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ABSTRACT

Motivated by observational data and recent numerical simulations showing that ageostrophic effects may play
an important role in the dynamics and transport of large-scale vortices in the atmosphere and the oceans, the
authors examine the stability of a family of isolated vortices, numerically, using the contour-advective semi-
Lagrangian algorithm. The full shallow-water equations (1½-layer model) are integrated in order to investigate
vortices over a wide range of parameters. In order to characterize the cyclone–anticyclone asymmetry, the
stability of a couple of vortices having velocity profiles of opposite sign is compared. It is found that ageostrophic
effects (finite Rossby number) tend to stabilize anticyclones but destabilize cyclones. On the other hand, large-
scale effects (small Burger number) are shown to stabilize all vortices for this reduced-gravity model. Here
again, the anticyclones tend to be favored in this restabilization process. These results are compared with a
linear stability analysis performed in the framework of the standard quasigeostrophic model that predicts a
symmetric evolution for cyclones and anticyclones. The authors have shown that a significant departure from
QG dynamics, due to ageostrophic and large-scale effects, appears in a range of parameters relevant to large-
scale coherent structures in nature.

1. Introduction

Long-lived, large-scale vortices are common features
in planetary atmospheres, particulary in those of the
outer planets (Smith et al. 1979) and also in the Earth’s
oceans (Olson 1991). Such vortices are known to greatly
influence the transport properties of the global circu-
lation. For instance, a single vortex, or eddy, generated
by the Agulhas Current can cross the South Atlantic
Ocean carrying an amount of energy equal to 5%–7%
of the annual wind input of energy to the large-scale
circulation (Olson and Evans 1986). Other oceanic vor-
tices such as meddies (subsurface eddies with a warm
and salty core) are known to play an important role in
the transport of salt in the northeast Atlantic. This ef-
ficient transport mechanism has motivated, over the past
few years, a number of theoretical, experimental, and
numerical studies of the stability of quasi-two-dimen-
sional vortices. However, these studies have often been
limited to a restricted range of parameters, and a global
description of the stability of isolated vortices in a sim-
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ple model like the shallow-water model is still lacking.
Rayleigh’s ‘‘inflexion point’’ criteria for circular vor-
tices can be readily generalized to balanced models such
as the Quasi-Geostrophic (Pedlosky 1987) or the Frontal
Geostrophic (Cushman-Roisin 1986). In these cases, cir-
cular vortices with a monotonic ‘‘equivalent potential
vorticity’’ (the truncated potential vorticity of the mod-
el) are linearly stable to normal mode pertubations; see
Table 1. Other sufficient criteria based on a formal sta-
bility analysis of a Hamiltonian system were recently
found for these balanced models (Holm 1985; Ben Jel-
loul and Zeitlin 1999). However, according to these cri-
terion (see Table 1), isolated vortices (having zero net
circulation) cannot satisfy formal stability (in the energy
norm) in the 2D Euler and QG models. Therefore, non-
linear stability conditions following Arnold’s method
(Arnold 1978) are not available for isolated vortices in
these models. The full nonlinear stability analysis per-
formed for the Frontal Geostrophic model (Ben Jelloul
and Zeitlin 1999) leads to a nonlinear stability condition
that is not symmetric for cyclones and anticyclones, but
vortices of both sign may satisfy it, and a detailed anal-
ysis able to distinguish which sign is more stable is not
straightforward. Moreover, these balanced models,
which were derived from a small Rossby number ex-
pansion, do not account for ageostrophic effects. Efforts
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TABLE 1. Sufficient stability criterion for circular vortices.

2D Euler Quasigeostrophic Frontal geostrophic Shallow water

Equivalent PV |v| |v| 2 Bu21h
1

H 1 ho

f 1 |v|o

H 1 ho

Rayleigh stability
criterion (normal
mode analysis) Montonic |v| Monotonic q Monotonic h

Formal stability on
energy invariant

U(r)
. 0

] |v|r

U(r)
. 0

] qr Monotonic h

U(r) U(r)
. 0, . 1

] q Ïg(H 1 h(r))r o

(Hamiltonian
formulation)

(Holm et al. 1985) (Holm et al. 1985) (Ben Jelloul and
Zeitlin 1999)

