文章编号: 1007-4929(2007)07-0023-02

基于回路法的环状给水管网水力计算的研究

曹慧哲1,张鹏奇2,王海燕1,朱蒙生1,张 健3

(1. 哈尔滨工业大学市政环境工程学院,黑龙江 哈尔滨 150090;2. 哈尔滨工程大学动力与能源学院,黑龙江 哈尔滨 150001; 3. 黑龙江省计量科学研究院,黑龙江 哈尔滨 150036)

摘 要:大型环状给水管网具有复杂的拓扑关系,可充分发挥图论的优势对其进行稳态情况下的水力计算。将图论理论的回路法应用到算例管网的水力计算中,结果显示该方法的收敛速度和计算精度明显高于 Hardy Cross 法。

关键词:给水管网;水力计算;图论;回路法

中图分类号:TU991.3 文献标识码:A

给水管网水力平差计算经过几十年的发展形成了多种计算方法^[1~5],针对环状管网复杂的拓扑关系,图论被引入了稳态管网的平差计算。本文利用了图论中的回路法对算例管网进行了水力计算,以期简化计算并获得更多的信息。

1 基干图论的管网水力计算基本方程

对于具有 n+1 个节点、b 根管段的单定压节点给水管网,当采用回路法来进行复杂环状管网的水力计算时,整个管网的流动可用下列方程表示

$$AG = Q \tag{1}$$

$$B\Delta H = 0 \tag{2}$$

式(1)根据节点连续性方程得到,式中管段流量 $G=(g_j)_{b\times 1}$,节点流量 $Q=(q_i)$,基本关联矩阵 $A=(a_{ij})_{n\times b}$

$$a_{ij} = \begin{cases} 1 & {}$$
 当支路与节点关联,且流向离开节点 -1 当支路与节点关联,且流向指向节点 $+1$ 当支路与节点不关联

式(2) 根据环路能量方程得到,其中基本回路矩阵 $B = (b_{ij})_{(b-n) \times b}$ 。

矩阵 A 、B 代表了给水管网的所有拓扑结构关系,若其按相同边序排列,则满足下式

$$BA^{T} = 0 (3)$$

对于不可压缩流体的恒定管流,式(2)中的管段压降列向量 ΔH 为 $b \times 1$ 阶,在无水泵等水力附件存在时为管段的水头损失

$$\Delta H = S \mid G \mid G \tag{4}$$

式中:阻抗系数矩阵 S 和管段流量绝对值矩阵|G| 均为 $b \times b$ 阶对角阵,其对角元素分别与各管段的阻抗 (s^2/m^5) 和 G 的绝对值相对应。

2 以链支流量作为求解向量的表达式

在图论理论中,管网的所有管段被分为树支管段和链支管段,矩阵 A, B 和 G 均可相应分块表示为:

$$A = (A_t \quad A_t) \qquad B = (B' \quad I_B)$$

$$G = \begin{pmatrix} G_t \\ C \end{pmatrix} \tag{5}$$

式中: A_t 为n 阶树支关联方阵; A_t 为 $n \times (b-n)$ 阶链支关联矩阵; I_B 为(b-n) 阶单位矩阵; G_t 为n 阶管段树支流量列向量; G_t 为(b-n) 阶管段链支流量列向量。

而将式(5)代入式(3)得到 B 的(b-n) $\times n$ 阶分块子阵 B' $B' = -(A_c^{-1}A_f)^t$ (6

将式(5)代入式(1)可得到以 G_l 表达的 G_l

$$G_t = -A_t^{-1}A_tG_t + A_t^{-1}Q (7)$$

由式(5)、(6)和(7)可得到以G₀表达的G

$$G = B^{\mathsf{T}}G_l + A_{\mathsf{Q}}Q \tag{8}$$

式中: $A_Q = {A_t^{-1} \choose O}$,其中O为 $(b-n) \times n$ 阶零阵。

由于在上述推导过程中采用链支流量 G_l 作为求解向量,矩阵的阶数大幅下降,即方程组数和独立变量的数目由 n 个降为 b-n 个,例如某管网由 34 条管段构成,共 16 个节点,则在迭代过程中独立变量的数目会由 34 个降为 19 个,使得下面迭代求解过程的计算量大幅度减少。

收稿日期:2007-07-03

作者简介: 曹慧哲(1974-),女,讲师,博士研究生。

3 离散求解递推关系式

因 $\triangle H$ 中含有 G 的平方项, 故方程 (2) 为非线性方程, 可迭 代求解[3]。在稳态时 Q不变,由式(8)可得 G 的第k+1 次修正 值为

$$\Delta G^{k+1} = G^{k+1} - G^k = B^T \Delta G_l^{k+1} \tag{9}$$

将式(4)用一次泰勒公式展开

$$H_w^{k+1} = H_w^k + 2S \mid G^k \mid \Delta G^{k+1}$$
 (10)

