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ABSTRACT

Zonally propagating solutions of the primitive equations for an isolated volume of fluid are considered. In a
moving stereographic projection (from the antipode of the center of mass) geometric distortion enters at O(R22),
with R the radius of the earth, whereas planet curvature effects are O(R21). The imbalance between the centrifugal
force and the poleward gravitational force, due to the drift c, is equilibrated by the average Coriolis force,
proportional to b. The results are valid for both homogeneous and stratified cases and the lowest-order solution
need not be an axisymmetric vortex. The classical b-plane approximation predicts correctly the leading order
of c/b, but makes large errors in the O(R21) term of the vortex structure.

A method is developed to construct the correct O(R21) term, starting from any steady solution of the f -plane
equations, as the O(R0) term. The expansion is exemplified starting with a homogeneous fluid, solid body rotating
at an anticyclonic rate 2n f 0, with 0 , n , 1. To O(R21) particle orbits and isobaths belong to different families
of nonconcentric circles. A water column moves faster and becomes taller the farther away it is from the equator.
In order to keep its potential vorticity, the water column experiences changes of relative vorticity equal to 2(2
2 n )/(3 2 3n ) times the variations of the ambient vorticity (Coriolis parameter). The physics of this solution
is compared with that of a circular and rigid disk, studied in Part I.

1. Introduction

Ball (1963) studied the shallow-water equations in
the framework of the f -plane approximation (constant
Coriolis parameter f and Cartesian geometry), showing
that ‘‘the motion of the centre of gravity of a finite
volume of liquid with free boundaries . . . is independent
of the motion relative to the centre of gravity, and vice
versa.’’ More precisely, in the absence of topography
this center of mass movement is but an inertial oscil-
lation in a circular orbit1 and the motion relative to it
satisfies the full, nonlinear, shallow-water equations.
Cushman-Roisin and Nof (1985), Young (1986), and
Cushman-Roisin (1987) reinterpreted the results of Ball
(1963) in a ‘‘reduced gravity’’ setting in which the active
volume of fluid is assumed to be floating on top of a

1 Ball (1963) studied a more general case with a paraboloid to-
pography. However, if this is concave and of revolution, then in the
f plane there is a transformation to a rotating system which ‘‘elim-
inates’’ the topography while changing the value of the Coriolis pa-
rameter (Ripa 1987).
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motionless heavier liquid. As long as the ambient layer
is assumed to be at rest, there is no mathematical dif-
ference between Ball’s setting, a volume of fluid over
the surface of the planet (which will be adopted here),
or the reduced gravity ones. Maas and Zahariev (1996)
further generalized these results to a three-dimensional
elliptical vortex moving inside a motionless stratified
fluid: in addition to the horizontal inertial oscillations,
the center of mass performs vertical buoyancy oscilla-
tions.

Ball (1963) showed that conservation of the energy
E, measured in the terrestrial frame, and the vertical
component of the angular momentum A play an im-
portant role in the motion of the fluid relative to the
center of mass, and also proved that there are exact
solutions of the f -plane shallow-water equations, in
which the pressure (velocity) is a second (first) order
polynomial of the coordinates; the time-dependent poly-
nomial coefficients satisfy nonlinear ODE. Particular
examples of these ‘‘polynomial solutions’’ were dis-
cussed by Cushman-Roisin and Nof (1985), Young
(1986), and Cushman-Roisin (1987), and the general
solution of the system of ODE was found by Holm
(1991). It is worth recalling that, even though these are
exact solutions the f -plane shallow water equations,
they might be unstable, particularly the more elongated
ones, to perturbations in the form of a higher degree
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polynomial (Cushman-Roisin 1986; Ripa 1987; Ripa
and Jiménez 1988; Pavı́a and López 1994).

Allowing for effects of the planet’s curvature changes
completely Ball’s scenario: the inertial oscillations are
not circular but experience a secular drift, they are cou-
pled with the internal motions, A is no longer an integral
of motion, and polynomial exact solutions are not pos-
sible. A solid-body rotating vortex in the f -plane (the
‘‘lens’’), can be shown to be stable using conservation
of E, A, and potential vorticity (Ripa 1987, 1992); even
if there were axialsymmetric solutions on the sphere
(with the center off the poles), their stability could not
be proved by the same method because A is not an
integral of motion.

Through the analysis of a disk dynamics, in Ripa
(2000 henceforth referred to as Part I) it was shown that
at low E there are two distinct parts of the drift velocity
c: that due to the inertial oscillations co and that caused
by the intrinsic rotation ci, which were respectively de-
noted ‘‘orbital drift’’ and ‘‘internal drift’’ for simplicity
(both refer to the translation of the whole solution,
though, the name distinguishes the origin of the drift;
see Table 1 in Part I). The present paper is devoted to
the second effect on isolated vortices; the most difficult
problem of a vortex experiencing both inertial oscilla-
tions of its center of mass and internal motions will be
left for Part III of these works.

Nof (1981) and Killworth (1983) calculated the in-
ternal drift ci of an isolated vortex in the framework of
the classical b-plane approximation of the shallow-wa-
ter equations, that is, using

x 5 (l 2 l0)R cosu0, y 5 (u 2 u0)R (1.1)

—where (l0, u0) are reference (longitude, latitude)—as
Cartesian coordinates, but allowing for a linear variation
of f with latitude. This approximation is incorrect (ex-
cept in the equatorial waveguide) because the curvature
corrections to a flat geometry are of the same order as
the variation of the Coriolis parameter, namely, O(R21).
However, Graef (1998) proved that the formula derived
by Nof (1981) and Killworth (1983) for ci is correct.
This does not mean that the classical b plane gives the
right description of all other details of the motion, as
explained in Ripa (1997, hereafter referred to as R97),
Part I, and this paper. More precisely, the exact arc
element in the coordinates (1.1) is given by |dr| 5

g2dx2 1 dy2 with g 5 secu0 cosu. Therefore, as y →Ï
0 the Coriolis parameter and metric coefficient satisfy

f ; f 0 1 by, g ; 1 2 t 0y,

where all through these papers the symbol ; denotes
‘‘equal modulo o(R21),’’ that is, results with an O(R22)
error, and

21f 5 2V sinu , b 5 2VR cosu ,0 0 0

21t 5 R tanu .0 0

Note that b and t 0 are of the same order, namely R21,
except for u0 5 0.