(Ripa 1987)

have been made to develop a stability criterion directly
within the framework of the shallow-water equations,
and a sufficient condition for the stability of circular
flows has been derived by Ripa (1987) (see Table 1).
However, this condition cannot be satisfied by isolated
vortices. Therefore, it appears necessary to resort to
laboratory experiments or direct numerical simulations
in order to investigate the stability of large-scale isolated
structures. Previous numerical simulations (Polvani et
al. 1994; Arai and Yamagata 1994) devoted to decaying
shallow water turbulence have shown that the departure
from quasigeostrophy leads to a significant cyclone–
anticyclone asymmetry for which anticyclonic vortices
are generally preferred. However, in turbulence many
mechanisms may be responsible for this dynamical
asymmetry (merging processes, stability, wave–vortex
interactions). The role played by ageostrophic effects in
the behavior of an isolated vortex is still not well un-
derstood. In particular we wish to address the following
questions:

R How are the stability properties and lifetime of an
isolated vortex affected by ageostrophic and large-
scale effects?

R At what Burger and Rossby numbers do departures
from the QG model become significant?

We will investigate the stability of the following class
of circular vortices parameterised by the vorticity profile
‘‘steepness’’ a:

a1 s
av(s) 5 e f 1 2 s exp 2 , (1.1)o1 2 1 22 a

where s 5 r/Lo (N.B. the maximum velocity occurs at
s 5 1), f o is the Coriolis parameter, and e 5 vmax/ f o is
the dynamical Rossby number. Equation (1) describes
a wide range of vorticity profiles having smooth (1 ,
a , 2) or steep gradients (large a). The case a 5 2
corresponds to a Gaussian velocity profile. All of these
vortices are isolated; that is, their circulation vanishes
at large radii: this implies that the core vorticity is sur-
rounded by a ring of oppositely signed vorticity. In in-
compressible two-dimensional flows, the stability of an
isolated circular vortex depends only on the shape of
the vorticity distribution. For (1) it was shown numer-

ically (Carton et al. 1989) that for a . ac 5 1.8–1.9
both cyclones and anticylones are unstable and lead to
a tripolar structure, while for (a 2 ac)/ac . 1 the initial
circular structure splits into two dipoles (Orlandi and
van Heijst 1992; Carton and Legras 1994).

The first step to a more realistic dynamical description
of geophysical vortices is to use the full shallow-water
equations. The height profile of a steady circular vortex
satisfies gradient wind balance

2y ]h
1 f y 5 g , (1.2)or ]r

which takes into account the effect of the centrifugal
force in the pressure field. Then the relative amplitude
of the height field h/Ho scales as e(Lo/Rd)2. Here, Ho

is the undisturbed layer thickness, Lo is the size of the
vortex, and Rd 5 gHo/ f o is the deformation radius.Ï
The potential vorticity

f 1 voq 5 (1.3)
H 1 ho

can be expressed as a linear operator on h only if v and
h are respectively small compared to f o and Ho. Oth-
erwise, the stability of circular vortices may be sensitive
to ageostrophic effects (e) and large-scale effects
(Lo/Rd). Hence, in addition to the steepness parameter,
two more parameters control stability: the Rossby num-
ber and the Burger number Bu 5 (Rd/Lo)2. Their effect
on stability is investigated below.

In the shallow-water model, a cyclone and an anti-
cyclone satisfying (2) cannot have the same velocity,
potential vorticity, and height anomalies (same but with
opposite signs). Therefore, in order to investigate the
cyclone–anticyclone asymmetry, one must choose the
sense in which an cyclone and anticyclone are ‘‘equiv-
alent.’’ Here we choose the velocity profile; vortices
with equal magnitude but opposite-signed velocity are
said to be equivalent (such vortices have equal but op-
posite vorticity). This choice is convenient because the
dynamical parameters e and Bu remain invariant to the
transformation y → 2y and more reliable comparison
with observational data can be made with velocity than
with PV or height anomalies.
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FIG. 1. Contour and grid representations of a continuous circular
vortex having a steepness parameter ac 5 3 (Lo 5 Rd 5 0.8, Ho 5
1, f o 5 4p, e 5 0.1): (a) potential vorticity, (b) vorticity, and (c)
height. The solid line corresponds to the continuous profile while the
bold line and scatterplot correspond respectively to the contour and
grid discretization.

