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ABSTRACT. We prove that iff is a nondecreasing, positive, twice differentiable function on
R* such that(ln f(¢))” + (In f(t))’ > 0 for all ¢ > 0, then f satisfies the integral version of
Martins’ inequality.
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Recently a number of papers have appeared on Martins’ inequality:
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which holds forr > 0 andn € N (see([2]). For example, in[1] it is proved that
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where{q;} is an increasing non-constant sequence of positive numbers sati$fyingd4d), >
as—1/ap and [2)(ags1/ae)’ > (ar/ae—1)"~* for ¢ > 1 (and where it is agreed thaj! stands for
[1.-, a;). In particular, the authors show that the sequence ci + d gives a generalization of
Martins’ result whenever > 0 andd > 0.

On a parallel path, continuous versions of the inequality have been investigated,and in [4] F.
Qi and B.-N. Guo ask under which conditions the following holds:
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wheneverf is a positive, increasing and integrable function on the closed interval o] (with
b > a andd > 0) andr > 0 is arbitrary. In a related result, in/[3] N. Towghi and F. Qi prove
that for all» > 0 and any non-negative, integrabfieve have
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(note that the I.h.s. iff [4) is the limit for — oo of the r.h.s.). In another remark, they note
that (3) itself fails without extra assumptions. The issue, then, is at least to identify a sufficient
hypothesis, and this is the aim of the present paper. While logarithmic convexjtyhak

been identified as sufficient in related inequalities, our result below requires a strictly weaker
hypothesis:

Theorem 1. Let f be a nondecreasing, positive, twice differentiable functiofRorsuch that
(5) t(n f(2))" + (In f(2))" = 0

forall ¢t > 0. Then

(4)
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is non-decreasing ofu, o] for everya > 0 and therefore inequalit{@) holds for f and every
choice ofd0 < a < b, andr,§ > 0.

Proof. It is plain that if f satisfies[(b) therf” also does (for every > 0), and so the last
statement is a trivial consequence of functidteing non-decreasing.
Fix a« > 0 and in the following always assume that a. Note that condition (5) implies

(7) (t —a)(In f(t))" + (n f(2))" =0
for all t > a (we are assuming that(¢) is non-decreasing, and therefofie f(¢)) > 0).
Computing the derivatives if|(7) gives
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which is in turn equivalent to
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(if you apply the quotient rule to dlfferentlate the first summandiin (9), and collect the I.h.s. over
the common denominator, then the numerator is seen {6 be:) f(¢) times the 1.h.s. in[(8)).
Now, (9) implies

(t—a)f
1+(t—af’ /f Ydz < (t —a)f(t),

where the second inequality is dueﬂobelng non-decreasing. Next, considering the left hand
side of the following inequality as a quadratic polynomialﬁaﬁf(x)dx, (10) is seen to be
equivalent to

an ( /jﬂxm)z(H%)

(/f dl") (t—a)f(t) +(t —a)’f'(t) + (t —a)*f*(t) <0

(10)
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(inequality [11) says tha,f(f f(z) dz must lie between the two solutions of the quadratic poly-
nomial, and the quadratic formula says that these two solutions are the |.h.s. and the r.h.s. of

(T9).
2
Dividing both sides of[(1]1) b)(fat f(z) d:p) and rearranging the terms we then obtain the
equivalent form

(12) <(t_a)2f(t)> > <(t—a)+(t—a)1nf(t)—/ lnf(x)dx) ,

which clearly implies
(t —a)’f(t) / t
13 ————=>(t—a)+(t—a)ln f(t) — In f(z)dx
(13) @y > (t—a)+(t—a)ln f(t) i f(z)
(since both sides vanish when- a). Finally, if we divide [I38) by(t — a)? we obtain
f(t) 1 1 1 /t
14 - - Inf(t)+ — [ Inf(x)dx >0,
W Tee a0 G 0
which is equivalent to
t 1 t !
(15) <ln/ f(z)dz —In(t —a) — m/ In f(x)dx) >0.
But this amounts to saying that the derivative of the natural logarithm of
1 t
— d
(16) t—a fatf(x) xr
exp (ﬁ [, In f(.:c)da:)
is hon-negative: the latter function bfnust therefore be non-increasing. Sufficiency of condi-
tion (§) is thus proved. O
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