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ABSTRACT

The influence of turbulent mixing on double-diffusively driven thermohaline interleaving is investigated. The
problem is formulated using a turbulence-modified flux ratio to link the fluxes of T and S; the addition of
turbulence changes the way in which the effective flux ratio varies with the density ratio Rr. Formulation of
the problem maps onto past interleaving studies, except that the flux ratio is a function of Rr in the present
work. Posing the problem in this way allows the effects of turbulence and intrinsic variations in the salt-finger
flux ratio to be studied within the same theoretical framework.

Turbulence modifies the slope, wavelength, and growth rate of the fastest-growing intrusions, decreasing the
range of slopes and wavenumbers that can grow. However, analysis shows that growing solutions exist for any
finite value of the turbulent diffusivity K t, suggesting that double-diffusively driven intrusions can exist in the
ocean even when double-diffusive fluxes are much weaker than turbulent fluxes.

If the flux ratio is a decreasing function of Rr (as suggested by some models of salt finger convection) a
different instability occurs, which has unbounded growth rates in the high wavenumber limit (a ‘‘UV catas-
trophe’’). In most cases, the instability can be suppressed by the addition of sufficiently strong turbulent mixing.
The threshold for this instability depends upon variation of the T/S flux ratio with Rr, and hence on the relative
strengths of turbulent and double-diffusive mixing. The instability is shown to be nonintrusive in nature, as it
does not rely upon lateral advection across a front; it is found to be closely related to the one-dimensional
double-diffusive instability investigated by Huppert.

1. Introduction

Thermohaline interleaving is often observed in re-
gions of the ocean characterized by strong lateral T–S
gradients. Interleaving was first documented by Hamon
(1967) and Stommel and Fedorov (1967), who recog-
nized that it could be an important mechanism for cross-
front mixing. Since then, interleaving has been docu-
mented on the edges of mesoscale eddies (Ruddick
1992), on the periphery of major currents (Toole 1981),
on shelf-break fronts (Horne 1978; Barton and Hughes
1982), and generally at confluences of water masses
with differing T–S properties. Carmack et al. (1998)
observed interleaving layers of Atlantic and Pacific wa-
ter in the Arctic Ocean; these layers (or intrusions) were
laterally coherent over distances of more than 1000 km.
Carmack et al. suggested they may play an important
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role in recent large-scale thermohaline transitions within
the Arctic Ocean. Richards and Pollard (1991) suggest
that intrusions several hundred kilometers long in the
near-surface waters of the equatorial Pacific might be
associated with strong lateral mixing within the ther-
mocline.

Stern (1967) identified salt finger convection as a pos-
sible driving mechanism for interleaving, but the lack
of friction in his theoretical model led to unbounded
growth rates in the high wavenumber limit. This was
remedied by Toole and Georgi (1981), who incorporated
friction into Stern’s model. Their modification led to a
prediction of a finite wavelength for the fastest-growing
intrusion, in reasonably good agreement with obser-
vations. Since Toole and Georgi’s study, numerous the-
oretical studies have appeared, most of which are var-
iations on their linearized stability analysis. Holyer
(1983) investigated intrusions driven by molecular flux-
es of T and S and found that growth was possible, even
when the stratification was stable to double-diffusive
convection, because the molecular diffusivities of T and
S differ. McDougall (1985a) recast Toole and Georgi’s



2232 VOLUME 30J O U R N A L O F P H Y S I C A L O C E A N O G R A P H Y

analysis in a layer framework, assuming a background
of convecting layers separated by double-diffusive in-
terfaces. Walsh and Ruddick (1995a) investigated the
effect of Rr-dependent diffusivities on growing intru-
sions and found that nonconstant diffusivities could lead
to growth rates much larger than predicted by constant
diffusivity models. Kuz’mina and Rodionov (1992) and
May and Kelley (1997) have examined the effect of
baroclinic shear on intrusions, and their work suggests
that background shear can have an important effect on
growing intrusions. May and Kelley argue that shear
may either increase or decrease growth rates, depending
on the relative signs of the cross-front salinity and den-
sity gradients.

Most theoretical investigations since Stern’s (1967)
study have assumed that small-scale fluxes are purely
double diffusive. However, while stratification condi-
tions in large parts of the World Ocean are unstable to
salt fingering (Schmitt 1981), salt fingers rarely occur
without turbulence. Except perhaps in large-scale ther-
mohaline staircases like the C-SALT staircase (Schmitt
et al. 1987), both fingers and turbulence typically con-
tribute to the total flux of salt, heat, and buoyancy. Mi-
crostructure observations by Ruddick et al. (1997) in
the North Atlantic Tracer Release Experiment (NATRE)
used the ‘‘scaled diffusivity ratio,’’ Gd, to diagnose dou-
ble-diffusive effects and failed to find significant evi-
dence of salt finger enhancement of turbulent fluxes.
Due to lower noise levels and the ability to observe the
Richardson number directly, St. Laurent and Schmitt
(1999) found that the observed Gd in the NATRE region
was consistent with salt fingers for segments with Rich-
ardson number greater than one, low values of Rr, and
high x (to address signal/noise issues only the highest
25% of x values were used in their analysis). Segments
with Richardson number less than one, or with double-
diffusively stable (i.e., nonfingering) stratification had
Gd consistent with turbulence values. This indicates the
conditions under which salt fingers may be found in
central waters: absence of turbulence and low Rr, and
makes it clear that salt fingers and turbulence coexist
in such regions. St. Laurent and Schmitt formulated a
model of coexisting, noninteracting turbulence and salt
fingers in which the effects are additive and estimated
the net fluxes in the NATRE region. The salt diffusivity
was found to be enhanced by 60% over the thermal
diffusivity estimated from the Osborn–Cox (1972) mod-
el. Good agreement was found between the salt diffu-
sivity and the directly observed tracer diffusivity, and
the buoyancy flux divergence was computed, leading to
an estimated diapycnal velocity of ø21.7 m yr21, which
compared favorably to that inferred from the tracer.
Thus, the analysis of St. Laurent and Schmitt demon-
strates that, in the NATRE region, diapycnal mixing of
heat, salt, and tracers is dominated by turbulence but
enhanced by salt fingers. By focusing on data segments
with large Richardson number and large x, St. Laurent
and Schmitt found evidence that the T/S flux ratio in

the NATRE region was a decreasing function of the
density ratio Rr, in qualitative agreement with the salt
finger model due to Stern (1975). While this result is
suggestive, interpretation is difficult because the effect
of turbulence on the net flux ratio and on the effective
diffusivity for density is critically dependent on the rel-
ative balance between turbulence and salt fingers and
on how that balance depends on the density ratio and
Richardson number.

Even if turbulent fluxes dominate over double-dif-
fusive fluxes in many situations, evidence still points to
double diffusion as a primary driving mechanism for
interleaving. Convincing evidence for this was provided
by Ruddick (1992), who showed that intrusion slopes
and wavelengths in Meddy Sharon were consistent with
double-diffusive driving, both in the upper (diffusively
stratified) and lower (salt finger stratified) halves of the
meddy. Ruddick inferred an effective salt diffusivity of
KS ø 3 3 1025 m2 s21 in the interleaving layers, com-
parable with the value of 1–2 (31025 m2 s21) typical
of shear-driven mixing in the thermocline (e.g., Ledwell
et al. 1993). Given the ubiquitous nature of turbulence
in the ocean, it is likely that both double diffusion and
turbulence were present within these intrusions, and this
raises the question of how intrusions are affected by
turbulence. In order to assess the importance of intrusive
fluxes in the ocean, a better understanding is needed of
the factors that limit their growth at large amplitude and
set fluxes. One such factor is turbulence, which can alter
the balance between buoyancy-driven cross-front ad-
vection and friction.