2. The shallow-water CASL algorithm

The contour-advective semi-Lagrangian (CASL) al-
gorithm (Dritschel and Ambaum 1997; Dritschel et al.
1999) is used to solve the full single-layer shallow-water
equations. This algorithm holds the conservative PV
field q in contour form to avoid excessive dissipation.
If the fluid motion is nearly balanced, both the height
h and the divergence d fields remain smooth and hence
decay rapidly with increasing wavenumber. Such a de-
cay permits one to evolve h and d accurately in spectral
space using a moderate resolution (here 1282 or 2562)
and without any explicit dissipation.

The initial conditions for all of our simulations consist
of an axisymetric vortex discretized into N PV contours.
An example of the contour and grid representations used
for a continuous circular vortex having a steepness pa-
rameter a 5 3 is shown in Fig. 1. The PV jump at each
contour r 5 rj 5 jDr is such that the circulation is
identical for the continuous and discrete representation.
In other words, the value of the velocity at each PV
contour is equal to that at the same location in the con-
tinuous representation. We used between 30 and 40 con-
tours in order to obtain a sufficiently close match be-
tween the representations; for instance, the linear growth
rate converges to within 5%–10% of the value obtained
from a QG linear stability analysis of the continuous
profile.

We then added small, random, nonaxisymmetric dis-
turbances to stimulate any potential instability (this was
done by radial displacements of the contour points). The
height and divergence fields were adjusted iteratively
so that their second-order time derivatives vanished at
t 5 0. The time evolution was computed using ‘‘contour
advection’’ for PV, that is, solving dx/dt 5 v(x, t) in
place of

]tq 1 v · =q 5 0 (2.1)

and a standard semi-implicit, pseudospectral treatment
of the height and divergence equations,

] h 1 = · (vh) 5 0 (2.2)t

] d 5 2J(u, y) 2 = · (vd) 1 f v 2 gDh, (2.3)t o

where J(a, b) is the Jacobian operator. Notably, no ex-
plicit dissipation is used for (5) or (6), whereas ‘‘sur-
gery’’ is used to limit the scale of filamentary PV to a
tenth of the grid scale. See Dritschel et al. (1999) for
all details, including comparisons with standard nu-
merical approaches.
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FIG. 2. Dimensionless growth rate of mode 2 [To is the characteristic
turnover time defined by (3.1)] in the QG model as a function of the
steepness parameter a for various values of Bu: 100, 4, 1, 0.44, 0.25,
0.16, 0.11. The bold line shows Bu 5 1, while the dashed line Bu
5 100.

FIG. 3. Dependence of the critical steepness parameter ac (corre-
sponding to marginal stability) on the scale ratio Lo/Rd 5 Bu21/2, in
the QG model.

FIG. 4. Dependence of the parameter B [corresponding to Eq.
(3.2)] on the Burger number Bu 5 (Rd/Lo)2, in the QG model.

3. Linear stability in the QG limit

To better understand the shallow-water simulation re-
sults, we have performed a linear stability analysis of
the vortices defined by (1) in the QG limit. Using the
PV discretization described in the previous section, we
implemented the exact stability analysis outlined in
Waugh and Dritschel (1991). The number of PV con-
tours used to represent the continous profile was in-
creased until the maximum growth rate converged to
within 5%. We used the characteristic eddy turnover
time

4p 4p
T 5 5 (3.1)o v e fmax o

to rescale the growth rates obtained from the QG linear
stability analysis for comparison with the CASL shal-
low-water simulations. Of course, QG theory is only
valid for Fr2 K Ro K 1. But the Burger number Bu 5
(Ro/Fr)2 may take any value so long as Bu k Ro. There-
fore, we examine the QG stability for a wide range of
Bu, on the understanding that its applicability may be
restricted by the actual Rossby number.

