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ABSTRACT

It has been recently shown that when an inviscid outflow empties into the ocean, a steady alongshore current
(in the Kelvin wave sense) cannot be established. This is due to the impossibility of balancing the alongshore
momentum flux. To offset this momentum-flux deficit the outflow balloons near its source, forming an anticyclonic
bulge. Using 1½-layer analytical and numerical models, the authors show that, on an f plane, the Coriolis force
associated with the offshore movement of the growing bulge (which pushes itself away from the wall) compensates
for the momentum flux of the longshore current downstream. With the aid of the slowly varying approximation,
an inviscid nonlinear analytical solution is constructed. Numerical simulations with the Bleck and Boudra model
are also performed.

It is found that an outflow with an intense anticyclonic vorticity (i.e., a zero potential vorticity outflow with
a relative vorticity of 2f) produces a steep gyre that balloons (i.e., its radius increases with time) quickly at the
rate of 8g9Q/3p f 2R3 (where g9 is the reduced gravity, Q is the outflow’s discharge, f the Coriolis parameter, and
R is the instantaneous bulge radius). Such an intense (large Rossby number) outflow dumps most of its mass
flux (66%) into the growing bulge rather than into the longshore current downstream (which receives the
remaining 33% of the total flux). An outflow with a weakly anticyclonic vorticity (2af, where a is analogous
to the Rossby number and is much smaller than unity), on the other hand, dumps most of its water [(1 2 2a)Q]
into the downstream current rather than into the bulge. Even though less mass flux is going into the bulge in
this weak vorticity case, the bulge balloons at a somewhat faster rate (4g9Q/p f 2R3) than the intense outflow
does because the bulge is now relatively flat so that most of the incoming water goes toward an increase in size
rather than toward an increase in thickness.

Numerical simulations are in good agreement with the above analytical solutions. They show that frictional
forces increase the downstream current mass flux. The simulations also show that friction very gradually alters
the potential vorticity of the bulge. Applications to the initial growing stage of Loop Current rings (which
constitute an ‘‘outflow bulge’’ in the sense that it corresponds to water flowing from the Caribbean into the Gulf
of Mexico), to rivers outflow, to bulges of plumes in other numerical models, and to bulges in laboratory outflows
are discussed.

1. Introduction

The manner in which water of anomalous density emp-
ties into an ocean has been of interest to oceanographers
for decades. In particular, various attempts have been
made to understand how the anomalous water is distrib-
uted once it debouches into the ocean. In everyday life,
a source of anomalous water emptying into a large con-
tainer tends to spread evenly in all directions. In the
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ocean, however, the earth’s rotation tends to confine the
outflow to the coast (in the Kelvin wave sense) forming
an alongshore current. The complications added by (uni-
form) rotation do not end here, and recent analytical and
numerical studies have shown that such an (inviscid) out-
flowing current is unsteady [see Fig. 1 and Pichevin and
Nof (1997, hereafter PN)]. Furthermore, numerical sim-
ulations demonstrate that, on an f plane, the outflow bal-
loons in the sense that a growing bulge is generated near
the coast (PN; Fong 1998). Here, we present the first
nonlinear analytical solution for the growth rate of the
bulge on an f plane. We also present numerical simula-
tions, which confirm our analytical calculations.

a. Observational background
There are many situations where water of one density

enters an oceanic basin with a different density. The
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FIG. 1. A schematic diagram of the steady configuration shown by
Pichevin and Nof (1997) to be impossible. In the PN scenario, a
steady inviscid outflow cannot exist because the alongshore momen-
tum flux of the downstream current is not balanced. As a result of
this impossibility, the bulge grows forever and the downstream cur-
rent mass flux is smaller than the incoming mass flux Q (see Fig. 2).

largest one is probably that of the Yucatan Strait through
which about 20–30 Sv (Sv [ 106 m3 s21) of warm
Caribbean water enters the cooler Gulf of Mexico (see,
e.g., Sturges 1994) and forms a gyre 3–4 times the width
of the downstream current. Going down in scale, the
surface flows through the Tsugaru and the Gibraltar
straits (approximately 1 Sv) exhibit similar character-
istics (Nof and Pichevin 1999) and form gyres as much
as 10 times the size of the downstream currents. Still
smaller (,1 Sv) are the well-studied outflows from the
Mississippi River, Chesapeake Bay, and the Niagara
River [see, e.g., Boicourt 1973; Bowman 1978; Drink-
water 1988; Masse and Murthy 1992; Horner et al. 2000;
Atkinson and Wallace 1975 (where evidence for the
presence of Mississippi water east of the outflow is pre-
sented)]. In contrast to the large and moderate outflows,
which form large ballooning bulges, these smaller out-
flows form modest gyres, which are, at the most, twice
the size of the downstream currents.