In this work, we extend that of Walsh and Ruddick
(1995a) by incorporating the effects of high Reynolds
number turbulent mixing. In addition, we explore the
consequences of using a more realistic Rr-dependent
formulation for the salt finger flux ratio [like those pro-
posed by Stern (1975, pp. 192–195) and Schmitt
(1979a)], rather than the constant value used in most
previous theoretical studies of interleaving. The problem
is formulated so that turbulence appears as an
Rr-dependent T/S flux ratio. This allows an examination
of the effects of both turbulence and nonconstant finger
flux ratio within the same theoretical framework.

In section 2 we formulate the model equations, then
linearize the equations and derive a growth rate poly-
nomial for the linearized system. In section 3, we con-
sider the constant finger flux ratio case and show that
the addition of turbulence damps out high-wavenumber
intrusions that would otherwise grow. Next, we dem-
onstrate that the qualitative character of the solutions
can be inferred from properties of the marginal stability
curve. The marginal stability curve is found to be either
elliptical or hyperbolic when plotted as a function of
the slope s and squared vertical wavenumber m2, a result
independent of the detailed form of the diffusivity and
flux ratio formulations used. In section 4, we consider
the effect of a nonconstant salt finger flux ratio and show
that using either the formulation due to Stern (1975) or
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FIG. 1. Schematic of interleaving disturbances growing on a T–S front. Warm and salty water
rises as it crosses the front; water from the cool, fresh side descends across the front. Lateral
motions through horizontal T–S gradients produce small T–S disturbances (shown at right for the
profile at location A), and the resultant variations in double-diffusive density fluxes (shown by
arrows) accelerate the cross-front motion.

that due to Schmitt (1979a) leads to a high wavenumber
‘‘UV’’ instability different from the classical intrusive
instability, but qualitatively similar to that discussed by
Huppert (1971). Finally, we demonstrate that the qual-
itative properties of the solutions depend only on var-
iation of the turbulence-modified flux ratio with Rr. We
end with a discussion (section 5) and conclusions (sec-
tion 6).

2. The model

Our approach is similar to that of Walsh and Ruddick
(1995a). We investigate the linear stability of a ‘‘front’’
characterized by uniform horizontal and vertical gra-
dients of temperature and salinity. The basic state is
assumed to be unstable to salt finger convection, so aT z

. bS z. Figure 1 shows quasi-lateral interleaving layers
on a wide front, with warm and salty layers rising and
cool and fresh layers descending as they cross the front.
Vertical profiles of salinity, temperature, and the asso-
ciated buoyancy fluxes (shown as vectors) taken at ‘‘A’’
are also shown. For the case shown, vertical buoyancy
flux convergences due to salt fingering reinforce the
initial motion, causing the intrusions to accelerate across
the front. The difference between this study and Walsh
and Ruddick (1995a) is in the parameterization of the
small-scale vertical fluxes, which here are taken to be
due to a linear superposition of turbulence and double

diffusion rather than pure double diffusion. Following
Walsh and Ruddick (1995a), the model equations are

(u)u 1 p /r 5 2F (1a)t x 0 z

(w)w 1 p /r 1 g(bS 2 aT ) 5 2F (1b)t z 0 z

u 1 w 5 0 (1c)x z

(S)S 1 uS 1 wS 5 2F (1d)t x z z

(T )T 1 uT 1 wT 5 2F . (1e)t x z z

The terms represent vertical flux divergences of(· )F z

heat, salt, and momentum. Incorporated in (1) is the
assumption that intrusions have small slopes, and there-
fore horizontal flux divergences are negligible compared
with vertical flux divergences. Equations (1a–c) can be
simplified by using the streamfunction c, defined as

cx 5 w cz 5 2u, (2)

in which case (1a–c) reduce to a single equation for the
alongfront vorticity ¹2c:

¹2ct 1 g(bSx 2 aTx) 5 2 ,(u) (w)F Fzz zx (3)

indicating that the alongfront vorticity changes in re-
sponse to cross-front variations in anomalous density
and diffusion effects.

Small-scale vertical fluxes of heat, salt, and momen-
tum are specified using eddy diffusivities and viscosi-
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FIG. 2. Effect of turbulence on the effective T/S flux ratio geff when
gf is constant (gf 5 0.6) (numbers on the curves show the value of
K t/ ).fK S

ties, with finger fluxes of heat and salt linked via the
finger flux ratio gf

5 gf ,(T) (S)aF bFfingers fingers (4)

as first suggested by Stern (1967). As in Walsh and
Ruddick (1995a), diffusivities and viscosities are taken
to be functions of the density ratio Rr:

aTzR 5 . (5)r bSz

The fluxes in (1) are thus given by

(u) f tF 5 2Au 5 2[A (R ) 1 A ]u (6a)z r z

(w) f tF 5 2Aw 5 2[A (R ) 1 A ]w (6b)z r z

(S) f tF 5 2K S 5 2[K (R ) 1 K ]S (6c)S z S r z

fK (R )S r(T ) tF 5 2K T 5 2 g (R ) 1 K T , (6d)T z f r z1 2Rr

where in (6d) Eq. (4) has been used to express finger
fluxes of temperature in terms of the salt flux. The su-
perscripts ‘‘f’’ and ‘‘t’’ in (6) denote salt fingers and
turbulence, respectively, so is a finger diffusivity andfK S

K t a turbulent diffusivity. We take the turbulent diffu-
sivities of T and S to be equal, consistent with the idea
that turbulent mixing is caused by energetic high-Reyn-
olds-number turbulence. Flux laws like (6) have been
used by Kuz’mina and Rodionov (1992) in an investi-
gation focusing on the effect of baroclinicity on double-
diffusive interleaving.

A number of studies have addressed the coexistence
of fingers and turbulence. McDougall and Ruddick
(1992) proposed a method of interpreting microstructure
data that can in principle differentiate between double
diffusion and shear-driven turbulent mixing. Their the-
ory is based on the assumption that salt fingers and
turbulence have very different timescales, so their com-
bination can be approximately represented by a linear
combination of finger and turbulent fluxes. These ideas
are consistent with laboratory studies due to Crapper
(1976) and Linden (1971), who also suggest that tur-
bulent and finger fluxes add linearly.

In most theoretical studies of interleaving, the salt
finger flux ratio gf is taken to be constant, with a value
in the range of 0.5–0.9. However, theoretical models of
of salt fingers (Stern 1975) and laboratory experiments
(Schmitt 1979b) indicate that gf is a decreasing function
of Rr, with a maximum value at Rr 5 1. A more com-
plete analysis by Schmitt (1979a) indicates that gf is a
decreasing function of Rr for relatively small values of
Rr, but may be an increasing function of Rr for large
Rr (Rr * 4). For the diffusive case, Kelley (1984) has
analyzed staircase data that indicate the diffusive flux
ratio gd is largest when Rr 5 1 and decreases mono-
tonically away from Rr 5 1.