The inadequacy of the classical b-plane approxima-
tion is not always clearly recognized. Compare, for in-
stance, the formulas for the ageostrophic velocity and
divergence, in the quasigeostrophic scaling, given by
two classical texts [Pedlosky 1979, Eqs. (13a), (13b),
and (14) of section 6.3] versus [Gill 1982, Eqs. (17),
(18), and (28) in section 12.2]: the former include terms
proportional to t 0 missing in the latter. In the derivation
of the quasigeostrophic model, these ‘‘non-Cartesian’’
terms cancel out in the corresponding potential vorticity
equation, which is then fortuitously described correctly
by the classical b-plane approximation (Pedlosky 1979;
see also R97). However, it is not unlikely that t 0 should
appear in the prognostic equation of other balance mod-
els, in a correct O(R21) approximation.

In the spherical coordinates (1.1), the parameters b
and t 0 appear on equal footing because both are O(R21).
Phillips (1973) and Verkley (1990) choose other coor-
dinates (xp, yp) such that the xp 5 0 is the meridian l
5 l0, whereas yp 5 0 is another great circle, tangent
to the zonal displacement (l0 1 dl, u0), instead of the
parallel u 5 u0. [Phillips makes a stereographic pro-
jection from the antipode (l0 1 p, 2u0) whereas Verk-
ley uses spherical coordinates such that yp 5 0 is their
equator.] With these choices of variables the classical
b-plane equations are correct up to O(R21) in a neigh-
borhood of u 5 u0 and l 5 l0; this is appropriate for
problems in a small domain fixed to the earth (such as
a sea) but not for the solutions with a secular zonal drift,
such as those studied in this and companion papers,
since the requirement l ø l0 is eventually violated.
Approximations are not uniformly valid in time because
the drift is along the great circle yp 5 0, instead of the
parallel of latitude y 5 0. (See R97 for a quantitative
comparison of the predictions for a single particle made
by Verkley’s system, the classical b plane, and the full
equations.)

In order to derive approximations that are uniformly
valid in time, in Part I were defined moving coordinates
(x9, y9) by means of a stereographic projection from
(l0 1 p 1 dVt, 2u0), where dV 5 cR21 secu0. In the
new frame a particle has a velocity u9 5 u 2 andgcl̂
is subject to the action of the Coriolis force 2 f 9ẑ 3 u9
and the imbalance between the poleward gravitational
force and the equatorward centrifugal force 2=F9
(called ‘‘geoforce’’ in Part I), where

dV
f 9 5 1 1 f ,1 2V

1 dV dV
2 2 2F9 5 1 1 R ( f 2 f ).01 24 2V V

In terms of these coordinates, the arc element and the
terrestrial Coriolis parameter are exactly given by |dr|
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5 dx92 1 dy92, with 5 1 1 (x92 1 y92)/R2,121g̃ g̃Ï 4

and f 5 (2 2 1) f 0 1 .g̃ g̃by9
The transformation (x9, y9) ° (x, y) is given by in

appendix A of Part I; if the interest is near x92 1 y92Ï
5: r 5 0, making an expansion in r/R, it is also shown
in Part I:

1
2x 2 ct ; x9 1 t x9y9, y ; y9 2 t x9 . (1.2)0 02

This yields a transformation of the horizontal velocity
components, u ; (1 2 t 0y) ẋ and y 5 ẏ, of the form

u 2 c ; u9 1 t0 x9y9, y ; y9 2 t0 x9u9, (1.3)

where u9 ; ẋ9 and y9 ; ẏ9. Furthermore, since dV/V
5 O(R22) [i.e., c 5 O(R21); see Part I],

f 9 ; f 0 1 by9, F9 ; f 0cy9, ; 1.g̃

From these expressions it follows that the correct
O(R21) equations in (x9, y9) coincide with the incorrect
b-plane equations (i.e., without the t 0 terms) in the
coordinates (x 2 ct, y). Consequently, as long as c is
chosen so that the solution’s domain remains bounded
in these coordinates, the classical b-plane equations give
the right solution in the wrong frame. Note that the circle
(x9, y9) 5 a(cosf, sinf ) is not seen as a circle in
(x 2 ct, y) but as (x 2 ct)2 1 y2 ; a2(1 1 t 0a cosf 2

sinf ): the apparent eccentricity is O(R21), namely, the
same order as the difference with the f -plane solutions.
This problem is not avoided using coordinates (x, y)
defined with a Mercator projection, that is, |dr| 5
g dx2 1 dy2, since it can be shown (x 2 ct)2 1 y2 ;Ï
a2(1 1 t 0a sinf ) in this frame (see R97). Here on,
(x, y) will denote the spherical coordinates (1.1); vari-
ables a and t 0 used in R97 correspond to R and t 0R in
this paper, whereas w2 from R97 should here be set equal
to zero.

As done in (Ball 1963), only compact vortices are
considered here, that is, bounded by a zero depth line,
in the two-dimensional case, or a surface of vanishing
pressure perturbation, in the three dimensional case. For
nonisolated vortices, the external field plays an impor-
tant role (Nof 1983; Cushman-Roisin et al. 1990; Ben-
ilov 1996; Llewellyn Smith 1997; Stern and Radko
1998); study of earth’s curvature effects for these prob-
lems is beyond the scope of the present paper. The pur-
pose of this paper is twofold: First, bulk formulas (the
drift c and the average of the particles zonal velocity
^u&, whose difference is a consequence of the planet’s
curvature) are derived for the general problem in section
2, without making particular assumptions on the struc-
ture of the lowest order fields (e.g., it need not be a
monopolar vortex); these results are shown to be also
valid for a stratified case. Second, the structure and dy-
namics of a uniformly translating solution of the shallow
water equations are discussed in section 3. An expansion
method to find a general O(R21) solution is derived. The
particular case when the starting, O(R0), field is a solid-
body rotating vortex is described and its dynamics is

compared with that of the disk, studied in Part I. Con-
clusions are finally given in section 4, and mathematical
details are left for appendixes.

