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ABSTRACT. We prove that iff is a nondecreasing, positive, twice differentiable function on
R+ such thatt(ln f(t))′′ + (ln f(t))′ ≥ 0 for all t > 0, thenf satisfies the integral version of
Martins’ inequality.
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Recently a number of papers have appeared on Martins’ inequality:
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which holds forr > 0 andn ∈ N (see [2]). For example, in [1] it is proved that
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where{ai} is an increasing non-constant sequence of positive numbers satisfying (1)a`/a`+1 ≥
a`−1/a` and (2)(a`+1/a`)

` ≥ (a`/a`−1)
`−1 for ` > 1 (and where it is agreed thatan! stands for∏n

i=1 ai). In particular, the authors show that the sequenceai = ci + d gives a generalization of
Martins’ result wheneverc > 0 andd ≥ 0.

On a parallel path, continuous versions of the inequality have been investigated, and in [4] F.
Qi and B.-N. Guo ask under which conditions the following holds:
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wheneverf is a positive, increasing and integrable function on the closed interval[a, b+δ] (with
b > a andδ > 0) andr > 0 is arbitrary. In a related result, in [3] N. Towghi and F. Qi prove
that for allr > 0 and any non-negative, integrablef we have
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(note that the l.h.s. in (4) is the limit forr → ∞ of the r.h.s.). In another remark, they note
that (3) itself fails without extra assumptions. The issue, then, is at least to identify a sufficient
hypothesis, and this is the aim of the present paper. While logarithmic convexity off has
been identified as sufficient in related inequalities, our result below requires a strictly weaker
hypothesis:

Theorem 1. Letf be a nondecreasing, positive, twice differentiable function onR+ such that

(5) t(ln f(t))′′ + (ln f(t))′ ≥ 0

for all t > 0. Then
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is non-decreasing on[a,∞] for everya ≥ 0 and therefore inequality(3) holds forf and every
choice of0 ≤ a < b, andr, δ > 0.

Proof. It is plain that if f satisfies (5) thenf r also does (for everyr > 0), and so the last
statement is a trivial consequence of functionF being non-decreasing.

Fix a ≥ 0 and in the following always assume thatt ≥ a. Note that condition (5) implies

(7) (t− a)(ln f(t))′′ + (ln f(t))′ ≥ 0

for all t ≥ a (we are assuming thatf(t) is non-decreasing, and therefore(ln f(t))′ ≥ 0).
Computing the derivatives in (7) gives
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(if you apply the quotient rule to differentiate the first summand in (9), and collect the l.h.s. over
the common denominator, then the numerator is seen to be(t − a)f(t) times the l.h.s. in (8)).
Now, (9) implies
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where the second inequality is due tof ′ being non-decreasing. Next, considering the left hand
side of the following inequality as a quadratic polynomial in
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(inequality (11) says that
∫ t

a
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nomial, and the quadratic formula says that these two solutions are the l.h.s. and the r.h.s. of
(10)).

Dividing both sides of (11) by
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But this amounts to saying that the derivative of the natural logarithm of
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is non-negative: the latter function oft must therefore be non-increasing. Sufficiency of condi-
tion (5) is thus proved. �
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