b. Modeling background

As pointed out by Yankovsky and Chapman (1997),
there are mainly two kinds of outflows with two dif-
ferent kinds of dynamics. The first kind is ‘‘surface
trapped’’ (in the sense that it does not feel the bottom)
whereas the second is ‘‘bottom trapped’’ (in the sense
that it is dominated by bottom topography). We shall
focus here on the first kind of outflow.

Until fairly recently, it has been believed that, on an
f plane, such surface-trapped outflows can always reach
a steady state. However, as has just been pointed out,
PN have shown, analytically and numerically, that a
steady state cannot be reached due to the impossibility
of balancing the alongshore momentum flux. The same
conclusions were later reached by Fong (1998) using
three-dimensional numerical simulation and by Horner
et al. (2000) using laboratory experiments on a rotating
table. Note, however, that when Horner et al. (2000)
reduced the angle between the axis of the outflow and
the coast from 908 (corresponding to the PN case) to

358–558, a steady state (with a modest gyre) was
reached. (Why this is so will become clear shortly.)

As far as specific outflows are concerned, the ex-
change via the Yucatan Strait was examined by Hurlburt
and Thompson (1980) and PN. Both of these studies
have shown that, in this case, the bulge formed by the
outflow (from the Caribbean into the Gulf of Mexico)
is so great that b is important to the process. This is
also the case with the surface flows through the Tsugaru
and Gibraltar straits, which form gyres on the scale of
O(100 km). On the other hand, the deep outflows such
as those from the Mediterranean and the Red Sea are
dominated by bottom topography, that is, they belong
to the second class of outflows, which is not the focus
of our study (see, e.g., Killworth 1977; Johnson et al.
1994; Price and Baringer 1994; Condie 1995; Jiang and
Garwood 1995; Jungclaus et al. 1995; Baringer and
Price 1997a,b; Emms 1997, 1998; Etling et al. 2000).

River plumes that at times display at least some in-
teraction with the bottom have beem studied by Garvine
(1987, 1995, 1996), Csanady (1984), Chao and Boicourt
(1986), Chao (1988), O’Donnell (1990), Münchow and
Garvine (1993), Oey and Mellor (1993), Chapman and
Lentz (1994), and Kourafalou et al. (1996). Most of
these studies are numerical and show ballooning of the
outflow near its origin, in line with some of the obser-
vations and with the PN nonsteadiness argument. A spe-
cial case is that of a river entering the ocean at a small
angle. Here, there is a very small momentum-flux deficit
(proportional to the angle) and an approximate steady
state can be reached (Garvine 1987, 2001; Horner et al.
2000).

Yankovsky and Chapman (1997) have attempted to
develop an analytical bound on the inviscid size of the
bottom-free bulges but their bound is inconsistent with
the PN momentum-flux argument. This is due to their
use of the upstream thickness as the bulge maximum
thickness. As we shall see, there is no maximum bulge
thickness.