2. General equations

First consider an homogeneous fluid, henceforth re-
ferred to as ‘‘the vortex,’’ in a compact volume bounded
by the earth’s radii R and R 1 h(x, t), where the hori-
zontal position x is expressed in any coordinates on the
sphere. Each water column moves with a horizontal ve-
locity u(x, t). It is important to write down the evolution
equations in a coordinate-free form, namely

] h 1 = · (hu) 5 0t x ∈ D(t),6] u 1 ( f 1 j)ẑ 3 u 1 =b 5 0t

h(x, t) 5 0 x ∈ ]D(t),

where

1
2j 5 ẑ · = 3 u, b 5 gh 1 u

2

are the vertical relative vorticity and Bernoulli head,
respectively. The total volume is conserved

d
h dS 5 0.EEdt D

Ball (1963) derived, in the case of Cartesian geometry,
the theorem

d^m& Dm
5 (2.1)7 8dt Dt

for any m(x, t), where ^m& :5 (##D hm dS)/(##D h dS) and
D/Dt 5 ] t 1 u · =. It is easy to show that it is also
valid on the sphere (in any coordinates and frame).2 [If
the domain is not limited by h 5 0 and the far-field
asymptotic condition is of the form h → h`, then the
angle brackets are not an average, but rather denote ^m&
:5 (##D hm dS)/(##D (h 2 h`) dS).]

Secondly, the equations of motion for a stratified iso-
lated volume of fluid are

] w 1 = · u 5 0 z 
] u 1 ( f 1 j)ẑ 3 u 1 =b 5 0 (x, z) ∈ D (t),t 3

Dq /Dt 5 0, ] p 5 qz

p(x, z, t) 5 0 (x, z) ∈ ]D (t),3

where D/Dt 5 ] t 1 u · = 1 w]z, q(x, z, t) is the buoy-
ancy field, b 5 p 1 u2, and p(x, z, t) is the kinematic1

2

pressure deviation from the atmospheric pressure, in
Ball’s volume of fluid setting, or from the reference

2 Since (d/dt) ##D mh dS 5 ##D ]t(mh) dS 1 )]D mhu · n̂ dl 5
##D []t (mh) 1 = · (mhu)] dS 5 ##D h Dm/Dt dS.
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pressure profile of the surrounding fluid, in a ‘‘reduced
gravity’’ setting like that of Maas and Zahariev (1996).
It is easy to see that Ball’s theorem (2.1) is also valid
in three dimensions, where ^ · · · & represents a volume
average in the domain D3(t).

Different orthogonal coordinates (x1, x2) can be used
on the sphere. If the arc element takes the form

2 2 2 2|dr| 5 Ïg dx 1 g dx ,1 1 2 2

then the area element and the differential operators are

dS 5 g g dx dx ,1 2 1 2

21 21=b 5 (g ] b)x̂ 1 (g ] b)x̂ ,1 x 1 2 x 21 2

21 21= · u 5 g g (] (g u ) 1 ] (g u )),1 2 x 2 1 x 1 21 2

21 21ẑ · = 3 u 5 g g (] (g u ) 2 ] (g u )).1 2 x 2 2 x 1 11 2

For instance, for the rescaled spherical coordinates (1.1)
it is Dx/Dt 5 u/g and Dy/Dt 5 y , and the shallow water
equations take the form

Dh h ]u h ](gy)
1 1 5 0,

Dt g ]x g ]y

Du g ]h
2 ( f 1 tu)y 1 5 0,

Dt g ]x

Dy ]h
1 ( f 1 tu)u 1 g 5 0,

Dt ]y

with t :5 2g21 dg/dy 5 R21 tanu. (Note that t ; t 0

as y/R → 0.) On the other hand, in the moving stereo-
graphic coordinates derived in Part I and described in
the introduction, the shallow-water equations are, ex-
actly,

]9h 1 =9 · (hu9) 5 0,t

]9u9 1 ( f 9 1 j9)ẑ 3 u9 1 =9b9 5 0, (2.2)t

where is the operator for the time derivative at fixed]9t
x9 5 (x9, y9) and

1
2j9 5 ẑ · =9 3 u9, b9 5 gh 1 u9 1 F9.

2

Notice that the potential vorticity is the same in both
systems q 5 ( f 1 j)/h [ ( f 9 1 j9)/h. Since g1 5 g2

5 the system (2.2) for (h, u9, y9)(x9, y9, t) can be ex-g̃,
plicitly written as

22]9h 1 g̃ =9 · (g̃hu9) 5 0,t 0

21 21(]9 1 g̃ u9 · =9)u9 1 f 9ẑ 3 u9 1 g̃ =9(gh 1 F9) 5 0,t 0 0

(2.3)

where is the nabla operator, as if (x9, y9) were Car-=90
tesian coordinates.

Bulk properties for uniform translation

Assume a steadily propagating solution. In spherical
coordinates, all dynamical fields are functions of

(x 2 ct, y) or (x 2 ct, y, z) for some constant c (which
is an internal drift ci, since inertial oscillations are not
included in this calculation). Consequently, d^x&/dt 5 c
and d^y&/dt 5 0. Moreover, from dS 5 g dx dy and
dg/dy 5 2gt , it follows ^]p/]y& 5 ^pt&, and finally1

2

^y& 5 0 implies ^u& 5 2 ^( f 2 f 0)u 1 u2t 1 pt&121f 20

and c 5 ^g21u&, exactly. (The center of mass zonal
velocity U is equal to c due to the lack, here, of center
of mass oscillations.) In an expansion in inverse powers
of R, to lowest order it is

1
21 2^u& ; 2 f byu 1 u t 1 p t ,0 0 0 0 0 07 82

c ; ^u& 1 t ^yu &.0 0

These results are quite general. They apply to both ho-
mogeneous and stratified isolated volumes of fluid. They
might even be valid for a nonisolated, uniformly trans-
lating solution, as long as the O(R22) terms and the
remainder in the integration by parts of ^]p/]y& can be
neglected. Notice that to calculate the lowest order con-
tribution to the bulk quantities, namely O(R21), it is not
necessary to study the motion of the center of mass [as
done, for instance, by Killworth (1983) in the classical
b plane], and it is enough to know the O(R0) solution,
which need not be axisymmetric.

