wind conditions,
this could require near-surface layer heights less than 1
cm. For ocean or estuary models with surface-fitted co-
ordinates like the s transformation this, in principle,
should be no problem if vertical mixing processes are
discretized implicitly in time [see, e.g., the Princeton
Ocean Model by Blumberg and Mellor (1987) or the
estuary model by de Kok (1992)]. For numerical models
with geopotential coordinates such resolutions are gen-
eral not realizable due to the free surface elevations [see,
e.g., the Modular Ocean Model based on the work of
Bryan (1969) and Cox (1984) or the estuary model by
Casulli and Cheng (1992)]. It should be noted that such
fine resolution near the surface is not needed for the
pure log-law case if the boundary conditions are prop-
erly discretized (Burchard and Petersen 1999).

There are three quantities connected to the surface
wave breaking parameterization, the estimation of
which is still a matter of scientific debate: the turbulent
Schmidt number for turbulent kinetic energy sk, the
dimensionless proportionality factor for the amount of
TKE injection cw, and the surface roughness length .sz0

These quantities are external parameters for the model
presented here such that the model will remain valid
when changing these values.

The logarithmic slope of the dissipation rate in the
wave-enhanced layer is a function of the turbulent
Schmidt number for turbulent kinetic energy sk. With
the standard value of sk 5 1, the logarithmic slope is
22.68, which is close to the minimum value suggested
by near-surface observations (Terray et al. 1999). The
maximum value measured for the logarithmic slope of
the dissipation rate in the wave enhanced layer, 21.9,
would be obtained by sk 5 0.29. Since due to the van-
ishing flux of TKE in a law-of-the-wall layer the value
of sk is irrelevant in such situations, there is, in prin-
ciple, some freedom to adapt sk to other observed log-
arithmic slopes of the turbulent dissipation rate in the
wave-enhanced layer. It should be noted, however, that
the eddy diffusivity assumption for TKE as well as the
existence of a constant turbulent Schmidt number for
the TKE are crude model assumptions as well. A full
algebraic closure for this term has been suggested by
Canuto et al. (1994).

Also, the dimensionless factor for relating the surface
TKE flux due to wave breaking, cw, is subject to debate.
Craig and Banner (1994) suggested a constant value of
cw 5 100, which is used throughout this paper. Other
authors prefer to set cw proportional to the effective wave
speed to friction velocity ratio. Terray et al. (1996) sug-
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gest such a relationship for young waves only, whereas
Gemmrich and Farmer (1999) also use it for well-de-
veloped waves. In the latter approach, a fixed effective
wave speed of 0.8 m s21 is used in order to account for
the fact that this is the wave speed of waves acquiring
energy from the wind, which is then transferred to the
ocean surface layer. In both approaches, the TKE flux
into the water column due to surface wave breaking is
proportional to the friction velocity squared in contrast
to the original Craig and Banner (1994) approach where
it is proportional to the friction velocity cubed.

Finally, the determination of the surface roughness
length is still an open scientific question. Severalsz0

authors have related this quantity directly to the signif-
icant wave height (e.g., Terray et al. 1996; Drennan et
al. 1996; Terray et al. 1999). However, recent field mea-
surements in the open ocean by Gemmrich and Farmer
(1999) showed a completely different relation between
roughness length and significant wave height, such that
obviously more complex parameterizations for the sur-
face roughness length are needed. Stacey (1999) found
that the Charnok (1955) formula actually is consistent
with a scaling of with the significant waves heightsz0

Hs. Thus, until better parameterizations are found, the
Charnok (1955) formula relating surface roughness
length to surface friction velocity seems to be a good
compromise. The empirical parameter a used within this
formula, however, seems to underestimate actual rough-
ness lengths. Craig (1996) concludes that the determi-
nation of the surface roughness length will be a major
challenge in the future. This is motivated even more
after the Gemmrich and Farmer (1999) paper.

It should be noted that the determination of the sur-
face friction velocity itself is a crude estimate, usually
made with the aid of bulk formulas. Maybe integrated
approaches for the joint modeling of the atmospheric
and the oceanic side of the air–sea interface, which re-
solve the single breaking wave, as recently suggested
by Eifer and Donlon (2001) could in the future help to
better understand this region of complex dynamics.
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