c. Present approach

Consider the situation shown in Fig. 2. Our approach
is to look at the bulge’s growth process as a slowly
varying problem. This is based on the idea that the
process involves two timescales, one fast and one slow.
The fast timescale [O(f21), where f is the Coriolis pa-
rameter] is associated with the time required for a par-
ticle to complete a single revolution within the gyre,
whereas the slow timescale is the time associated with
the gradual growth rate of the bulge. Namely, we shall
focus on the time range where the bulge is already rel-
atively large in the sense that its volume divided by the
outflow mass flux gives a timescale much longer than
a day. This is equivalent to saying that the bulge di-
ameter (which is of the order of the Rossby radius based
on the gyre’s central depth) is much greater than the
downstream current width. In this scenario, the bulge
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FIG. 2. (a) A schematic diagram of the model under study. The ‘‘wiggly’’ arrow indicates the off-wall and long-wall migration
of the bulge Cy(t); this results from the growth forcing the bulge itself away from the wall. The thick dashed line indicates the
integration path that will be used. We focus on ‘‘long’’ time in the sense that the mass flux circulating within the bulge is already
much greater than the outflow mass flux Q (and the downstream current mass flux q) so that the process is slowly varying in time.
The (immiscible) layer densities are r and (r 1 Dr). (b) The assumed (simplified) structure of the bulge basic state at t 5 ti and
t 5 t; i.e., the axisymmetric state around which the (slowly varying) perturbation scheme is constructed. As shown, the bulge basic
state circular edge is taken to be tangential (at all times) to the coast so that Cy 5 dR/dt. This plausible condition is justified because
the gyre cannot grow unless it pushes itself away from the wall. (c) The balance of the long-wall forces acting on the outflow.
The alongwall Coriolis force Fcx (resulting from the gyre’s center migration in the y direction Cy) balances the momentum flux
associated with the longshore current, Fl. (d) As in (c) but for the offshore forces. Here, the Coriolis force fcy (resulting from the
longshore migration) is pointing toward the wall. It is balanced by two forces. The first is the momentum flux associated with the
source momentum flux F0 (which, in contrast to the x̂ component, does not vanish because the source is not symmetrical with
respect to the ŷ axis; i.e., the source velocity, ys obeys ys(ŷ) ± ys(2ŷ)]. The second is the offshore pressure force associated with
the nonzero thickness along the wall Fw. In contrast to the alongshore balance shown in (c) (which will be used in our calculation),
this offshore balance cannot be used because of the impossibility of calculating Fw. It is shown here merely for completion.

growth rate is weak because the net mass flux into it
(Q 2 q) is small compared to the transport already
circulating in it. (Note, however, that this slow growth
accumulates over a long time to become an important
effect.)

We shall first deal with an outflow that conserves its
zero potential vorticity (PV) on both short and long
timescales. Namely, we shall first look at the case where
the zero PV is not only conserved at each moment but
is also conserved over a long time. We shall then see
that our slowly varying approach also allows for out-
flows whose PV is slowly altered in time. This is so
because, just as the time derivative of the velocity and
thickness are negligible (because they vary on the long
timescale) so are the small frictional forces that cause
the changes in the PV. That is to say, with our slowly
varying approach, the potential vorticity is conserved
on the short timescale (i.e., at each moment) but not

necessarily on the long timescale (i.e., from the begin-
ning to the end). (We shall see that our numerical sim-
ulations clearly support this scenario.) In addition to the
slowly varying approximation (which allows the neglect
of all derivatives with respect to time in the governing
equations), we shall also construct a perturbation
scheme where the basic, undisturbed gyre is a circular
gyre barely touching the wall (Fig. 2b).

Since the only simple analytical solution for a lenslike
bulge on an f plane is the one for a zero PV bulge,1 we
shall initially limit ourselves to zero PV bulges. We shall
later construct analytical solutions for bulges with (rel-
ative) anticyclonic vorticity smaller than f (correspond-

1 Csanady (1979) derived an analytical solution for a finite potential
vorticity lens, but the solution is not simple enough to be considered
as a part of an involved perturbation expansion such as ours. Fur-
thermore, it is inaccurate near the eddy’s rim (Flierl 1979).
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ing to nonuniform PV). The question of what happens
when the incoming fluid has cyclonic rather than anti-
cyclonic vorticity is not addressed here and is left as a
subject of future investigation [but see Nof and Pichevin
(1999)]. Strictly speaking, any (inviscid) finite PV out-
flow has a maximum gyre depth. However, since our
PV is allowed to be gradually altered (via small fric-
tional effects), such a limit does not exist in our case.

We consider the inviscid shallow-water equations in
a coordinate system traveling slowly away from the wall
with the gyre’s center (section 2). We then consider the
integrated balance of forces along the wall and neglect
all terms of high order. After some fairly tedious algebra,
we find a very simple analytical solution for the gyre’s
increase in size (section 3). It shows that the growth
corresponds to a balance between the (long wall) mo-
mentum flux associated with the downstream current,
and the compensating Coriolis force associated with the
migration of the gyre center away from the wall.

Using a numerical ‘‘reduced gravity’’ model [of the
Bleck and Boudra (1986) type] we then show (section
4) that, as the analytical solution predicts, the gyre’s
radius increases gradually. Encouraged by this, we then
extend our analytical theory to the cases where the
bulge’s relative vorticity is smaller than f. The associated
numerical simulations are also in very good agreement
with this solution. They show that, even though the
small frictional effects accumulate over time to alter the
PV, the inviscid solution is valid at each moment. Pos-
sible applications of the theory to various outflows in
the ocean are discussed, and the results are summarized
in section 5.