It is much simpler to calculate bulk formulas for ho-
mogeneous or stratified uniformly propagating vortices
in stereographic coordinates, for which the solution is
steady, and therefore ^u9& is constant (in fact, c must be
chosen so that ^u9& 5 0). Using Ball’s theorem (2.1)
with d^u9&/dt 5 0 yields, exactly,

^ f 9u9& 5 ẑ 3 ^=9(p 1 F9)&.

Now ^=9p& is proportional to ## ( =9h2) dx9 dy9 in the1 2g̃2

homogeneous case or to ### (=9p) dx9 dy9 dz in the2g̃
stratified case; integrating by parts it is found ^=9p& 5
O(R22) in both cases because 5 1 1 O(R22) and pg̃
5 0 in the boundary. Using F9 ; f 0cy9, it is then found
b^y9u9& ; 2 f 0cx̂9 ; that is, b^y9y9& 5 O(R22) and

c ; 2b ^y9u9&.21f 0 (2.4a)

Even though ^u9& 5 0, from (1.3) it follows

^u& ; c 1 t 0^x9y9& (2.4b)

and t 0^x9u9& 5 O(R22). These results can be cast in a
form more similar to those obtained for the disk, in Part
I, as follows. Writing the horizontal velocity field in
terms of the rotation velocity v(x9, y9, z) and radial ve-
locity (x9, y9, z)u9r

x9 y9
u9 5 2vy9 1 u9, y9 5 vx9 1 u9,r rr r

from d^x9y9&/dt 5 0 it follows ^ (y9u9 1 x9y9)& 5 0,21g̃
and therefore ^y9u9 1 x9y9& ; 0. Consequently, since
^y9u9& 2 ^x9y9& 5 ^vr2&, it is finally found ^y9u9& ;1

2

2^x9y9& ; 2 ^vr2&, which implies1
2
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1 1
21 2 21 2c ; b f ^vr &, ^u& ; (b f 1 t )^vr &, (2.5)0 0 02 2

which are exactly the formulas obtained for the uni-
formly propagating disk (see Table 1 in Part I and recall
that b 1 t 0 5 b sec2u0). Notice that the only21 21f f0 0

assumption made is the existence of a uniformly prop-
agating solution (an approximate example of which is
given in section 3): it is not necessary to make any
hypothesis on the shape of this solution (e.g., the lowest
order field need not be axisymmetric).

3. Structure of the purely translating solutions

For simplicity, a homogeneous vortex will be con-
sidered here. In order to find the structure of a vortex
in pure precession, 5 0 is made in the exact evolution]9t
equations (2.2). The first one is satisfied defining a trans-
port function, hu9 5 ẑ 3 =9c, which can then be used
to write the potential vorticity as

21f 9 1 =9(h =9c)
q 5 .

h

The second equation in (2.2) then implies b9 5 B(q)
and c 5 C(q), where the functions B(q) and C(q) could
be multivalued and are related by

dB dC
5 q .

dq dq

These represent coupled and highly nonlinear differ-
ential equations for C and h, to be solved in the domain
inside the h 5 0 curve (which is part of the solution),
and such that c is an eigenvalue (hidden in the defini-
tions of both b9 and q) to be determined by the require-
ment of steady and well-behaved fields. This is hardly
a problem to be solved ‘‘on the back of an envelope.’’

Solutions are thus found making an expansion in R21

and working with (2.3), which uses (x9, y9) as planar
coordinates. To lowest order it is

=9 · (h u9) 5 0,0 0 0

u9 · =9u9 1 f ẑ 3 u9 1 g=9h 5 0, (3.1)0 0 0 0 0 0 0

and to first order in R21, it is

h =9 · (h u9 1 h u9)1 0 0 1 1 0:D 51 2 1 2u9 u9 · =9u9 1 u9 · =9u9 1 f ẑ 3 u9 1 g=9h1 0 0 1 1 0 0 0 0 0 1

0
5 ,1 2F

(3.2)

where in

F 5 2cf ŷ9 2 by9ẑ 3 u90 0

are grouped the leading term of 2=F9 and 2( f 9 2 f 0)ẑ
3 u9. These are the equations to solve in order to find
the lowest order correction to the vortex structure. The
a priori formula for the drift velocity (2.4a) follows from

the condition ^F& 5 0. Clearly, (3.1) is no more than
the equations for a steady solution on the f plane: A
reasonable choice for (h0, ) is any stable equilibriumu90
and appendix A shows how to use its ( f plane) normal
modes in order to calculate (h1, ).u91

The simplest form of the lowest order solution is
probably a circular vortex in (anticyclonic) solid-body
rotation, v 5 2n f 0 5 const, which implies

u9 5 n f y9, y9 5 2n f x9,0 0 0 0

1
2 2 2gh 5 n(1 2 n) f (a 2 r ), (3.3)0 02

where obviously 0 , n , 1 and 0 # r # a. The a priori
formula (2.4a) gives

1
2c 5 2 nba . (3.4)

6

In appendix B it is shown that the O(R21) solution can
be written in compact form as

1 
2 2gh 5 f [6n(1 2 n) f 1 (1 1 3n)by9](a 2 r ) (3.5a)0 0 12


2gf h0 c 5 (3.5b)

22(1 2 n)[ f 1 by9/(3 2 3n)] 0

1 O(R22). Notice that, if h and u9 (5h21ẑ 3 =9c) are
written as polynomials in the coordinates (x9, y9), ne-
glecting o(R21) terms, these polynomials are one order
larger than that of the exact f -plane solutions discussed
in the introduction. Two nondimensional parameters
characterize the vortex (3.5), n and

ba(1 1 3n)
« 5 ,

18 f n(1 2 n)0

in addition to the environmental parameters f 0, b, and
t 0; as in the analysis of the disk presented in Part I, t 0

only enters in the transformation back to spherical co-
ordinates (x9, y9) ° (x, y).