The functional forms of and Af are poorly known.fK S

Schmitt’s (1981) study suggests that is maximumfK S

near Rr 5 1 (where finger growth rates are largest) and
decreases rapidly with increasing Rr. Kunze (1994) pro-
posed a model for salt fingers disrupted by intermittent
turbulence. Kunze’s results suggest that may increasefK S

with Rr for small values of Rr but should decrease with
Rr for larger Rr, in agreement with Schmitt’s result.
There are further discrepancies between the diffusivities
predicted by Schmitt and Kunze, the most notable being
that Schmitt’s diffusivities are some two orders of mag-
nitude larger than those predicted by Kunze and are
almost certainly too large. In the following derivation
we will carry through the full Rr dependence of the
diffusivity and viscosity for the sake of completeness
but, in the discussion sections that follow, we will focus
almost exclusively on the effect of an Rr-dependent flux
ratio rather than on the effect of a nonconstant diffu-
sivity. This is due to the uncertain diffusivities, and
because the effect of Rr-dependent diffusivity on inter-
leaving has already been discussed by Walsh and Rud-
dick (1995a,b).

Equations (6c,d) can be manipulated to give

f tg K 1 K Rf S r(T ) (S)aF 5 bF . (7)
f t1 2K 1 KS

Comparing (7) with (4) shows that the expression in
parentheses in (7) has the form of a turbulence-modified
‘‘effective’’ T/S flux ratio

f tg (R )K (R ) 1 R Kf r S r r
g (R ) [ . (8)eff r f tK (R ) 1 KS r

The effective flux ratio geff is a function of Rr even
when both gf and are constants. For nonzerofK S

K t / and constant gf (50.6), geff is a monotonicallyfK S

increasing function of Rr (Fig. 2).
Using (1d), (1e), (3), (6), and (8), the governing equa-

tions can be written in the form:
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2 ¹ c 1 g(bS 2 aT ) 5 (A(R )c ) 1 (A(R )c )t x x r xz xz r zz zz

S 1 uS 1 wS 5 (K (R )S ) t x z S r z z
 

b
T 1 uT 1 wT 5 g K (R )S .t x z eff S r z 1 2a

z 

(9)
These are identical to the equations analyzed by Walsh

and Ruddick (1995a), except that the finger flux ratio
has been replaced by the modified flux ratio geff ,
which is a function of Rr (and hence is differentiated).
Putting S 5 S 1 S̃, T 5 T 1 T̃, c 5 in (9) [wherec̃
terms with tildes ( ) are small perturbations], defining·̃
R r 5 aT z /bS z , and keeping only terms linear in
perturbation quantities gives the linearized version of
(9):

2 2˜ ˜ ¹ c̃ 1 g(bS 2 aT ) 5 1A¹ c̃ (10a)t x x zz ˜ ˜ ˜b(S 2 c̃ S 1 c̃ S ) 5 [K 2 R K9]bS 1 K9aT (10b)t z x x z S r S zz S zz 
˜ ˜ ˜a(T 2 c̃ T 1 c̃ T ) 5 [g (K 2 R K9) 2 g9 R K ]bS 1 [g K9 1 g9 K ]aT . (10c)t z x x z eff S r S eff r S zz eff S eff S zz 

| | | |}}}} ]}}z z 

Primes denote differentiation with respect to Rr, and
diffusivities and viscosities in (10) are evaluated at Rr

5 R r. While the effects of turbulent mixing are incor-
porated into the right-hand sides of (10a–c), the purely
double-diffusive case may be recovered by setting geff

5 gf , A 5 Af , and KS 5 .fK S

Except for the horizontal braced terms, (10) is iden-
tical to the equations analyzed by Walsh and Ruddick
(1995a) with gf replaced by geff. Variations in the vis-
cosity do not enter into the problem at this order, as
discussed in Walsh and Ruddick (1995a). Further, al-
though (10) does not include rotational effects, Toole
and Georgi (1981) and McDougall (1985a) have shown
that, in the absence of large-scale shear, the vertical

wavenumber, cross-front slope, and growth rate of the
fastest-growing intrusions are unaffected by rotation.
The main effect of rotation is to induce an alongfront
tilt such that cross-frontal velocities are in thermal-wind
balance. Finally, in deriving (10) it is assumed that r x

5 0 (i.e., aT x 5 bS x), so the fluid is motionless in the
basic state. In the rotating case, this assumption removes
the complication of alongfront geostrophic shear, which
will tilt intrusions and disrupt their growth, a possibility
which led May and Kelley (1997) to suggest that intru-
sions in strongly sheared fronts cannot tilt in the along-
front direction.

The growth rate polynomial for (10) is obtained by
substituting solutions of the form ei(k*x1m*z)1l*t into the
linearized form of (10), giving

3 2 2 4 2 6l 1 l m [1 1 Pr 1 (g 2 R )K9 /K 1 g9 ] 1 l(Prm [1 1 (g 2 R )K9 /K 1 g9 ] 1 s ) 1 g9 Prmeff r S S eff eff r S S eff eff
| | | | | |}] }] }}}}z z z

2 22 [1 1 (1 2 R )K9 /K ]m s(« 2 s(1 1 « )) 2 g9 sm (« 2 s« )/« 5 0. (11)r S S x z eff x z z
| |]}}}}}}}}}z

The following dimensionless quantities have been in-
troduced:
l 5 l* /N (growth rate)

m 5 m*ÏK /N (vertical wavenumber)S

s 5 k* /m* (cross-front slope)

Pr 5 A /K (Prandtl number)S

2
S 5 gbS /N (horizontal salinity gradient)x x

2
S 5 gbS /Nz z

5 1/(R 2 1) (vertical salinity gradient)r

« 5 (1 2 g )Sx eff x

« 5 (1 2 g )S 5 (1 2 g )/(R 2 1). (12)z eff z eff r

We have assumed that intrusion slopes are small (s K
1) in deriving (11). Expression (11) generalizes Eq. (13)
from Walsh and Ruddick (1995a) to include a noncon-
stant flux ratio; horizontal braced terms in (11) did not
appear in the growth rate polynomial analyzed by Walsh
and Ruddick (1995a). The polynomial (11) was dis-
cussed briefly by Walsh and Ruddick (1998), who used
it to initialize their numerical model, although they did
not discuss its properties in detail.

We will show that (11) admits two different instabil-
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FIG. 3. Real part of growth rate contoured as a function of slope
(s) and squared wavenumber (m2) for the constant gf (50.6) case
with nonzero K t (K t/ 5 0.1). Dashed contours show negativefK S

growth rates; shading indicates complex growth rates (i.e., oscillatory
solutions). The heavy solid line shows the curve Re(l ) 5 0.

ities: the standard intrusive instability analyzed by Toole
and Georgi (1981), which has peak growth rates at a
finite value of the vertical wavenumber m, and an insta-
bility with unbounded growth rates in the large m limit
(henceforth referred to as the high-wavenumber or ‘‘UV’’
instability), which occurs when the flux ratio geff is a
decreasing function of Rr. The two instabilities can co-
exist, and in general intrusions dominate for smaller val-
ues of m, while the UV instability dominates at large m.