2. Formulation

This section describes the physics of the problem
and the mathematical approach. For clarity, the solu-
tion is presented in two stages. First, by skipping the
stage associated with the establishment of the initial
bulge and using the slowly varying process approach,
we set all derivatives with respect to time to zero. We
then introduce a streamfunction and construct a per-
turbation scheme where the zeroth-order state is a ra-
dially symmetric f-plane bulge. Because our problem
involves a growing bulge, the usual procedure of for-
mally nondimensionalizing all the terms at once and
then performing an expansion is impossible. Instead,
we shall retain the terms in dimensional form and ex-
amine their relative importance during each stage of
the analysis.

The reader is warned in advance that it may be dif-
ficult to follow the mathematical analysis in detail. To
alleviate some of this difficulty, it is useful to a priori
introduce the governing equations that we are after. We
are after two conservation relationships. The first is the
(straightforward) integrated conservation of mass,

dV
5 Q 2 q,

dt

where V(t) is the bulge volume (slowly varying in time),
Q is the steady outflow mass flux, and q is the mass
flux of the downstream current. The second relationship
that we seek is the not-so-simple conservation of long-
wall momentum flux (or flow force),

C

2C fh dx dy 5 hu dyE E y E
S B

5 jet force due to downstream current,

where S is the bulge area, Cy the (slow) offshore mi-
gration of the bulge center (i.e., the point of maximum
thickness), h the thickness, and u the downstream cur-
rent speed. (Note that, for convenience, variables are
defined both in the text and in appendix A.)

The term on the left is the long-wall Coriolis force
created by the off-wall migration of the bulge center
(Fig. 2b) resulting from the gyre growth (which forces
it to push itself away from the wall). The term on the
right is the momentum flux of the downstream flow (i.e.,
the force created by the ejection of mass from the control
volume). This balance of forces along the wall is shown
in Fig. 2c. In contrast to this balance, which plays a
crucial role in our calculations, the complementary off-
shore balance of forces (shown in Fig. 2d) cannot be
used because of the impossibility of computing the off-
shore pressure force; therefore, it will not be dealt with.
This implies that Cx, the bulge’s migration in the x di-
rection, cannot be determined with our approach. With
the above presentation of the main governing equations,
the reader who is primarily interested in the results can
now go directly to the solution (3.3)–(3.7).

We now begin the detailed derivation of the governing
equations. First, as already mentioned, we note that the
problem involves a ‘‘fast’’ timescale (i.e., days) and a
‘‘slow’’ timescale (i.e., weeks, months, or years). The
fast timescale is associated with the (geostrophic) ad-
justment timescale and with the relatively short time
that it takes a particle to complete a single revolution
within the (zero PV) bulge. This fast time is also the
time that it takes a particle to get from the gyre to the
downstream current. By contrast, the slow timescale is
associated with the slow offshore migration of the bulge
center, which implies a large bulge radius compared to
the downstream current scale. The conceptual small pa-
rameter of our problem is then the ratio between these
short and long timescales or, equivalently, the ratio be-
tween the downstream mass flux q (or the incoming
mass flux Q) and the mass flux circulating within the
bulge. To see this more clearly, we note that the volume
of the gyre at any arbitrarily long time T (kf21) is of
the order of QT so that the mass flux circulating in it
is ;O(QTf) and its radius [;O(g9QT)1/4/f 1/2] is much
greater than the downstream current width, which is of
the order of (g9Q)1/4/f 3/4. Namely, if we wait a long
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enough time (kf21) after the outflow is first ‘‘turned
on,’’ then the size of the bulge is much greater than the
downstream current.