To second order, the total vertical vorticity is given by

by9
22f 1 j 5 (1 2 2n) f 1 1 O(R ). (3.6)01 23 2 3n

The gradient of relatively vorticity 2b(2 2 n )/(3 2 3n )
is opposite to the planetary vorticity gradient b, and is
very important: its smallest value, corresponding to n
→ 0, equals 2(2/3)b; for solutions with anticyclonic
absolute vorticity (n . 1/2) changes in the relative vor-
ticity are larger, in magnitude, than those of the ambient
vorticity.

The height field can be written as h 5 (1 1
3«y9/a)h0(r); solutions will be restricted to |«| , 1/3
(although formally it is « K 1), so that the boundary
is the circle h0 5 0. This condition can be seen as
limiting the allowed radii a as a function of n , namely,
ba/| f 0| , 6n (1 2 n )/(1 1 3n ); the right hand side
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FIG. 1. Structure of a circular and almost solid-body rotating vortex,
Eq. (3.5), in a stereographic projection following the secular drift.
The effects of the earth’s curvature are exaggerated. The orbits (solid
lines) are contours of potential vorticity, transport function, or Ber-
noulli head; the three fields are functionally related in Eq. (3.7).
Dashed contours are isobaths. Notice that in each orbit the depth
increases with the distance to the equator; the absolute vorticity
changes likewise, in order to conserve potential vorticity.

reaches a maximum of 2/3 at n 5 1/3. The total vorticity
can be written as

6«n y9
f 1 j 5 1 1 ( f 1 j ),0 01 21 1 3n a

and thus it has the same sign all over the domain of the
vortex, because

6«n 1
, .) )1 1 3n 2

Notably, to the order resolved the relationship be-
tween Bernoulli head, transport function, and potential
vorticity is the same as that of the O(R0) solution (valid
on the f plane), namely

B(q) 5 A /q 1 b 0
(3.7),1 

2C(q) 5 A /q 
2 

where A 5 gf 0(1 2 2n )2/(1 2 n ) and b0 5 n 2 a2/2.2f 0

Notice that dC/dq 5 2A/q3 is negative (positive) if n
, 1/2 (n . 1/2), that is, if the total vorticity is cyclonic
(anticyclonic). These vortices are circular but not axi-
symmetric. The applicable formal sufficient stability
conditions (derived from the conservation of pseudo-
energy) take the form dC/dq . 0 and u92 , gh (Ripa
1991), and are violated somewhere for all « ± 0. Con-
sequently, it is not possible to say anything a priori on
the stability of these solutions, unlike the f -plane lens,
which is proved stable using conservation of pseudo-
energy and vertical angular pseudomomentum.

The vortex boundary is a circle with radius a. Some
points of interest are

x9 y9

Deepest (=h 5 0):
No motion (=c 5 0):
Center of mass:
Center:

0
0
0
0

«a
«a /(1 1 3n)

0
2«a /2

1 O(«2a). To lowest order in «, the depth contours h
5 const and particle orbits c 5 const belong to different
families of nonconcentric circles; see Fig. 1. Since iso-
baths and orbits are different circles, a water column
changes its height along its trajectory, in order to com-
pensate for the changes of total vorticity (3.6), so that
the potential vorticity q 5 ( f 1 j)/h remains constant.

Consider a general water column whose orbit has a
radius r0 (#a); it can be shown that the center is at

2 22a 2 3r (1 1 n)0y 5 «.0 2(1 1 3n)a

Evaluating u92 1 y92/r0 along x92 1 (y9 2 y0)2 5Ï
it follows that the angular velocity is anticyclonic and2r0

varies linearly with y9, as it does j in (3.6). More pre-
cisely, the Lagrangian trajectory and relative vorticity
of a generic fluid element are given by

(x9, y9) ; (0, y ) 1 r (cosk, sink)0 0

1 k̇ ; 2n f 2 by90Water column 5  6

1 2 2 n j9 ; 22n f 2 by9.0 3 1 2 n

This is qualitatively similar to the results obtained in
Part I for a disk, namely the coordinates (X9, Y9) of its
center of mass and the internal rotation v round this
point are given by

(X9, Y9) ; r(cosk, sink)

1 k̇ ; 2 f 2 bY90Disk 5  2

1 v ; v 2 bY9,
2

where r is the radius inertial oscillation and v is the
temporal mean of v.

In the case of the symmetric disk, changes of the
intrinsic rotation are related to meridional motions
through the law of vertical angular momentum conser-
vation f 1 v 5 const. On the other hand, changes in
the relative vorticity of a water column are more com-
plicated because they are produced by both the merid-
ional displacements and the divergence field

1
=9 · u9 ; bx9.

3 2 3n

The acceleration and driving forces for water particles
in any orbit are presented in Table 1, where r̂0 is the
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TABLE 1. Uniformly translating vortex, as seen in a stereographic
projection following the secular drift. (The entries are the factors that
multiply the vectors defined on top of each column.) For a particle
in an orbit of radius r0 (#a), the radial and meridional components
of the acceleration are produced by the ageostrophic imbalance (sum
of the Coriolis and pressure forces) and the ‘‘geoforce’’ (sum of the
equatorward centrifugal force and the poleward gravitational one);
see Fig. 2.