The marginal stability curve

Information about intrusion growth rates, slopes,
wavenumbers, and parameter dependencies can be
gained by considering the marginal stability properties
of (11). Setting l 5 0 in (11) gives the condition for
marginal stability:

2 4m {g9 Prm 2 [1 1 (1 2 R )K9 /K ]s[« 2 s(1 1 « )]eff r S S x z

2 g9 s(« 2 s« )/« } 5 0.eff x z z (13)

Thus, either m2 5 0 or the expression in braces is zero.
In the latter case the equality can be written

2 2 2(s 2 a) (m )
1 5 1, (14)

2 2a b

where

g9 /« 1 1 1 (1 2 R )K9 /K« eff z r S Sxa 5
2 g9 1 [1 1 (1 2 R )K9 /K ](1 1 « )eff r S S z

g9 /« 1 1 1 (1 2 R )K9 /K« eff z r S Sxb 5 .
1/22 [g9 Pr{g9 1 [1 1 (1 2 R )K9 /K ](1 1 « )}]eff eff r S S z

(15)

If b is real (as for the constant gf case shown in Fig.
2), (14) describes an ellipse in the (s, m2) plane; all
values of s and m2 within the ellipse correspond to ex-
ponentially growing solutions. If b is imaginary, the
marginal stability curve is hyperbolic, and there is no
high wavenumber cutoff for growth (this case will be
discussed in section 4).

The real part of the growth rate is contoured in Fig.
3 as a function of the slope s and squared vertical wave-
number m2 (R r 5 1.6, Pr 5 5, S x 5 0.05, gf 5 0.6, and
K t / 5 0.1). For each s and m2, the root of (11) withfK S

the largest real part is shown. Shading shows growth
rates with nonzero imaginary part, indicating solutions
that oscillate as they grow or decay. The heavy line is
the curve Re(l) 5 0; the ellipse described by (14) sur-
rounds the region with positive, real growth rates.
Growth rates for the oscillatory solutions depend strong-
ly on m2 and only weakly on s, indicating that these
modes are strongly damped by friction.

3. The effect of turbulence

We first consider the case in which gf is constant but
K t is nonzero, in which case geff increases monotonically

with Rr, as shown in Fig. 2. Figure 4 shows the effect
of nonzero K t on the slope, wavenumber, and growth
rate of the fastest-growing mode for the case Pr 5 5,
S x 5 0.05, as a function of Rr. The qualitative effect of
turbulent mixing is to increase the vertical scale and
decrease the slope and growth rate of the fastest-growing
intrusions. The fastest-growing intrusion is quite sen-
sitive to the turbulence level, especially for larger Rr.

a. Constant flux ratio case

If there is no turbulent mixing of T or S (K t 5 0) and
if gf is constant, then (7) shows that geff is also constant,
and the problem reduces to the constant flux ratio case
considered by Toole and Georgi (1981) and others.
Growth rates for this case are contoured in Fig. 5. The
appropriate limiting case of (15) is obtained by letting

→ 0 in (15) and setting geff 5 gf , givingg9eff

(1 2 g )Sf xa 5 b → `, (16)
2(1 1 (1 2 g )S )f z

or equivalently

(1 2 g )Sf x0 , s , . (17)
1 1 (1 2 g )Sf z

This range of slopes and wavenumbers corresponds to
the shaded band in Fig. 6. The range of slopes is larger
than for the case with nonzero K t , and there is no high
wavenumber cutoff for intrusion growth. The result (16)
is independent of the value of the viscosity; changing
the Prandtl number changes growth rates, but the shape
of the marginal stability curve remains the same.
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FIG. 4. Effect of turbulence on the properties of the fastest growing intrusion, plotted as a
function of Rr for various values of K t/ [K t/ 5 0 (solid), K t/ 5 0.1 (dashed), and K t/f f f fK K K KS S S S

5 0.2 (dash-dotted)], with gf 5 0.6, Pr 5 5, Sx 5 0.05, and / 5 0.f fK 9 KS S

FIG. 6. Marginal stability curves for the constant flux ratio case
(gf 5 0.6) with turbulent mixing (Pr 5 5, Sx 5 0.05, R r 5 1.6). The
shaded band is the region in which intrusions grow in the absence
of turbulence. The marginal stability region is elliptical when K t is
nonzero, and increasing K t shifts the curve toward smaller slopes and
wavenumbers (numbers on the curves show the value of K t/ ).fK S

FIG. 5. As in Fig. 3 but with K t 5 0. In this case there is no high
wavenumber cutoff for intrusion growth.

b. The limit of strong turbulent mixing

In this section, we will show that intrusions can
grow even when turbulent fluxes of T and S are much
larger than double-diffusive fluxes. If ; K K tf fK K9S S

and 5 0, then the semimajor axes (15) are ap-g9f
proximated by

f1 KS 2 f fa 5 (1 2 g )S (R 1 (R 2 1) K9 /K )f x r r S St2 K
f t 21 O([K /K ] ) (18a)S

f1 KS 2 f fb 5 (1 2 g )S (R 1 (R 2 1) K9 /K )f x r r S S1/2 t2 Pr K
f t 21 O([K /K ] ). (18b)S

Both axes (18a,b) are proportional to /K t if /K t Kf fK KS S

1, implying that, for any finite value of /K t , therefK S

exists a finite area of the (s, m2) plane in which intru-

sions can grow.1 This suggests intrusions can grow even
where double-diffusive fluxes are considerably smaller
than turbulent fluxes, a rather surprising result. In the
strong turbulence limit, (8) shows that the effective flux
ratio is given by geff 5 R r 1 O( /K t), which is largerfKS

than one for finger-sense stratification. In this case, the
effective diffusivity for density is [from (9b,c)] Kr 5
2KS(1 2 geff)/(Rr 2 1), which is positive, so the net
buoyancy flux is downgradient (i.e., turbulent buoyancy
fluxes dominate over double-diffusive fluxes). Double
diffusion is characterized by upgradient buoyancy flux-
es, so light water is made lighter and dense water denser;

1 Setting 5 0 has eliminated the high wavenumber instability,g9f
so all growing modes within the ellipse with semimajor axes (18a,b)
must be intrusive in nature.
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this mechanism is fundamental to intrusion growth, so
it seems intuitive that intrusions should not grow when
geff . 1. However, it is the ratio of T and S divergences—
not the flux ratio—that must be less than one to drive
intrusion growth, and intrusions grow if this ‘‘flux di-
vergence ratio,’’ Gdiv [ aFT,z/bFS,z, is less than one
[Walsh and Ruddick (1998) discuss this point in some
detail]. In the constant gf case with no turbulent mixing
considered by Toole and Georgi (1981) and others, gf

and Gdiv are exactly equal, making the distinction un-
necessary. However, in the present case, an
Rr-dependent flux ratio allows the flux divergence ratio
to differ from the flux ratio (i.e., aFT,z/bFS,z 5 geff 1

Rr,zFS/FS,z ± geff) so that intrusions may grow eveng9eff

when geff is larger than one, as long as Gdiv , 1.

c. The high-wavenumber cutoff

Figure 6 shows marginal stability curves for various
values of K t / (numbers on the curves show the valuefK S

of K t / ). Increasing K t / causes the curve to movef fK KS S

toward lower slopes and wavenumbers. Comparing
these curves with the K t / 5 0 case (shaded) showsfK S

that a major effect of turbulence is to stabilize high
wavenumber disturbances. To explore the mechanism
behind this, we compute eigenvectors for the system
(10) in the large-m limit. For maximum simplicity, we
consider the large Prandtl number limit, which is equiv-
alent to assuming a steady momentum balance in (10a),
allowing (10b,c) to be written as a closed set for S̃ and
T̃. Assuming harmonic solutions gives

ˆ ˆgk*(bS 2 aT )
2ˆ ˆ ˆl*bS 1 b(m*S 2 k*S ) 5 2m ([K 2 R K9]bS 1 K9aT ) (19a)x z S r S S4 *Am*