将式(9)、(10)代入式(2)得到用于迭代求解的 G_k 的第 k+1 次 修正值为

$$\Delta G_l^{k+1} = -(M^k)^{-1} \Delta H^k \tag{11}$$

式中:(b-n) 阶麦克斯韦方阵; $M^k = 2BS \mid G^k \mid B^T$;系数矩阵 $\Delta H^k = BH_{w,o}^k$

应用回路法求解式(1)、(2)的基本步骤为:给定链支流量 的初值 G_i^0 ,由式(8) 求得 G^0 ,通过式(11) 求得 ΔG_i^{k+1} ,当其小于 给定精度时 $G=G_{k+1}$,完成稳态管网的平差,否则重复迭代。 上述求解稳态管网的方法也被称为 MKP 法[3],此法不必进行 初始流量的分配,即在G^{β} 均为零的情况下进行迭代,各环闭合 差就会迅速趋近于零,并得到 G 的最终平差结果: \overline{n} Hardv Cross 法(以下简称 H-C 法)中,若 G° 分配不合理,将会使迭 代次数显著增加。

将 G 的最终平差结果代入式(4)可得树支管段压降 H_{WT} , 则节点水头阵 $HI = (hi_i)_{i \ge 1}$ 也可采用矩阵形式进行计算

$$A = (A_t \mid A_t) = \begin{pmatrix} -1 & 0 & 0 & 0 \\ 1 & -1 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

由于本文的求解过程均采用矩阵形式,利用 Matlab 语言 编程比较方便。本文在采用回路法进行算例管网的平差计算 时 $G^0 = 0$,各回路分别与各链支管段相对应;采用 H-C 法进行 平差时 G' = (4, 0, 6, 0, 4, 0, 6, 0) L/s,各回路如图 1 所示。

如表 1 所示, 当迭代到第 2 次后回路法中各回路闭合差的 绝对值均小于 0.01,已远低于 H-C 法中相应回路的闭合差,此 时管网中G的第2次迭代后的修正值,即式(9)中 ΔG^{t+1} 的各 量均已小于 0.01 L/s,完全满足管网水力计算的要求。通过计 算 H-C 法要想达到同样的闭合差和 ΔG^{k+1} 需要迭代 8 次,可见 回路法的收敛速度明显快于 Hardy Cross 法。

H-C 法在第 2 次迭代后的平差结果见表 2 第 5 行,显然其 与第4行回路法所得到的管网平差最终结果有一定的差值,

$$HJ = h_c I + (A_T^T)^{-1} H_{WT}$$
 (12)

式中: h_c 为参考节点的节点水头,I 为n 阶单位列向量,各节点 的自由水头只要将其节点水头减去相应的地面标高即可。

4 算 例

某环状给水管网如图 1 所示,节点 10 为水塔,管段长度、 直径和节点流量见图中标注。水头损失采用曼宁公式进行计 算,其粗糙系数 N_m=0.013。

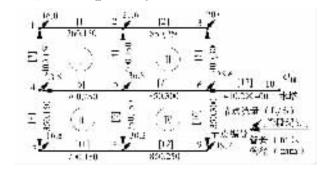


图 1 算例管网水力分析计算图

通过分析选定节点 6 为参考节点,链支管段为[3]、[4]、 [8]和[9],此管网在生成基本关联矩阵 A 时的节点顺序为 1、 2、3、4、5、7、8 和 9, 管段顺序为[1]、[2]、[5]、[6]、[7]、[10]、 [11]、[12]、[3]、[4]、[8]和[9],则

	(-1)	0	0	0	0	0	0	0	-1	0	0	0]
$\mid A_l) =$	1	-1	0	0	0	0	0	0	0	-1	0	0
	0	1	-1	0	0	0	0	0	0	0	0	0
	0	0	0	-1	0	0	0	0	1	0	1	0
	0	0	0	1	-1	0	0	0	0	1	0	1
	0	0	0	0	0	0	-1	0	0	0	-1	0
	0	0	0	0	0	0	1	-1	0	0	0	-1
	0	0	0	0	0	-1	0	1	0	0	0	0 }

表 1 闭合差比较

L/s

迭位	代次数	0	1	2
I环	回路法	6.38	0.32	0.0038
1 1/1	H-C 法	2. 45	-0. 39	0.11
II 环	回路法	10.30	-0. 27	-0.0078
пи	H-C 法	-2.87	. 87 1. 25	0.71
III 环	回路法	-6. 70	-0.30	-0.35
111 7	H-C 法	-2.73	0.31	-0.07
IV环	回路法	-9. 43	0.22	0.0065
1 V DY	H-C 法	-3.55	0.86	0.48