O(R0)

r0 f r̂0
2
0

O(R21)

r0 f0bdy9r̂0 f0bŷ9

Acceleration 2n 2
1

2 n
2

1
2nr06

Coriolis 2n
1

2 2 n
6

0

Pressure n 2 n 2
1 1

1 n
6 2

1
2 22 n (a 2 r )06

Geoforce 0 0
1

2na
6

FIG. 2. Excess acceleration and forces, from the f -plane balance,
for the boundary, one internal orbit, and the point of no motion [see
O(R21) contributions in Table 1]. This diagram is similar to that
corresponding to the inertial oscillation of a particle or disk, except
that the Coriolis force is here replaced by the ageostrophic imbalance,
that is, the sum of the Coriolis and pressure forces. The (larger)
smaller the orbit the more meridional (central) the pressure forces
are; in the limit of the point of no motion, there is an exact balance
between the ‘‘geoforce’’ and the pressure force.

radial unit vector with respect to the center of that par-
ticular orbit, and exemplified in Fig. 2.

In the case of the disk, the acceleration,

3 1
22 f 1 bY9 r f r̂ 1 br f ŷ9,0 0 01 22 2

is produced by the Coriolis forces due to the orbital
motion 2[ f 0 1 (3/2)bY9]rf 0r̂ and the internal motion
bI ŷ9, as well as the geoforce1 v̄2

1
22 f cŷ9 5 b(r f 2 Iv )ŷ9.0 02

The acceleration and driving forces for the water col-
umns near the boundary, r0 ; a, are similar to those of
the disk’s center of mass (see Table 2 in Part I), with
the ageostrophic imbalance instead of the Coriolis force
and without the internal Coriolis force. For water col-
umns near the point of no motion, r0 K a, on the other
hand, there is a balance between the pressure and geo-
force, sea level slopes down toward the equator, main-
taining the uniform translation c.

In order to compute a Lagrangian time average of the
balances of Table 1, recall that r̂0 rotates at a nonuniform
rate. In particular, it can be shown that

1 br 10r̂ 5 2 ŷ9 and dy9r̂ 5 r ŷ9;0 0 012 n f 20

these equations imply that the time averaged accelera-
tion vanishes, as it should.

The classical b plane

This approximation is formally equivalent to making
g 5 1 (and thus t 0 5 0) in spherical coordinates. Its
prediction for c ; 2 ^yu0& (Nof 1981; Killworth21bf 0

1983) coincides with ((2.4a)), but the value of ^u& pre-

dicted by this approximation, ^u& 5 c instead of (2.4b),
is wrong by a factor of cos2u0. Allowing for oscillations
of the center of mass, as done in Part III, the prediction
for the time-averaged center of mass zonal velocity U
is also incorrect (see also Part I). With respect to the
vorticity, the classical b-plane approximation predicts

1 2 2 n
] y 2 ] u ; 22n f 2 by,x y 0 3 1 2 n

whereas the correct value is obtained using j ; (1 1
t 0y)(]xy 2 ]yu) 1 t 0u in (3.6), which gives an extra
term, n f 0t 0y, of the same order as by.

In the classical b-plane model, the transformation to
the frame moving with the vortex is x0 5 x 2 ct and
y0 5 y. The equations of motion also take the form
(2.2), except that the transformed variables are u0 5 u
2 cx̂, f 0 5 f, j0 5 j, and F0 5 cf 0y 1 cby2 (Nof1

2

1981; Killworth 1983). These differ from the exact ones
at O(R22) [for instance, the effective potential should
be F0 5 cf 0y0(1 2 t 0y0) 1 cby02 1 O(R23)]. Con-1 1

2 2

sequently, the lowest order nontrivial solutions of (3.1)
and (3.2) are formally the same, except that they are
posed in different coordinate systems, which differ in
O(R21). A similar situation is encountered in the simpler
problems of the particle and the disk. In the three cases,
the classical b-plane approximation gives the correct
value of c because it uses the same set of equations even
though in the incorrect frame, (x0, y0) instead of (x9, y9).
Consequently, the vortex structure calculated by Kill-
worth (1983) can be rendered valid reinterpreting
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(u0, y0, h0)(x0, y0) ° (u9, y9, h9)(x9, y9) (see last para-
graph in appendix B). Benilov (1996) calculated the
structure of (u, y , h)(x0, y0) for a nonisolated vortex (h
→ h` as r → `). If the decay is fast enough so that the
geometric terms proportional to can be neglected,g̃r
then this solution could also be rendered valid reinter-
preting (u 2 c, y , h)(x0, y0) ° (u9, y9, h9)(x9, y9).

4. Conclusions

An isolated vortex in a rotating planet experiences a
secular westward drift, along a latitude circle, and con-
sequently the natural coordinates to describe the prob-
lem are spherical ones. The curvature of the planet has
two effects of similar importance: the change of Coriolis
parameter with latitude (the ‘‘b effect’’) and a geometric
one (the convergence of the meridians towards the
poles). For a small vortex both effects are O(a/R), where
a and R are the radius of the vortex and that of the
planet; the classical b-plane approximation represents
only the first effect, therefore making errors of the same
order of magnitude as the difference between the f plane
and exact solutions. The b effect is best described in
stereographic coordinates that move with the secular
drift of the vortex, for which nonplanar geometric cor-
rections are then O(R22), but their drift speed c must
be determined a posteriori.

A very simple purely translating solution of the shal-
low-water equations is found in these coordinates,
which has the form of the well-known solid body ro-
tating in the f plane, with O(a/R) corrections. The vor-
tex is circular but not axisymmetric. The isobaths are
nonconcentric circles with their centers slightly shifted
toward the nearest pole with depth. The orbits belong
to a different set of nonconcentric circles. A water col-
umn makes an anticyclonic rotation, decreasing its speed
and the magnitude of its vorticity (which could be either
cyclonic or anticyclonic), while shrinking its height,
when approaching the equator. The changes of relative
vorticity are opposite to those of the ambient vorticity
and large enough to keep a constant potential vorticity.
Two forces produce the acceleration of a water column:
the ageostrophic imbalance (sum of the pressure and
Coriolis forces) in the radial direction of the orbit and
the meridional ‘‘geoforce,’’ which is the imbalance be-
tween the poleward gravitational force (due to the de-
viation of the geoid from a perfect sphere and to in-
homogeneities in the mass distribution within the planet)
and the centrifugal force due to the planet’s rotation.