ˆ ˆgk*(bS 2 aT )
2 2ˆ ˆ ˆl*aT 1 a(m*T 2 k*T ) 5 2m [g (K 2 R K9) 2 g9 R K ]bS 2 m [g K9 1 g9 K ]aT, (19b)x z eff S r S eff r S eff S eff S4 * *Am*

where Ŝ and T̂ are the disturbance amplitudes. Because
we are interested in exploring the high-wavenumber cut-
off, which is not dependent on diffusivity variations, it
is sufficient to consider the case 5 0. In this case,K9S
(19a) gives

gk*
(m*S 2 k*S )x z4ˆbS Am*5 . (20)ˆaT gk*

2l* 1 (m*S 2 k*S ) 1 m Kx z S4 *Am*

In the large-m* limit, the eigenvalues of (19) are l* 5
2 KS 1 and l* 5 2 KS 1 . We2 24 2 24m O(m ) g9 m O(m )eff* * * *
will consider the eigenvalue proportional to , sinceg9eff

(15b) shows that a finite high-wavenumber cutoff re-
quires that be positive. In the large-m* limit, thisg9eff

eigenvalue corresponds to the eigenvector
ˆbS

255 O(m ) → 0, m* → `, (21)ˆ *aT

in which case the velocity û 5 gk*(bŜ 2 aT̂)/ also4Am*
vanishes, so these modes are nonadvective in the limit
as m* → `. For disturbances described by (21) Eqs.
(19a,b) decouple, and (19b) shows that high wave-
number disturbances evolve according to a diffusion
equation:

aT̃t ø 1 KSaT̃zz.g9eff (22)

If . 0, the effective diffusivity is positive, so dis-g9eff

turbances decay.

d. The ‘‘incomplete’’ turbulent mixing case

The growth rate polynomial (11) is quite general, and
growth rates for a wide variety of diffusivity and flux
ratio formulations can be obtained as special cases of
this polynomial. One such case is that considered by
Hebert (1999), who proposed differential mixing of T
and S due to low-Reynolds-number turbulence as a pos-
sible driving mechanism for intrusions. The idea of dif-
ferential mixing originated in laboratory experiments
done by Turner (1965), who measured turbulent fluxes
across a density interface as a function of interfacial
Reynolds number. Turner found larger effective diffu-
sivities when the stratification was maintained by tem-
perature than for the salt stratification case. The differ-
ences were most pronounced at low Reynolds number,
and Turner suggested that his results were a consequence
of molecular modification of low-Reynolds-number tur-
bulence. Based on Turner’s results, Hebert assumed un-
equal, constant, diffusivities for T and S. This case can
be recovered from our analysis by setting geff 5 tRr,
where t is a diffusivity ratio. This transforms (11) into
the growth rate polynomial derived by Hebert (1999)
for the ‘‘incomplete’’ turbulent mixing case. Equation
(15) shows that, if 5 0, then, if t , 1, the marginalfK 9S
stability curve is elliptical and solutions resemble in-
trusions, while, if t . 1, the marginal stability curve
is hyperbolic and steeply sloped disturbances reminis-
cent of salt fingers grow.
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FIG. 7. Stern’s (1975) salt finger flux ratio formula (23) (solid) and
Schmitt’s (1979a) formulation (dashed).

FIG. 8. Real part of growth rate contoured using Stern’s flux ratio
formulation (23), with K t 5 0, R r 5 1.6, Pr 5 5, and Sx 5 0.05.
Largest wavenumbers grow fastest, and there is no local maxima
corresponding to intrusions. Dashed contours show negative growth
rates; shaded regions indicate oscillatory solutions. The heavy solid
line shows the curve Re(l ) 5 0.

4. Double-diffusive effects: The form of the salt
finger flux ratio

We next consider the purely double-diffusive case and
the effect of using a variable finger flux ratio gf . There
are a variety of theoretical possibilities for the flux ratio.
Stern (1975, section 11.2) considers the stability of uni-
form finger-sense gradients to vertically oriented finger
motions sinusoidal in x and y. He solves for the max-
imum growth rate in the limit of large Prandtl number
and diffusivity ratio, and finds the following form for
the finger flux ratio:

g (R ) 5 R 2 ÏR (R 2 1), (23)f r r r r

which is shown as a solid curve in Fig. 7. This functional
form decreases monotonically with Rr from a value of
1 at Rr 5 1 to below 0.6 at Rr 5 2 and asymptotes to
0.5 at large Rr. This form is also found by the finger
model of Kunze (1987). Schmitt (1979a) extended
Stern’s model to finite Prandtl number and diffusivity
ratios, solved indirectly for the fastest-growing mode,
and found a closed but rather complicated form for the
finger flux ratio. Schmitt’s flux ratio decreases from
ø0.74 at Rr 5 1 to a minimum of ø0.56 at Rr ø 4,
and then begins to increase slowly (dashed curve in Fig.
7), asymptoting to (Rr/t)1/2 for large Rr (t is the dif-
fusivity ratio). Schmitt also postulated a physically ap-
pealing interface model in which initial gradients set the
fastest-growing wavelength, but fluxes eventually de-
crease the salinity gradient in the interior of the interface
to allow fingers to equilibrate. The associated flux ratio
for this equilibrium state is slightly higher than
Schmitt’s fastest-growing form but has qualitatively
similar characteristics and the same asymptote at high
Rr.

The three flux ratio formulations all have similar char-
acteristics and values for the range Rr & 4, where fingers
might dominate over turbulence. In the range 4 & Rr

& 10, the Schmitt formulation has positive slope while
Stern’s has negative slope, but quantitative differences
between the three are small. The scatter and range of
observed flux ratios from laboratory experiments is too
large to allow one formulation to be selected over others.
The main characteristic that laboratory experiments
demonstrate is a systematic increase in flux ratio as Rr

approaches 1, and all three formulas capture this char-
acteristic. Nevertheless, the relatively small differences
between the these formulations lead to important dif-
ferences in the behavior of our model solutions. We have
chosen to use Stern’s flux ratio (23) and Schmitt’s fast-
est-growing finger formulation [Eq. (12) from Schmitt
(1979a)] to illustrate these differences.

a. UV catastrophe

In this section, we demonstrate that the flux ratio (23)
and that proposed by Schmitt (1979a) lead to a ‘‘UV
catastrophe’’ in which growth rates increase monoton-
ically with vertical wavenumber m (see Fig. 8) and be-
come unbounded as m → `. To examine the effect in
the simplest way possible, we first show that the insta-
bility occurs in a simplified nonadvective system, then
show that it also occurs in the full interleaving system.
For maximum simplicity, we replace KS by (so ver-fK S

tical fluxes are purely double diffusive) and geff in (10)
by either Stern’s (1975) formulation (23) or by Schmitt’s
(1979a) formulation, and consider the limiting case in
which advective effects are negligible. This gives

f f9 f9˜ ˜ ˜bS 5 [K 2 R K ]bS 1 K aT (24a)t S r S zz S zz

f f9 f˜ ˜aT 5 [g (K 2 R K ) 2 g9R K ]bSt f S r S f r S zz

f9 f ˜1 [g K 1 g9K ]aT , (24b)f S f S zz
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FIG. 9. Schematic of Huppert’s (1971) instability mechanism. A
small temperature disturbance produces a corresponding variation in
Rr. If the flux ratio decreases with Rr this leads to vertical variations
in the flux ratio as shown, and the resulting variations in the flux of
T (aFT 5 2gf S z) cause the disturbance to grow.fbK S

which is very similar to the system analyzed by Walsh
and Ruddick (1995b), except that here we allow for a
nonconstant flux ratio.