In what follows we shall consider the detailed con-
servation of mass and momentum for the problem and
examine the associated scales. We shall neglect all the
time-dependent terms in the (differential) momentum
and continuity equations a priori and, once the solution
is obtained, show that they are indeed small compared
to the smallest terms that were kept. This is the simplest
way to present our analysis, as it is a simple matter to
examine the smallness of the neglected terms once the
analytical solution is obtained.

a. Conservation of mass

The integrated mass conservation equation can be
written as

d
h dx dy 5 Q 2 q, (2.1)E Edt S

where the left-hand side is the bulge’s volume rate of
change (which is very slow) and the right-hand side is
the difference between the steady incoming mass flux
Q and the outgoing transport of the longshore current
q. As mentioned, since the time associated with the
volume change is long, one immediately sees that the
downstream current thickness is small compared to the
thickness of the bulge and that its width is much smaller
than the radius of the gyre.

b. Momentum flux

To examine the momentum-flux balance, we write all
of the nonlinear momentum equations (multiplied by h)
and the continuity equation in a coordinate system mov-
ing with the gyre’s center away from the wall,

]u ]C ]u ]uxh 1 h 1 hu 1 hy 2 f (y 1 C )hy]t ]t ]x ]y

g9 ]
21 (h ) 5 0 (2.2a)

2 ]x

]y ]C ]y ]yyh 1 h 1 hu 1 hy 2 f (u 1 C )hx]t ]t ]x ]y

g9 ]
21 (h ) 5 0 (2.2b)

2 ]y

]h ] ]
1 (hu) 1 (hy) 5 0, (2.3)

]t ]x ]y

where, as before, the conventional notation is given in
both the text and in appendix A. Namely, u and y are
the horizontal velocity components (in the moving co-
ordinate system), Cx and Cy are the time-dependent mi-
gration rates in the x and y directions, g9 is the reduced
gravity, and t is time. Note that (2.2)–(2.3) were ob-

tained by applying the familiar transformation y 5 ŷ 2
Cy(t) dt̂); x 5 x̂ 2 Cx(t) dt̂); t 5 t̂ (where the variablest̂ t̂# #0 0

with carets are associated with the fixed coordinate sys-
tem and the absence of a caret denotes the variables in
the moving system) to the usual time-dependent equa-
tions.

Four comments should be made regarding (2.1)–(2.3).
First, in the moving coordinate system the wall appears
to be slowly moving away from the gyre so that the
wall boundary condition is

t

y 5 2C at y 5 y 2 C dt.y wall E y

0

This wall condition is given here merely for complete-
ness. We shall see that, because of our slowly varying
approximation, it will never enter the problem. Second,
Eq. (2.2b) will not be used because it is impossible to
calculate the pressure exerted on the outflow by the wall
with the method that we shall use. Hence, Cx will not
be computed and (2.2b) is given here merely for com-
pleteness.

Third, the condition Cy 5 dR/dt (implying that the
bulge’s basic state is barely touching the wall at all
times) will be used to close the problem. The condition
is plausible because the gyre cannot grow unless it push-
es itself away from the wall. A very similar condition
was used by Nof (1999). We shall see later that it is
clearly supported by the numerics. Fourth, as in PN and
Nof and Pichevin (1999) and Nof (1988), we shall ne-
glect the source contribution to the alongshore momen-
tum flux. This is done on the grounds that, at the source,
the velocities go to infinity so that the effect of rotation
is negligible and, consequently, the source is symmet-
rical relative to the x axis [i.e., ys, the speed at the source,
obeys ys(x̂) 5 ys(2x̂)] even in the presence of rotation
(see, e.g., Nof 1988, his Fig. 4 and section 7). Alter-
natively, one can assume that the outflow is fed by a
narrow channel containing streamlines parallel to the
wall (see PN).

Recall that our approach is to look at the bulge growth
process as a slowly varying problem (assuming that the
process involves two timescales, one fast and one slow).
The fast timescale [O(f21)] reflects the orbital period-
icity, whereas the slow timescale reflects the very grad-
ual growth rate of the bulge. Namely, we shall focus on
the time range where the bulge is already relatively large
in the sense that its volume divided by the outflow mass
flux gives a timescale much longer than a day; that is,
we focus on periods much larger than O(f21). As men-
tioned, this is equivalent to stating that the bulge di-
ameter is much greater than the downstream current
width. In this scenario, the bulge growth rate is weak
in the sense that is associated with a small net transport
(into the bulge) compared to the transport already cir-
culating inside the bulge.

In addition to the different times issue, we shall later
assume that the bulge’s shape is nearly circular at all
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times. This near-circular approximation is analogous to
that made in Nof and Pichevin (1999) and implies that
a circular gyre barely touching the wall is the state
around which the solution is perturbed. This may appear
at first to be a crude approximation. We shall see later,
however, that it is actually a fairly good one given our
integration approach. As mentioned, in line with the
slowly varying approximation, all terms that include
derivatives with respect to time in both the momentum
and continuity equations are neglected. After the solu-
tion is obtained, we shall show that the neglected terms
are indeed small.