Figure 2 shows the linear growth rate (corresponding
to the most unstable mode: azimuthal mode 2) as a
function of the steepness parameter a, for various values
of Bu. The growth rate increases with a and with Bu.
Furthermore, near marginal stability, there is a super-
critical bifurcation of the form

s } B(a 2 ac) 1 O[(a 2 ac)2]. (3.2)

Therefore, by linear extrapolation, we can determine
the critical steepness parameter ac, shown in Fig. 3, and

the parameter B, shown in Fig. 4, for various values of
Bu. We recover here the general tendency indicated by
the Rayleigh stability criterion, namely, that when the
characteristic horizontal scale Lo increases, a wider class
of vortices becomes stable. Indeed, for small vortices
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FIG. 5. Dependence of the critical value a5 on the dynamical Rossby
number for cyclones and anticyclones. The Burger number is equal
to one. The thick line corresponds to the marginal stability limit ac

5 2.3 in the QG model while the thin solid line corresponds to the
a5 value.

FIG. 6. Evolution of the dimensionless growth rate of mode 2 for
cyclones (filled dots) and anticyclones (open dots) as a function of
the dynamical Rossby number. Circles and triangles correspond to
vortices having steepness parameters a 5 2.6 and a 5 3. The solid
lines shows the QG growth rates.

(Bu k 1) the PV is dominated by vorticity variations
and therefore all isolated vortices are conditionally un-
stable, while for large vortices (Bu K 1) the PV is
dominated by height variations, and all vortices tend to
be linearly stable. Note, however, that for the class of
vortices defined by (1) all PV profiles are nonmono-
tonic; see appendix A.

Hence, according to the QG linear stability analysis:

R Vortices with broad vorticity profiles are stable while
those with steep vorticity profiles tend to be unstable.
The stability and therefore the lifetime is strongly sen-
sitive to the profile.

R The behavior of cyclones and anticyclones having the
same vorticity profile are identical.

R Large-scale vortices (Lo . Rd) are more stable than
small ones (Lo , Rd). The growth rate decreases as
the vortex size increases and the extent of the unstable
region shrinks.

4. Ageostrophic effects

To estimate the influence of ageostrophic effects on
vortex stability, we resorted to the numerical simulation
of the shallow-water equations. The Burger number was
first fixed at unity (Lo 5 Rd), while the dynamical Ross-
by number was increased from a very small value where
geostrophic balance applies to nearly unity where gra-
dient wind balance applies. The numerical determina-
tion of the critical steepness parameter ac is difficult
because many PV contours are needed to represent the
evolution near marginal stability. We have opted instead

to approximate the marginal stability boundary by a 5
a5 corresponding to the growth rate s 5 1/(5To). The
growth rate is determined from the temporal evolution
(initial exponential growth) of azimuthal mode 2 of the
vorticity field.

As shown in Fig. 5, a significant cyclone–anticyclone
asymmetry emerges with increasing «. A similar asym-
metry appears in the growth rate. According to Fig. 6,
when « is small the growth rates for cyclones and an-
ticyclones are both close to the values predicted by the
QG linear stability analysis. But as « increases, the di-
mensionless growth rate sTo increases for cyclones
while it decreases for anticyclones. The growth rate for
a cyclone can be one order of magnitude higher than
for the equivalent anticyclone (having the same velocity
profile, but with opposite sign) due to ageostrophic ef-
fects. See for instance the case « 5 0.6 when ac 5 2.6
in Fig. 6.

These results confirm that the dynamical Rossby
number « is the relevant parameter to quantify ageo-
strophic effects. Note that the standard Rossby number
Ro 5 Vmax/Lof o commonly used in the analysis of ob-
servational data is, in general, two or three times smaller
than the dynamical Rossby number. For the family of
vortices we have studied,

1 1
Ro 5 « exp 2 . (4.1)1 22 a

Hence, a value Ro . 0.25 would correspond to a dy-
namical Rossby number « close to unity (e.g., « 5 0.8
for a Gaussian vortex). We have also studied the non-
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FIG. 7. Evolution of the PV contours for initially circular vortices (randomly disturbed) having
Bu 5 1 and a steepness parameter a 5 3. Three cases are shown: e 5 0.8 cyclone (top), e 5
0.8 anticyclone (middle), and e 5 0.1 cyclone (bottom). Recall that To 5 4p/ef o.

linear evolution of unstable vortices having steep vor-
ticty gradients (a 5 3) and have compared the evolution
of cyclonic and anticyclonic vortices in both the QG
regime (« 5 0.1) and a highly ageostrophic regime («
5 0.8). As shown in Fig. 7, the departure from geos-
trophy tends to make anticyclones less unstable than
cyclones. The elliptical deformation and the mixing
around cyclonic vortices are pronounced; on the other
hand, anticyclones remain virtually axisymmetric and
coherent.