The characteristic polynomial for (24) is
2 2 f9 f 4l 1 lm [1 1 (g 2 R )K /K 1 g9] 1 g9mf r S S f f

| |]}}z

5 0. (25)

There are positive roots (i.e., growing solutions) to (25)
when the braced term is negative (i.e., , 0). Becauseg9f

is always negative for Stern’s formulation (23), thereg9f
is always one positive real (growing) root and one neg-
ative real (decaying) root to (25), regardless of the sign
or magnitude of / . If / is negligible, the rootsf f f fK 9 K K 9 KS S S S

of (25) are

l 5 2m2 or l 5 2 m2,g9f (26)

the second of which is the unstable root. Hence, using
Stern’s formulation (23) for the flux ratio changes the
marginally stable root (l 5 0) found by Walsh and
Ruddick (1995b) to an unstable root; Schmitt’s for-
mulation has the same effect for Rr & 4. Any negative
value of , however small, is sufficient to trigger theg9f
UV catastrophe. Equation (26) implies that l → ` as
m2 → `: there is no upper bound to the growth rate. In
reality this cannot be strictly true since small-scale dis-
sipative effects will act to suppress the highest wave-
number disturbances. In addition, it is worth noting that
our parameterization of salt finger fluxes cannot in any
case be valid at scales smaller than the salt finger scale.

Equations (24) and (26) show that the UV instability
does not rely on lateral advection, and hence is not
intrusive in nature. Furthermore, the instability is dif-
ferent from the high-wavenumber intrusive instability
found by Stern (1967) because it is nonadvective (and
hence cannot be suppressed by friction). Instead, it is
closely related to that discussed by Huppert (1971), who
considered a system of three fluid layers separated by
diffusive interfaces and found that layer overturning oc-
curred when the flux ratio decreased with Rr. In contrast
with Huppert’s study, where a layer scale was imposed,
there is no external length scale in this study, so arbi-
trarily small scales can grow. Comparison of (24) with
(19) shows that (24) is the high-wavenumber limit of
the full system (with K t 5 0), demonstrating that dif-
fusion dominates over advection at high wavenumber
and that high wavenumber solutions to the full inter-
leaving system (10) should be well described by (24).

To illustrate the mechanism for the UV instability,
we compute eigenvectors of the system (24). Equation
(24a) gives

2 f9 fˆbS 2m K /KS S5 , (27)
2 f f9 fˆaT l 1 m (K 2 R K )/KS r S S

where Ŝ and T̂ are disturbance amplitudes. We set fK 9S
5 0 without (much) loss of generality since (25) shows
that the instability does not require variations in .fK S

Substituting the unstable eigenvalue (l 5 2 m2) intog9f
(27) gives

ˆbS
5 0, (28)ˆaT

in which case (24a,b) decouple, and (24b) shows that
the disturbance evolves according to

aT̃t ø 1 aT̃zz.fg9Kf S (29)

Because , 0, the effective diffusivity is negative, sog9f
disturbances grow.

The instability mechanism is sketched in Fig. 9. The
basic state has uniform vertical T–S gradients and uni-
form vertical fluxes. A small T disturbance (leftmost
profile) produces a corresponding Rr disturbance, and
because gf is a decreasing function of Rr the flux ratio
varies as shown. Salt fluxes are unaffected by the im-
posed temperature anomaly, and because fluxes of T and
S are linked via (4) the heat flux at A increases relative
to that at B (as shown in the rightmost profile), rein-
forcing the initial perturbation and causing growth. The
equations governing the growth of the instability can
also be derived directly from the temperature equation
as follows:

f f f˜ ˜aT 5 (g bK S ) 5 g9(R )R bK S 5 g9K aT ,t f S z z f r r,z S z f S zz

f ˜(K 5 const, S 5 0)S (30)

in agreement with (29).

b. Turbulent suppression of the UV catastrophe in
the reduced system

The discussion in section 4a related the UV catastro-
phe to the form of the flux ratio for the system (24).
This is readily generalized to give a stability criterion
when turbulent mixing of T and S is present:

]geff . 0 (31)
]Rr
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FIG. 10. Effect of turbulence on the effective flux ratio geff using
Stern’s formulation for gf (a) and Schmitt’s (1979a) formulation (b)
for various values of K t/ . Dashed curves connect the minima offK S

the solid curves.

is sufficient to prevent the UV catastrophe [this follows
directly from (22)]. In Fig. 10, geff is plotted versus Rr

for various values of K t , using Stern’s gf formulation
(23) (Fig. 10a); in Fig. 10b the same quantities are plot-
ted for Schmitt’s (1979a) formulation. For the Stern
formulation, there is always a range of Rr in which

, 0 while, for sufficiently large Rr, . 0 for anyg9 g9eff eff

nonzero K t . Further, for any value of K t , we are assured
that will be negative for sufficiently small Rr sinceg9eff

→ 2` as Rr → 1 for Stern’s formula. The dashedg9f
curve in Fig. 10a is the function Rr/(2Rr 2 1), which
connects the minima of the solid curves. Points beneath
this curve are unstable to the UV instability, those above
it are stable. Thus, T–S profiles subject to Stern’s flux
ratio with an effective T/S flux ratio less than Rr/(2Rr

2 1) will be unstable to the UV instability—a result
which holds for any value of K t . Figure 10b is similar
to Fig. 10a except quantities are plotted using Schmitt’s

flux ratio instead of Stern’s. The two plots are similar
in many respects, but in Fig. 10b there is a critical value
of K t / above which geff increases monotonically forfK S

all values of Rr (a consequence of the finite slope of
Schmitt’s curve as Rr → 1). Thus, for Schmitt’s gf for-
mulation, sufficiently large values of K t / (K t / *f fK KS S

0.59) will suppress the high-wavenumber instability for
all Rr. Furthermore, since . 0 for Schmitt’s for-g9f
mulation whenever Rr * 4, the UV instability will be
suppressed even in the absence of background turbu-
lence for large Rr.

Using the definition of geff (8), the above stability
condition (31) can be written as a constraint on K t :

t f9 fK K /KS S1 1 (g 2 R ) . 2g9 (32)f r ff t f[ ]K 1 1 K /KS S

and, if terms involving are negligible, this takes thefK 9S
simple form

tK
. 2g9 (33)ffKS

as the condition to suppress the UV instability. When
, 0, a nonzero K t is required to suppress the insta-g9f

bility, and it follows that when K t 5 0 instabilities grow
for any negative . Neglect of terms involving infg9 K 9f S

(33) is not equivalent to assuming that is strictlyfK S

constant, but rather that variations in associated withfK S

small amplitude intrusions are not of O(1) importance.
Nevertheless, (32) shows that sufficiently large, positive
values of [like those predicted by Kunze’s (1987)fK 9S
salt finger model] could have a destabilizing effect. Sub-
stitution of Kunze’s (1987) formulation for into (32)fK S

(and using Stern’s flux ratio) shows that a nearly uniform
value of 3–4 (31026 m2 s21) for K t is sufficient to sup-
press the UV instability, except at very small values of
Rr (Rr & 1.2) where K t values of up to 2–3 (31025 m2

s21) are needed. Using Schmitt’s flux ratio gives similar
results, although somewhat smaller values (about 25%–
50% smaller for Rr values between 1 and 3) of K t are
needed to suppress the instability. By contrast, Fig. 11
shows that when K t ø 3–4 (31026 m2 s21) and Rr ø
2, must be larger than about 5 3 1025 m2 s21 tofK S

trigger the UV instability, much larger than the analo-
gous value of about 1 3 1025 m2 s21 required when
Kunze’s diffusivity is used.