With these important simplifications, the x-momen-
tum equation is now integrated over the area bounded
by the thick dashed line shown in Fig. 2a, noting that,
outside the gyre, h [ 0. Using the approximated con-
tinuity equation, one finds

] ]
2(huy) 1 (hu ) dx dyE E [ ]]y ]xS

2 f (y 1 C )h dx dyE E y

S

g9 ]
21 (h ) dx dy 5 0. (2.4)E E2 ]xS

Note that, since in our coordinate system the wall is
moving slowly away from the gyre, the integration area
S is a (weak) function of time. This movement of the
wall has no direct bearing on our bulge momentum cal-
culation because all of the time-dependent terms are
ignored.

Next, we define the streamfunction c to be ]c/]y 5
2uh, ]c/]x 5 yh and rewrite (2.4) as

] ]
2(huy) 1 (hu ) dx dyE E [ ]]y ]xS

]c
2 f dx dy 2 C fh dx dyE E E E y]xS S

g9 ]
21 (h ) dx dy 5 0. (2.5)E E2 ]xS

Application of Stokes’ theorem (which, for our problem,
is just a special case of Green’s theorem) to (2.5) gives,

2huy dx 2 (hu 1 g9h /2 2 f c) dy6 6
f f

1 C fh dx dy 5 0, (2.6)y E E
S

where f is the boundary of S (i.e., ABCDA) and the
arrowed circles indicate counterclockwise integration.
With the exception of section BC (Fig. 2), at least one
of the three variables h, u, and y vanish along the bound-

ary. Also, with the slowly varying approach, c can be
taken to be a constant along the boundary.

In view of these, (2.6) can be written as

C g9h
22 hu 1 2 f c dy 1 C hf dx dy 5 0.E y E E1 22B S

(2.7)

Application of the Bernoulli principle to the front (h 5
0) implies that the speed along the outer edge of the
downstream current must be approximately equal to the
orbital speed along the gyre periphery. However, both
thickness and width of the downstream current are small
compared to the thickness and radius of the bulge.
Namely, within the downstream current u ; O(g9H)1/2

(where H is the gyre’s depth scale) but h K H and,
hence, the last two terms within the first integral are
small compared to the first and can be neglected. In
view of this, (2.7) can be ultimately written as

C

22 hu dy 1 C fh dx dy 5 0. (2.8)E y E E
B S

Equation (2.8) represents a balance of two longshore
forces (Fig. 2c). The first is a long-wall force associated
with the downstream current. It is analogous to the force
produced by a jet. The second is an integrated Coriolis
force resulting from the offshore migration of the gyre
center. This migration results from the fact that the gyre
is in constant contact with the wall so that by growing
it pushes itself away from the wall.

When a similar treatment is given to (2.2b), one finds
a balance between three offshore forces (Fig. 2d). Be-
cause of the impossibility to compute the offshore pres-
sure force exerted on the outflow by the nonzero thick-
ness along the wall, the balance will not be used and is
mentioned here, in passing, merely for completion. Our
inability to use (2.2b) implies that we will not be able
to compute Cx with our approach.

3. Solution

To obtain the solution to the problem we now intro-
duce the perturbation scheme,

u 5 u 1 u9 1···; h 5 h 1 h9 1···, (3.1)

where the overbars denote association with a radially
symmetric f-plane bulge barely touching the wall (Fig.
2b) and the primes denote distortions introduced by the
wall. This ‘‘small distortion approximation’’ is analo-
gous to that used in Nof and Pichevin (1999). The in-
troduction of this perturbation scheme implies that our
problem is not only slowly varying in time but also that,
at any given moment, the gyre shape is not very far
from the circle shown schematically in Fig. 2b.