Hence, according to our numerical simulations,
ageostrophic effects become significant when the dy-
namical Rossby number is O(1), and these ageostrophic
effects introduce a cyclone–anticyclone asymmetry. The

unstable region for anticyclones diminishes in the pa-
rameter space, while it expands for cyclones. The in-
stabilities develop in fundamentally different ways as
well, with anticyclones showing little disruption and
cyclones showing strong deformation and vigorous mix-
ing.

5. Large-scale effects

We next turn to the influence of large-scale effects
(Lo . Rd) on vortices that are close to geostrophic bal-
ance (e K 1). The purpose of this investigation is to
know how far we can rely on the quasigeostrophic for-
mulation to describe the unstable evolution of isolated
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FIG. 8. Dependence of the critical value a5 on the Burger number
for cyclones and anticyclones. The Rossby number is equal to 0.1.
The solid line corresponds to the marginal stability limit in the QG
model while the dashed line corresponds to the a5 value in QG.

FIG. 9. Evolution of the PV contours for initially circular vortices
having the same vorticity profile (steepness parameter ac 5 4) but
different Burger numbers (a) Bu 5 9, (b) Bu 5 1, and (c) Bu 5
0.11. For the latter case only the final stage of the evolution is shown
at t 5 50To for both the cyclonic and the anticyclonic vortices. All
vortices have the same Rossby number e 5 0.1, and therefore they
are nearly in geostrophic balance.

vortices when the Burger number Bu 5 (Rd/Lo)2 be-
comes small.

Figure 8 shows the dependence of the steepness pa-
rameter a5 on Lo/Rd for cyclones and anticyclones hav-
ing opposite vorticity. The main tendency is that the
unstable region, for both cyclones and anticyclones, de-
creases in the parameter space as the Burger number
decreases. In other words, a wider class of vorticity
profiles are stable when the characteristic horizontal
scale of the vortex is increased. The value of a5 follows
surprisingly well the prediction of the QG linear stability
analysis. The stabilization of large-scale vortices is il-
lustrated in Fig. 9 showing the nonlinear evolution of
unstable vortices having a steep vorticity profile a 5 4
for three different values of Bu. The first case, Bu 5
9, may be well described by the 2D barotropic system
(Bu → `) and leads to dipole splitting. The second case,
Bu 5 1 in the QG regime, leads to the classical tripole
instability. The third case, Bu 5 0.11 in the frontal
dynamics regime, leads to a cyclone–anticyclone asym-
metry. Hence, small-scale vortices are more unstable
than large-scale ones. Therefore, the mixing resulting
from the nonlinear evolution of unstable vortices is en-
hanced in the high Burger number regime (Lo K Rd).

These simulations show that large-scale vortices be-
come more stable as the Burger number decreases. This
effect is relatively well reproduced by the QG model.
However, when Bu , 1, anticyclones exhibit greater
stability than cyclones, and this cannot be explained
using the QG model.

We have also investigated the role of ageostrophic
effects in the evolution of small and large-scale vortices
(Fig. 10). The relative deviation of the growth rate of
the most unstable mode (wave 2) from the standard QG
analysis gives a quantitative estimate of these effects.
We have shown that when the Burger number decreases,
ageostrophic effects become more important. For an an-
ticyclonic vortex having a dynamical Rossby number «
5 0.3, the deviation of the growth rate increases from
7% to 50% when the Burger number decreases from 4
to 0.44. As expected, a significant departure from QG
dynamics will occur when the relative amplitude of the
height field h/Ho (or the ratio «/Bu) approaches unity.
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FIG. 10. The relative deviation of the growth rate from a standard
QG analysis for several values of the Burger number, for both cy-
clones (filled dots) and anticyclones (open dots), and for various
values of the Rossby number e. Key: Bu 5 0.44 (triangles), Bu 5
1 (squares), and Bu 5 4 (circles). All the vortices have the same
velocity profile corresponding to a steepness parameter a 5 3.