表2	管段流量计算结果	
マフ	官场流重计量结果	

										25, 1		
 管段编号	[1]	[2]	[5]	[6]	[7]	[10]	[11]	[12]	[3]	[4]	[8]	[9]
流量初分配	16.00	47.60	67.60	23.60	60.40	66.20	16.80	47.00	0	0	0	0
第1次迭代	10.10	39.25	59.25	35.67	75.80	59.15	10.60	39.95	5.87	2.48	6.20	0.85
第2次迭代	9.85	39.43	59.43	36.21	75.48	59.29	10.34	40.09	6.15	2.03	6.46	0.44
Н-С	9.94	39.22	59.22	36.08	76.09	58.89	10.38	39.69	6.06	2.32	6.42	0.89

 kg/m^3

表 5 2001~2004 年水分生产率分析表

十里店 北董固 全项目区 全 县 名 称 小麦 玉米 棉花 小麦 玉米 棉花 小麦 玉米 棉花 小麦 玉米 棉花 基线值 1.21 1.46 0.67 1.20 1.50 0.59 1.20 1.48 0.63 2001 2.01 1.83 0.71 1.65 1.77 0.62 1.83 1.80 0.70 项 目 2002 1.95 1.88 0.87 1.82 0.95 1.77 1.79 0.88 2.00 X 2003 1.49 2.25 20.64 1.42 2.13 0.75 1.44 2.00 0.66 2.7 2004 2.18 0.81 2.00 2.79 0.94 2.02 2.61 0.80 基线值 1.21 1.46 0.67 1 2 1.50 0.59 1.20 1.48 0.63 1.22 1.50 0.63 对 2001 1.70 1.60 0.63 1.51 1.58 0.59 1.61 1.59 0.61 1.72 1.7 0.66 照 2002 1.67 1.44 0.60 1.37 1.67 0.77 1.43 1.47 0.68 1.60 1.63 0.78 $\overline{\mathsf{X}}$ 2003 1.35 1.83 1.36 1.37 1.76 1.88 0.58 1.87 0.59 0.59 1.41 0.63

户的要求。但目标是多种多样的,不断变化的,而且在实施过程中可能出现用水纠纷,因此,要完善各种立法,不断解决出现的问题。

2.54

0.76

1.86

2.36

0.75

1.77

3.1.2 水资源分配办法

2004

本次水资源分配是以政府行为进行的,在对全县水资源重新评价的基础上,对农业用水进行分配,其具体做法.

- (1)以 ET 为水权决策基线的可操作的水资源分配,根据各分区不同的 $ET_{\sharp\sharp}$ 、 $ET_{\sharp\sharp}$ 和相应的多年平均地下水允许开采量,按照农户承包土地面积分配到户(地块)。
- (2)在水资源超采区,必须按照合理性原则,开采利用地下水。如地下水短缺,用水户要分摊不足部分的相应水量。

3.2 水权体系建设

没有水权体系任何水资源分配都很难实现。水权体系是 水资源分配的可靠保证。

3.2.1 实施原则

根据馆陶县的实际情况,实施水权原则是:

- (1)县人民政府代表国务院和上级地方政府管理县境内的地下水资源,并全面协调地下水资源分配。
- (2)任何土地使用者对其地面覆盖下的地下水资源拥有使用权(或相对所有权),其中包括优先权。
 - (3)水资源的使用权可以随着土地使用目标而改变或转让。
- (4)对于不顾国家法律限制和其它用水户的利益,任意开 采和浪费地下水资源要赔偿由此造成的一切损失。

3.2.2 水权系统的管理

1.79

2.33

(1)管理体制。县级水资源管理由县水资源管理委员会承担水资源司法和管理职能,该委员会下设水政水资源管理办公室和两个执法大队,具体执行水资源法律与法规。

0.70

1.91

2.47

0.75

(2)管理机制。在县水资源管理委员会的统管下,基层组织和有关部门通力合作,构成水权管理系统和运行机制。如图 1 所示。

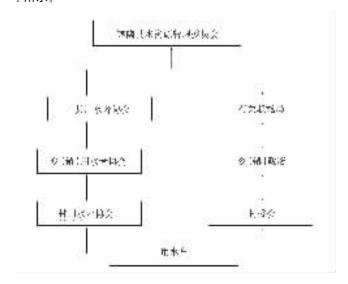


图 1 水权系统运行机制图

(上接第 24 页) 特别是管段[$^{\circ}$] 的第 2 次迭代结果 0.89 L/s 与回路法的 0.44 L/s 相差较多,究其原因是 H-C 法对管段[$^{\circ}$] 初始流量的不合理分配导致的;而回路法在计算过程中,不需进行初始流量的分配,因此在相同迭代次数下其计算精度也较高。

5 结 语

采用图论中的回路法对环状给水管网进行平差计算,可以大幅度减少独立变量数目,不需进行初始流量分配且收敛迅速,方便编写计算机程序,为进一步实时模拟管网实际运行工况提供了可能。

参考文献:

- [1] 赵洪宾. 给水管网系统理论与分析[M]. 北京:中国建筑工业出版社,2003.
- [2] 严熙世,刘遂庆. 给水排水管网系统[M]. 北京:中国建筑工业出版社,2002.
- [3] 石兆玉,赵红平,束际万. 环形供热系统模拟水力计算[J]. 区域供热,1992,(3): 11-24.
- [4] 储诚山,祈淑艳,路志强,等. 信赖域法用于给水管网水力计算的研究[J]. 节水灌溉,2007(3): 41-43.
- [5] 石 继,张丰周,刘志勇. 用图论法中的弦流量式进行环状管网水力平衡计算[J]. 节水灌溉,1998,(5):6-9.