The model used here is far too idealized to be com-
pared with observations. Real vortices in the ocean or
planetary atmospheres are not isolated; they usually ride
on a external field, whose shear may be important, and
exchange properties with the environment. Neverthe-
less, the results of this paper may be used as a scaling
guide of what to expect from observations. Consider,
for instance, u0 5 p/4, and thus f 0 5 1.0 3 1024 s21,
b 5 1.6 3 10211 m21 s21, and t 0 5 1.6 3 1027 m21.

Choosing as zeroth-order solution a uniform potential
vorticity lens, n 5 0.5, with a radius a 5 100 km, Eq.
(3.4) gives c 5 21.3 cm s21. The O(R21) solution stud-
ied in section 3 is a very good approximation of the
whole solution. For instance, a physically meaningful
O(R22) parameter is the relative change of the frame
angular velocity when using coordinates following the
secular drift; in this case dV/V 5 23 3 1029, sug-
gesting that corrections beyond O(R21) are not neces-
sary. Nondimensional numbers measuring the impor-
tance of the earth’s curvature on the geometry (con-
vergence of the meridians towards the pole) and the
dynamics (drift speed over maximum particle velocity)
are «g :5 t 0a 5 1.6 3 1022 and «d :5 c/(2naf 0) 5
ba/ f 0 5 2.6 3 1023, respectively. Since «g . «d, it is1

6

clear that geometric effects in spherical-like coordinates
cannot be ignored, that is, the classical b-plane ap-
proximation is quantitatively incorrect. Consequently,
any attempt to describe the physics beyond the f -plane
scenario is best done in the stereographic coordinate
frame, following the secular drift. Notice that this con-
clusion is independent of the size of the vortex, since
«g, «d } a (their ratio is, in general, «g/«d 5 6 tan2u0),
and thus is expected to hold for solutions large enough
for their difference with the f -plane structure to be more
significant. [A similar conclusion is reached using «,
defined in the text, instead of «d; indeed «g/« 5 18
tan2u0n (1 2 n )/(1 1 3n ).]

Ball (1963) showed that in the context of the f -plane
approximation (constant Coriolis parameter and flat ge-
ometry), the internal and center of mass motions are
decoupled (the latter being a pure inertial oscillation).
Including planet curvature effects, both motions are
coupled and more complicated. The solutions for the
vortex in pure translation (done here) and the general
solution for the disk (presented in Part I) are a first step
toward the understanding of this problem. Part III will
be devoted to the more difficult task of addressing Ball’s
problem in the sphere, that is, including the inertial
oscillations of the center of mass and their interaction
with the internal motion.
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APPENDIX A

Derivation of the O(R21) Uniformly Translating
Vortex Fields

As explained in the main text, the solution (h0, )u90
of (3.1) is any stable equilibrium of the f -plane equa-
tions. Its perturbation normal modes (ĥa, ûa) are cal-
culated, in the f plane, as the eigensolutions of
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ĥ 0a(D 2 iv̂ ) 5 , (A.1)a 1 2 1 2û 0a

where the operator D is defined in (3.2). These eigen-
modes satisfy an orthogonality condition of the form

( , ) · (ĥb, ûb) 5 0 if a ± b,ĥ* û*a a (A.2)

where the centered dot denotes a linear operator. A very
simple example will be given, and used, shortly:
(dh, du) · (dh, du) is the pseudoenergy of the pertur-
bation (dh, du) superimposed to the basic flow (h0, ).u90
Since these modes span a complete basis, the solution
of (3.2) is easily found to be of the form

h i (ĥ*, û*) · (0, F) ĥ1 a a a5 . (A.3)O1 2 1 2u9 v̂ (ĥ*, û*) · (ĥ , û ) ûa1 a a a a a a

There are two important points to make about this ex-
pansion.

R The solution of (3.2) is defined modulo modes for
which ( , ) · (0, F) vanishes trivially.ĥ* û*a a

R For all modes such that 5 0, it must be requiredv̂a

( , ) · (0, F) 5 0; this is the condition that givesĥ* û*a a

the eigenvalue c. These modes are also part of the
null space of the solution to (3.2). Since the origin of
f -plane solutions can be changed at will, two of these

5 0 modes are (ĥa, ûa) } ]x9(h0, u0) and (ĥa, ûa)v̂a

} ]y9(h0, u0).

In the particular case of the basic flow (3.3), the ei-
genmodes of (A.1) are derived in (Ripa 1992):3 the pres-
sure field gĥa and the polar components of the velocity
field ûa take the form of a polynomial in r times eimf ,
where m is an integer, and the dispersion relations are
given by the roots of

m ± 0, n . 0:
2 2v 2 f mf** * 1 5 2n(n 1 |m| 1 1) 1 |m|,

2n(1 2 n) f v*0

m 5 0, n . 0:

v* 5 05v* 5 6 f Ï1 1 2n(1 2 n)(n 2 1)(n 1 2),0

m ± 0, n 5 0:

1
v* 5 2 f* sgn(m)

2

1
6 f Ï1 1 4n(1 2 n)(|m| 2 1),02

3 There are two typos on p. 404 of (Ripa 1992): a right parenthesis
is missing in the equation for P̂, it should finish ‘‘. . . grHy )P̂ 5 0,’’
and a 1 sign is missing in the line after dispersion relation, it should
read ‘‘where :5 2n(n 1 |m| 1 1) 1 |m| (see . . .’’2ĝ

where n is another integer, v* 5 1 mn f 0, and f*v̂a

5 f 0(1 2 2n ). The pseudoenergy integral for this basic
state is simply

(ĥ*, û*) · (ĥ , û ) 5 (h û* · û 1 gĥ*ĥ ) dS.a a b b EE 0 a b a b

h .00

Given the inner product and the form of (A.3), it is clear
that:

R All 5 0 modes with m 5 0 are orthogonal to thev̂a

forcing ^ · F& 5 0; these axisymmetric steadyû*a
modes span the trivial part of the null solution of (3.2),
which can be absorbed in a change in the angular
velocity v(r). These modes will not be included, keep-
ing a solid body rotating as the structure of the lowest
order solution: v 5 2n f 0.