FIG. 11. Evolution of the PV contours for initially circular vortices
having a steepness a 5 3, a characteristic scale 1.5 times larger than
the deformation radius (Bu 5 0.44), and a dynamical Rossby number
e 5 0.3.

Hence, the asymmetry arises from a combination of both
large-scale and ageostrophic effects as emphasized in
Fig. 11. Significant differences in the evolution of cy-
clones and anticyclones may occur even if the dynamical
Rossby number is still relatively small, for example, «
5 0.3, and the vortex size is just 1.5 times larger than
the deformation radius (i.e., Bu 5 0.44).

6. A quantitative law for cyclone–anticyclone
asymmetry

According to the numerical results of Polvani et al.
(1994) for decaying shallow water turbulence, the cy-
clone–anticyclone asymmetry seems to be controlled by
a single parameter. Indeed, they have shown that the
skewness of vorticity (initially zero) always becomes
negative. This value increases with the Froude number
Fr 5 e/ Bu. However, Arai and Yamagata (1994) haveÏ
shown that the difference in stability between elliptical
cyclones and anticyclones (at a constant Froude number)
is strongly influenced by the relative deviation of the
height field (e/Bu). If we assume that the normal mode
instability, which grows slowly compared to inertia–
gravity wave frequency, is controlled by the PV, then
one would expect the cyclone–anticyclone asymmetry
to be induced by the non-QG part of the PV. In fact,
this first-order correction to the QG PV is of order e/Bu.
In appendix B, it is shown that this nonlinear correction
increases the PV gradient in the vortex core for cyclones
but decreases it for anticyclones.

For our results, the rescaling of (s 2 sQG)/sQG (de-
viation from QG of the most unstable growth rate) with

e/Bu (see Fig. 12) or e/ Bu does not give a satisfactoryÏ
relation. However, we have found that, for a given steep-
ness a, the growth rates rescale surprisingly well with

(s 2 sQG)/sQG } e/(Bu 2 Buc), (6.1)

where Buc is the critical Burger number corresponding
to the QG marginal stability of the given vorticity pro-
file. The value of Buc 5 Bu(a 5 ac) can be directly
extracted from Fig. 3. The relation (6.1) was verified
over a wide region of the (e, Bu) parameter space for
two vorticity profiles a 5 3 (Buc 5 0.17) and a 5 2.6
(Buc 5 0.44), shown respectively in Figs. 13a and 13b.
One may verify from these figures that the proportion-
ality coefficient in (6.1) is of order unity, differing only
slightly between the a 5 3 and a 5 2.6 profiles.

Hence, according to relation (6.1), if a vorticity profile
is far from its marginal stability in QG (Bu k Buc),
the difference in lifetime between cyclones and anti-
cyclones is controlled by a single parameter: the relative
amplitude of the height field e/Bu. On the other hand,
for vortices close to QG marginal stability (Bu ù Buc)
a strong asymmetry may occur even if the surface de-
viation remains small. Then, a significant deviation from
QG dynamics may occur even if Fr2 K e K 1. In fact,
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FIG. 12. Deviation of the growth rates from a standard QG analysis
as a function of e/Bu. Values are plotted for various cyclonic (e .
0) and anticyclonic (e , 0) vortices having a steepness (a) a 5 3
and (b) a 5 2.6.

the characteristic evolution time for an unstable vortex
close to marginal stability is very long O(e21) and the
asymptotic expansion leading, at the first order, to the
QG model is not formally valid for such timescales.
Higher-order nonlinearity needs to be taken into account
in a multiple-time scale analysis. Such nonlinearity is
likely to explain the breaking of symmetry between cy-
clones and anticyclones near QG marginal stability.

7. Significance

Several key questions arise from this research. First
of all, is it possible to observe in nature mesoscale ed-
dies in a range of parameters where ageostrophic or
large-scale effects are significant? If so, do these eddies
exhibit a cyclone–anticyclone asymmetry?