Violation of the criterion (33) could lead to growth
of high-wavenumber instabilities, and it is plausible that
this is related to the ‘‘steppy’’ finestructure often seen
at low values of Rr, where double diffusion may dom-
inate over turbulence. The quantity is plotted in21/g9f
Fig. 11 for both the Stern (solid) and Schmitt (dashed)
flux ratio formulations. According to (33), y-axis values
represent critical values of /K t below which the UVfK S

instability is suppressed. For larger values of Rr, larger
finger diffusivities are required to trigger the UV insta-
bility. Using Stern’s formulation, and assuming that K t

5 1025 m2 s21, it follows that must be at least 4 3fK S
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FIG. 11. Value of /K t required to trigger the UV instability, asfK S

a function of Rr [from Eq. (33)]. Shaded regions are stable with
respect to the high wavenumber UV instability discussed in the text.
The dashed curve corresponds to Schmitt’s (1979a) flux ratio for-
mulation; the solid curve corresponds to Stern’s formulation (23).
When Rr ø 1, relatively little double-diffusive mixing is needed to
trigger the instability, but when Rr is large double diffusive fluxes
must be very large to cause instability.

FIG. 12. Marginal stability curves using Stern’s flux ratio formu-
lation (23), for various values of K t/ . The curves correspond tofK S

the parameter choice Pr 5 5, Sx 5 0.05, R r 5 1.6, and the labels on
the curves show the value of K t/ . The marginal stability region isfK S

hyperbolic when K t/ is small, and becomes elliptical whenfK S

K t/ exceeds the threshold defined by (33).fK S

1025 m2 s21 to cause instability when Rr ø 1.5, but must
be greater than the (very large) value of 5 3 1024 m2

s21 for the instability to occur when Rr ø 3. Schmitt’s
gf formulation is ‘‘more stable’’ than Stern’s, since larg-
er values of /K t are required to trigger the UV insta-fK S

bility for all values of Rr.

c. Generalization to the full interleaving system

Equation (22) from section 3c and the discussion in
section 4b shows that a sufficient condition for the oc-
currence of the UV instability in the reduced (nonad-
vective) system is that geff be a decreasing function of
Rr; that is,

, 0.g9eff (34)

Thus, the sign of is fundamental to the behavior ofg9eff

the system (10): when # 0 there is no high-wave-g9eff

number cutoff, so disturbances of arbitrarily small scale
can grow. Similarly, expansion of (11) shows that there
are solutions to (11) of the form

2l /m 5 2g9 /[1 1 (g 2 R )K9 /K ] 1 O(g9 )eff eff r S S eff

in the high-wavenumber limit, valid when K 1. Thisg9eff

demonstrates again that the full interleaving system (10)
is susceptible to the UV instability when , 0. Ing9eff

contrast with (34), (15b) shows that there is no high-
wavenumber cutoff when

R 2 gr eff
g9 Pr g9 1 [1 1 (1 2 R )K9 /K ]eff eff r S S5 6R 2 1r

# 0, (35)

and the marginal stability curve is hyperbolic when this
inequality is satisfied. In the appendix, we show that the
quantity in braces is positive for all R r . 1 for any of
the the flux ratio formulations used in this study, so the
sign of is sufficient to determine if (35) is satisfied.g9eff

Figure 12 shows the effect on the marginal stability
curve of increasing K t / . For small values, the mar-fK S

ginal stability curve is hyperbolic, with slopes and
wavenumbers above the curve being unstable. Increas-
ing K t / causes the curve to become elliptical whenfK S

(33) is satisfied, and intrusions grow over the range of
slopes and wavenumbers within the ellipse. The max-
imum growth rate is contoured in Fig. 13 for the case
Pr 5 5, R r 5 1.6, S x 5 0.05, K t / 5 0.1, using Stern’sfK S

flux ratio formulation (23). Intrusive disturbances dom-
inate at low wavenumbers (as shown by the local growth
rate maximum at small values of m2), while growth rates
increase monotonically for large m2, where the high-
wavenumber instability dominates. Note the spectral
gap between intrusions and the high-wavenumber UV
modes. In this case, the addition of turbulence has in-
hibited the UV instability, so intrusions are able to dom-
inate at low wavenumbers. This is in contrast with Fig.
8, where the UV instability dominates for all values of
s and m2.

5. Discussion

The previous sections demonstrated that the system
(10) is unstable to two different instabilities: an intrusive
instability relying on buoyancy-driven advection across
a front and a nonadvective ‘‘Huppert’’ instability re-
sulting from the specific character of the vertical fluxes
of T and S. Being predominantly a vertical process, the
Huppert instability should have a preferred direction in
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FIG. 13. Real part of growth rate contoured using Stern’s flux ratio
formulation (23) and nonzero K t (K t/ 5 0.1); all other parametersfK S

are identical to those used in Fig. 8. As in Fig. 8, growth rates increase
with m2 for large m2, suggesting a UV catastrophe, but the local
maximum at m2 ø 0.003 shows that intrusions dominate at low wave-
numbers. Dashed contours show negative growth rates, shaded areas
show regions in which solutions are oscillatory, and the heavy solid
line is the curve Re(l ) 5 0.

T–S space distinct from that of intrusions, so the two
phenomena should be distinguishable in T–S data. Spe-
cifically, intrusions (which are nearly isopycnal advec-
tive features) should cause zigzags in the T–S curve that
are nearly aligned with density lines, while the high-
wavenumber (UV) instability should cause ‘‘bunching’’
along the T–S curve. It is possible that the UV instability
considered here is related to the formation of the steps
and layers often seen at low Rr. Unfortunately, our anal-
ysis does not allow a prediction of the dominant scale
of steppy finestructure, which might result from the UV
instability, since the scale-selection mechanism at work
in the ocean almost certainly relies on small-scale phys-
ics not contained in our model.

If something akin to the UV instability does occur in
the ocean and if it leads to the formation of steps and
layers, then the vertical fluxes of heat and salt driving
intrusion growth would very likely change as well. This
potential for modification of vertical fluxes by high-
wavenumber instabilities and the consequent modifi-
cation of intrusion growth rates suggests a possible in-
teraction between instability modes that cannot be stud-
ied within the context of our model. Nevertheless, many
of the qualitative features of our analysis should still
hold. It is possible that a similar combination of high-
wavenumber instabilities and low-wavenumber intru-
sive instabilities could explain observations of steppy
intrusions made by Perkin and Lewis (1984).

While we have not discussed the effect of
Rr-dependent diffusivities in detail, we feel that these
effects are not likely to qualitatively change the con-
clusions of this work. This does not imply, however,

that an Rr-dependent diffusivity cannot have important
qualitative effects on oceanic processes in other circum-
stances; Schmitt (1981) argues that an Rr-dependent dif-
fusivity may provide the mechanism for maintaining the
nearly uniform values of Rr in the central waters. And
there are several ways in which an Rr-dependent dif-
fusivity could quantitatively affect our results, the most
obvious being through changing the properties of the
marginal stability curve. For example, Walsh and Rud-
dick (1995a) carried out a detailed analysis of the effect
of diffusivities that are decreasing functions of Rr (like
that proposed by Schmitt 1981) on small amplitude in-
terleaving, finding enhanced growth rates and larger ver-
tical scales for the fastest-growing intrusions.