R Orthogonality of the forcing ( · F 5 0) in (3.2)## û*h .0 a0

to the nonsymmetric 5 0 modes (ĥa, ûa) }v̂a

]x9(h0, u0) and (ĥa, ûa) } ]y9(h0, u0) give the eigen-
value (3.4) and ^x9y9& 5 0.

R The O(R21) solution is then obtained making the ex-
pansion (A.3) in the normal modes, or by the method
explained in appendix B, which gives (B.4).

The expansion in normal modes is useful for two
things. First, imposing orthogonality of the forcing with
mode ]x9(h0, u0) gives the drift velocity (3.4). Second,
the solution is defined modulo the addition of this mode
that taken as a wave sustained by the lens in the f plane,
is related to the freedom of changing the origin of co-
ordinates. Addition of mode ]x9(h0, u0) in the present
context is not a trivial result, though, because the set
(3.1)–(3.2) is not invariant under a change of the origin
of coordinates (the f -plane dynamics was used only to
derive the lowest order solution and the normal modes
basis).

APPENDIX B

Structure of an Almost Solid-Body
Rotating Vortex

The solution of (3.2) in the particular case of the
zeroth-order flow in the form of the ‘‘lens’’ (3.3) could
be obtained by the general method of making the ex-
pansion (A.3) derived in appendix A. However, a more
direct method is presented next for this particular case.
Equation (3.2) is of the type

h̃ 0
D 5 , (B.1)1 2 1 2ũ F

where the forcing F and the response (h̃, ũ) are assumed
to be proportional to eimf . A peculiarity of the lens basic
state is that these perturbation equations are like the
linearized shallow-water equations in paraboloid topog-
raphy, with a Doppler shifted frequency and modified
Coriolis parameter, namely
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2iv*h̃ 1 = · (h ũ) 5 0,0

2iv*ũ 1 f*ẑ 3 ũ 1 gn h̃ 5 F,

where gh0 5 n (1 2 n ) (a2 2 r2), v* 5 mn f 0 and1 2f2 0

f* 5 f 0(1 2 2n ). The second equation gives

( 2 )ũ 5 (iv* 1 f* ẑ3)(F 2 g=h̃);2 2v f* * (B.2)

substituting in the first one it is obtained

1
2 2= · (a 2 r )=h̃ 1 mh̃ 5 F, (B.3)[ ]2

where
2 2v 2 f mf** *m 5 1

2n(1 2 n) f v*0

1 f*
2 2gF 5 = · (a 2 r ) 1 2 i ẑ 3 F .1 2[ ]2 v*

The normal modes, solution of the F 5 0 equation,
correspond to the eigenvalues m 5 2n(n 1 |m| 1 1) 1
|m|.

For m 5 1 it is m 5 1 and F 5 ibf (1 1 3n )(2a2 21
6

3r2)r. The solution of (B.2)/(B.3) is

1
2 2 2gh 5 f b(1 1 3n)(a 2 r 1 ka )y9, (B.4a)1 012

1 1 b
2u9 5 by9 21 6 12 1 2 n

2 2 23 [(a 2 r )(1 2 n) 1 ka (1 1 3n)], (B.4b)

1
y9 5 2 bx9y9, (B.4c)1 6

in Cartesian coordinates, where the terms proportional
to the arbitrary parameter k represent the freedom men-
tioned above, namely adding to (h̃, ũ) a term propor-
tional to ]y9(h0, u0), which is an homogeneous solution
of (B.1). [The polar coordinates of u91; that is, the real
and imaginary parts of ( 1 )e2if have only termsu9 iy91 1

proportional to cosf and sinf, as it should. The solution
in spherical coordinates, fixed to the Earth, is more com-
plicated, namely, u 5 c 1 n f 0[y 2 t 0(x 2 ct)2] 11

2

for the zonal component and y 5 2n f 0(x 2 ct) 1u91
for the meridional one, where (x9, y9) ; (x, y) in they91

expression of and , since they are O(R21) terms.]u9 y91 1

The second-order solution is then h 5 h0 1 h1 1
O(R22) (and similarly for the velocity fields u9 and y9),
and is obviously valid in the domain determined by h
$ 0. Notice that if k 5 0 the boundary of the vortex
is the circle r 5 a. A simpler representation of the
solution is obtained as follows. First, the absolute vor-
ticity is given by (3.6), independent of k. Second, an
appropriate transport function is given by

12(1 2 n) f0c

5 2 gh0 f0b[(1 1 n)(r 2 2 a2) 2 ka2(1 1 3n)]y9;2gh0

the rotated gradient of this function gives (h0 1 h1)u90
1 h0 not (h0 1 h1)( 1 ) but, since the differenceu9 u9 u91 0 1

between both vector fields is O(R22), c can be redefined
to be equal to the expression in (3.5b) so that ẑ 3 =c
[ (h0 1 h1)( 1 ). Finally, for j 5 O(1) and « Ku9 u90 1

1, the parameter k gives only a trivial displacement
(0, (3/2)k«a) of the whole solution; for example,
(3/2)k«a can be subtracted from y9 in the formula (3.6)
for the total vorticity, within the same order of accuracy.
The second-order solution is then given by equations
(3.5), where it has been chosen k 5 0, for simplicity.
Killworth (1983) obtained the equivalent of solution
(B.4) for k 5 21 and n 5 (0, ½, 1), but in the incorrect
frame used by the classical b-plane approximation:
(x0, y0) instead of (x9, y9). [There are discrepancies be-
tween the solutions published by Killworth (1983) and
those of this paper, though.]
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