Isolated vortices are more common in the oceans than
in the Earth’s atmosphere or in other planets where
strong environmental shear and diabatic effects may
play important roles. While a reliable horizontal scale
Lo of vortices can be extracted from ocean data, simi-
larly reliable velocity profiles and estimates of the local
deformation radius Rd are difficult to obtain. Usually,
the maximum of the velocity profile is used in order to
estimate the standard Rossby number Ro 5 Vmax/Lof o

of the vortex. As mentioned above, the dynamical Ross-
by number e may be two to three times larger than Ro
depending on the velocity profile. The deformation ra-
dius corresponding to an equivalent 1½ shallow-water
layer model can be estimated from isopycnal displace-
ments (Olson 1985). According to the large dataset an-
alyzed by Olson (1991) a great variety of vortices are
observed having a wide range of characteristics (see Fig.
14). Agulhas eddies have characteristic horizontal scales
two or three times larger than the deformation radius
(small Burger number) while Gulf Stream rings may
have a moderate Rossby number. Both large-scale cy-
clones and anticyclones are generated from the mean-
dering of strong oceanic currents. No evident asym-
metry appears in the distribution of vortices even though
the longest-lived structures observed are anticyclonic
(Olson 1991). However, an asymmetry in the shape of
eddies formed behind Gran Canaria Island was recently
observed (Aristegui et al. 1994). According to these
authors, the elliptical deformation of the cyclonic vor-
tices is more pronounced than that for the anticyclonic
ones. Assuming that the mechanism of eddy generation
in this case is analogous to the von Kármán vortex street
instability, eddies with moderate Rossby number are
likely to appear. Hence, the observed asymmetry could
be a manifestation of the ageostrophic effects mentioned
in this paper. Note however, that a nontrivial vertical
structure of the flow could also be responsible for the
observed asymmetry.

Another question arises about the importance of 3D
instability neglected in the shallow-water treatment of
this problem. It is well known that ageostrophic anti-
cyclonic vortices may be subject to inertial instability

(also called centrifugal instability). How does this 3D
instability compete with the 2D ageostrophic stabili-
zation described in the present paper?

According to the extended Rayleigh criterion for cen-
trifugal instability (Kloosterziel and van Heijst 1991;
Mutabazi et al. 1992) all circular anticyclonic vortex
columns will be unstable to vertical pertubations when
the dynamical Rossby number e is larger than one (i.e.,
for q , 0). In this case there is an annular region sur-
rounding the core where the Rayleigh discriminant is
negative. Isolated cyclonic vortices may also become
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FIG. 13. Same notation as Fig. 12. Deviation of the growth rates
from a standard QG analysis as a function of e/(Bu 2 Buc); Buc is
the critical Burger number, obtained from the QG stability analysis
(Fig. 3): Buc 5 0.17 for a 5 3 and Buc 5 0.44 for ac 5 2.6.

FIG. 14. Distribution of vortices generated by oceanic currents
(Gulf Stream, Kuroshio, Algulhas), from Olson (1991).

inertially unstable, but this occurs for a higher value of
the Rossby number depending on the vorticity profile.
This instability has been observed in laboratory exper-
iments (Kloosterziel and van Heijst 1991; P. Bonneton
1998, personal communication) and in 3D numerical
simulations (Bartello et al. 1994). Hence, in nature, one
would expect ageostrophic stabilization of anticyclones
only for Rossby numbers close to, but not larger than,
unity. One might expect an even greater range of ap-
plicability, given that the instability is weak for e slight-
ly greater than unity and that maximum instablity occurs
for much higher dynamical Rossby numbers; for ex-

ample, e ù 6 for the circular vortex patch (Potylitsin
and Peltier 1998). Moreover, stratification tends to re-
duce growth rate (Potylitsin and Peltier 1998). Finally,
the vortices modeled by the shallow-water system are
not barotropic, and their actual 3D structure may give
rise to added stability. It is then possible that anticy-
clonic vortices may survive for Rossby numbers sig-
nificantly larger than unity.

One of the main concerns about using the reduced-
gravity model is its trivialization of the vertical flow
structure. In order to better understand oceanic obser-
vations, an active lower layer should be taken into ac-
count. In this case, how is the baroclinic instability ex-
pected to change the results obtained and how could it
affect the cyclone–anticyclone asymmetry?