On a more qualitative level, a nonconstant diffusivity
could allow different types of instabilities to occur.
Walsh and Ruddick (1995b) discussed instabilities re-
sulting from the salt-finger diffusivity parameterizations
due to Stern (1969) and Kunze (1987). These authors
proposed flux-limiting constraints for growing salt fin-
gers, resulting in diffusivity formulations which are in-
creasing functions of Rr. Walsh and Ruddick (1995b)
showed that diffusivities of this form can lead to a UV
catastrophe if they are rapidly increasing functions of
Rr because the effective diffusivity for T–S anomalies
[ 1 (gf 2 R r) ] can then be negative. The insta-f fK K 9S S

bility that occurs in this case is similar to that discussed
by Phillips (1972). The Phillips instability occurs when
the flux of a quantity f decreases as its gradient is
increased. Hence, if the vertical flux of f is character-
ized by a nonlinear diffusivity so that the flux F(f ) is
given by

F(f ) 5 2K(f z)f z, (36)

small perturbations will grow if the ‘‘effective diffusiv-
ity’’ is negative, that is,

]
(K(f )f ) , 0. (37)z z]fz

This condition is satisfied if K(f z) decreases faster than
, in which case the flux of f increases where gra-21f z

dients are weak and decreases where they are large,
causing disturbances to grow. In our case the situation
is slightly different because the flux of salt is given by
FS 5 2KS(Rr)Sz [according to (6)], and Rr has an in-
verse dependence on Sz [from (5)]. It follows that, for
fixed Tz, instability will occur if KS increases faster than
linearly (i.e., faster than ). Such behavior could af-11Rr

fect our conclusions significantly if it occurred, although
the growth rate expression (11) and the expressions for
the marginal-stability curve [(14), (15)] would still be
valid. However, evidence suggests that effective diffu-
sivities in salt-finger-stratified regions of the ocean are
decreasing functions of Rr (Schmitt 1981) [except per-
haps at rather low values of Rr (Kunze 1994)], in which
case the instability discussed by Walsh and Ruddick
(1995b) would not occur. In contrast, evidence that the
flux ratio decreases with Rr seems stronger [e.g., Schmitt
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(1979b); St. Laurent and Schmitt (1999)], so the ‘‘Hup-
pert’’ instability discussed in this work may be more
relevant to the ocean.

A better understanding of the large amplitude behav-
ior of thermohaline interleaving is needed to evaluate
its role in the ocean. To achieve this, an improved un-
derstanding of the small-scale fluxes driving intrusions
is needed, as is a better understanding of the ways in-
terleaving structures interact with the mesoscale features
in which they are embedded. Our approach in this work
has been to examine the effect of particular assumptions
about small-scale double-diffusive and turbulent fluxes
on small amplitude intrusions. Eventually, we hope to
be able to reliably predict the fluxes of heat, salt, density,
and momentum associated with fully developed inter-
leaving for any particular set of initial conditions (e.g.,
stratification, lateral T–S gradients, shear). This will re-
quire an understanding of the large amplitude dynamics
of intrusions, and at present we are a long way from
having the necessary level of understanding. Some pro-
gress in this direction has been made by McDougall
(1985b), who obtained a family of equilibrium solutions
representing large amplitude, ‘‘slab’’ intrusions (i.e.,
convecting layers separated by thin diffusive and salt
finger interfaces) and analyzed their stability in a heu-
ristic fashion. Walsh and Ruddick (1998) used a one-
dimensional numerical model to show how the fluxes
of T and S driving intrusions can adjust as they grow
to allow small-amplitude, exponentially growing intru-
sions to achieve a large amplitude equilibrium. Re-
cently, Merryfield (2000) has presented model results
suggesting that intrusions may in some cases evolve into
thermohaline staircases, rather than the large amplitude
equilibrium intrusions found by Walsh and Ruddick
(1998). This remains an active area of investigation.

6. Conclusions

The interleaving problem has been formulated such
that the combined effects of turbulence and double dif-
fusion are characterized by an Rr-dependent flux ratio,
geff. This approach allows the two phenomena to be
studied and compared within the same theoretical frame-
work. Turbulence decreases the range of slopes and
wavenumbers over which intrusions grow, but intru-
sions still grow for any finite value of K t / . This sug-fK S

gests that interleaving can occur even when turbulent
fluxes are larger than double-diffusive fluxes, as may
be the case over much of the world’s ocean.

The qualitative behavior of the interleaving system
(10) is found to depend upon the variation of geff with
Rr: when . 0 (the ‘‘turbulence-dominated’’ case),g9eff

the marginal stability curve is elliptical and high-wave-
number disturbances are suppressed; when , 0 (theg9eff

‘‘finger-dominant’’ case) the marginal stability curve is
hyperbolic and growth rates are unbounded as m → `.
The expression (14) describing the marginal stability
curve is very general, giving qualitative information

about the stability of the system (10) independent of the
detailed form of and gf .fK S

A nonconstant salt-finger flux ratio that is a decreas-
ing function of Rr (Stern 1975; Schmitt 1979a) leads to
a UV catastrophe, the mechanics of which are similar
to that for the instability discussed by Huppert (1971).
This UV instability is nonadvective in the large m limit
and hence cannot be suppressed by friction, in contrast
with the high-wavenumber intrusive instability dis-
cussed by Stern (1967). However, in most cases, the UV
instability can be suppressed by turbulent mixing of T
and S, and we present a simple criterion for this, relating
the strength of turbulence to double diffusion. For
Stern’s formulation (23) the high-wavenumber instabil-
ity occurs for small enough Rr for any K t / , whereasfK S

for Schmitt’s formulation values of K t / larger thanfK S

ø0.59 will suppress the high wavenumber instability
for all Rr. Even when the UV instability occurs, the
fastest-growing low-wavenumber disturbances may still
be intrusive for moderate turbulence levels. The spectral
gap between intrusions at low-wavenumber and high-
wavenumber UV modes may help explain observations
of intrusions in a background of smaller-scale steps and
layers (e.g., Perkin and Lewis 1984).
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APPENDIX

Determination of Sign of Coefficient in Eq. (35)

We want to demonstrate that

R 2 gr efffg9 1 (1 1 (1 2 R )K9 /K ) . 0. (A1)eff S S R 2 1r

Using (8) and assuming 5 0, this reduces toK9S

R 2 gr ft f(K /K 1 g9) 1 . 0. (A2)S f R 2 1r

We will show that this inequality is satisfied for any of
the flux ratio formulations considered in this work so
that the inequality (35) is fully determined by the sign
of . Now, Eq. (A2) is clearly satisfied if gf is constantg9eff

and less than one (since R r $ 1). In addition, using
Stern’s formulation gives, after some manipulation:

1
t f(K /K 1 1)ÏR (R 1 1) 1 . 0, (A3)S r r 2

which is always positive. From (A2) we can see the
reason for this is that the singularity in Stern’s formu-
lation, which is of the form ; (R r 2 1)21/2 is weakerg9f
than the (R r 2 1)21 singularity in the last term on the
left-hand side of (A2), so the latter term (which is pos-
itive) dominates as R r → 1. Finally, plotting the left
side of (A2) versus Rr for different values of K t / usingfK S
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Schmitt’s formulation shows that the inequality (A2) is
indeed satisfied for any of the flux ratio formulations
considered in this work. Thus, the sign of is suffi-g9eff

cient to determine whether the UV catastrophe will oc-
cur in the full interleaving system (10).
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