It is well known that the influence of Bu on the sta-
bility of QG vortices is sensitive to the presence of an
active lower layer. Indeed, unlike the one-layer case,
vortices become increasingly unstable when Bu decreas-
es in a two-layer QG model (Ikeda 1981). However, it
may still be possible to obtain stable vortices with length
scales larger than the deformation radius if the initial
steady state has a corotating deep-layer flow. Linear
stability analyses performed by Helfrich and Send
(1988) and Flierl (1988) have shown that a corotating
lower layer reduces the growth rate of unstable QG
vortices, while a counterrotating lower layer enhances
it. Besides, the departure from QG appears to amplify
this behavior. For a two-layer shallow-water model, the
normal modes of instability disappear for both warm
(anticyclonic) and cold (cyclonic) large-scale eddies (Bu
K 1) having a weak corotaing flow (Dewar and Kill-
worth 1995; Killworth et al. 1997). As far as the cy-
clone–anticyclone asymmetry is concerned, recent nu-
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merical simulations in a two-layer fluid (Benilov et al.
1998) have shown that among various eddies having
Gaussian profiles, only some anticyclonic ageostrophic
vortices (e $ 0.6) are stable. Hence, the ageostrophic
stabilization presented in section 6 could still be an ef-
ficient mechanism for a stratified 3D flow.

8. Conclusions

By means of high-resolution shallow-water simula-
tions, conducted using the recently developed CASL
algorithm (Dritschel et al. 1999), we have examined the
stability and nonlinear evolution of isolated vortices as
a function of their shape, size, and strength. The evo-
lution of each cyclone was compared to its equivalent
anticyclone: a vortex having the same vorticity profile
but with opposite sign. It has been shown, for this 1½-
layer model, that a significant departure from quasigeo-
strophic dynamics occurs when the ratio of the dynam-
ical Rossby number to the Burger numer e/Bu is O(1)
or when vortices are close to marginal stability in QG.
In all cases, this departure is characterized by a cyclone–
anticyclone asymmetry, which is opposite to the well-
known asymmetry induced by three-dimensional iner-
tial instability on vortex columns. Indeed, both ageo-
strophic (e ù 1) and large-scale effects (Bu K 1) tend
to destabilize cyclonic vortices and stabilize anticy-
clonic ones. This asymmetry appears to be significant
over the range of parameters characterizing isolated vor-
tices in the ocean, and may therefore explain the greater
observed longevity of anticyclones there. However, to
fully reproduce the asymmetry of the oceanic obser-
vations, the three-dimensional structure of the flow
should be taken into account.
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APPENDIX A

Asymptotic Limit of the PV Gradient

Using the dynamical Rossby number e and the rel-
ative amplitude of the height field l 5 e/Bu the di-
mensionless PV may be expressed as

1 1 ev(s)
q 5 (A.1)

1 1 lh(s)

and its dimensionless gradient as

1
] q 5 (e] v 2 lq] h). (A.2)s s s1 1 lh(s)

Close to the vortex center, the PV gradient of a cy-
clone is always negative. If this cyclone satisfies (1),
the asymptotic limit for large s (s → `) gives

2a21 as s
] v → exp 2 (A.3)s 1 22 a

2 ay 1 s
] h 5 y 1 e → s exp 2 , (A.4)s 1 2s 2 a

therefore

as s
2(s21)] q → (es 2 l) exp 2 . (A.5)s 1 22(1 1 lh) a

If the steepness parameter satisfies a . 1, for any
values of (e, Bu) the PV gradient will tend to a positive
value for large s. Similar results with opposite signs are
obtained for anticyclones. Hence, all vortices defined
by (A.1) have a nonmonotonic PV profile.

APPENDIX B

First-Order Correction of the PV Gradient

Using the dimensionless parameters (e, l), introduced
in appendix A, we derive the first-order correction of
the PV gradient from the standard QG regime where l
K 1 and e K 1. From (A.2) and using the dimensionless
formulation of the gradient wind balance,

2y
] h 5 y 1 e , (B.1)s s

we get

2y
] q 5 e ] q 2 l ] (h q ) 1s s QG s QG QG1 2[ ]s

2 21 O(e l, el ), (B.2)

where qQG and hQG are defined by

1
q 5 v 2 h (B.3)QG QGBu

] h 5 y . (B.4)s QG

Hence, the first-order correction of the PV gradient
scales as l 5 e/Bu. In the center of the vortex where
]s(hQGqQG) $ 0 this nonlinear correction is positive for
both cyclones and anticyclones; therefore it increases
the PV gradient of cyclones and decreases that of an-
ticyclones.
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