It is worth pointing out again at this stage of the
presentation that, given our slowly varying approach,
our gyre does not have to conserve potential vorticity
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on the long timescale but must conserve potential vor-
ticity on the short timescale. That is to say, at each
moment in time, the gyre’s potential vorticity must be
equal to the downstream current’s potential vorticity.
However, frictional effects, which at each given moment
are small and negligible, can accumulate over the long
time period to become important and alter the PV. We
shall return to this important aspect momentarily.

a. Approximated conservation of mass

By substituting (3.1) into (2.1) and keeping only the
highest-order terms, we find

d
h dx dy 5 Q 2 q. (3.2a)EEdt

Focusing, for the moment, on a zero PV outflow whose
PV is not altered during the slow growth process we
get

2 316p f R dRd d 5 Q 2 q. (3.2b)
g9 dt

In deriving (3.2b) it has been taken into account that
the volume of a zero PV bulge is 4pf 2 /g9 [because h4Rd

5 H(t) 2 f 2r2/8g9 where H(t) is the gyre’s central depth
(see, e.g., Nof 1981a,b)]. Here, Rd is the time-dependent
Rossby radius, [g9H(t)]1/2/f.

b. Approximated momentum flux

Substituting (3.1) into (2.8) and neglecting products
of the perturbations (and keeping in mind that, although
within the downstream current the speed is high, the
width of the current is small), we get

L

22 h9(u) dy 1 C f h dx dy 5 0, (3.3a)E y E E
0 S

where is the area that the basic bulge occupies (Fig.S
2b), and L is the (small) downstream current width. Note
that, along the bulge’s edge, the velocity is fR/2 (where
R is the bulge radius) so that the downstream current
speed along the edge is also 5 fR/2. This is so becauseu
h 5 0 along the edge so that the Bernoulli principle
implies that the velocity along the edge of the bulge is
the same as the velocity along the edge of the down-
stream current. Furthermore, since the downstream cur-
rent is very narrow compared to the bulge, the shear
across it can only produce small variations in the ve-
locity and, consequently, our perturbation scheme im-
plies that its velocity should be taken to be uniform
across it (i.e., 5 fR/2 is the uniform speed for theu
downstream current). It is important to realize that this
is also true for the nonzero PV case, that is, the velocity
of the downstream current should be taken to be uniform
even in the finite or variable PV case.

In view of this, one of the constituting the squareu

of the velocity in the first integral of (3.3a) can be taken
outside the integral, and (3.3a) can be rewritten as

f Rq
2 2 C f h dx dy 5 0, (3.3b)y E E2 S̄

because q 5 h9 dy.L# u0

Taking again into account the known velocity and
depth profiles of a radially symmetric zero PV bulge,
we find that, for a zero PV conserving gyre, (3.3b) takes
the form

Ï2g9q dRd32 1 Ï2R f 5 0. (3.4)d16p dt

Note that the condition Cy 5 dR/dt has also been used.
As already pointed out, the relationship Cy 5 dR/dt
involves the plausible assumption that the bulge pro-
gresses away from the wall at the same rate that its
radius is increased; that is, it is forever in touch with
the wall and pushes itself away from the wall as it grows.

c. Detailed solution

Elimination of q between (3.2b) and (3.4) gives a
single differential equation for the instantaneous Rd,

dR g9Qd3 223R f 1 5 0.d dt 8p

The solution obeying the initial condition Rd 5 Rdi at t
5 ti is

1/4
g9Q(t 2 t )i4R 5 R 1 . (3.5)d di 2[ ]6p f

Relation (3.5) implies that the instantaneous bulge cen-
tral depth H is

1/2
2f

H 5 H 1 Q(t 2 t ) , (3.6)i i 1 2[ ]6pg9

and that the bulge radius R is
1/4

32g9Q(t 2 t )i4R 5 R 1 . (3.7)i 2[ ]3p f

The speed that the gyre’s center moves offshore is

8g9Q
C 5 . (3.8)y 2 33p f R

Finally, we find that two-thirds of the outflow’s mass
flux goes into the gyre and the remaining one-third goes
into the downstream current. Recall that, in the above
solution, the initial state (denoted with the subscript i)
is not the state corresponding to the time that Q is first
‘‘turned on.’’ Rather, it is associated with an arbitrary
time corresponding to a bulge that is already much great-
er than the downstream current. It is of interest that,
according to this solution, the mass fluxes into both the
downstream current and the bulge are constants. Name-
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ly, even though the bulge grows forever in size, its
offshore migration decreases in such a manner that the
mass flux into it is steady. Using our solution (3.5)–
(3.8), it is now a trivial matter to show that all the time-
dependent terms originally ignored in our slowly vary-
ing derivation (section 2) are indeed small and negli-
gible. Furthermore, they all get smaller and smaller as
time goes on, making our approximation better and bet-
ter.

Using similar principles we can now derive the cor-
responding expressions for a bulge whose PV is not
zero. Namely, we shall now consider a bulge whose PV
is either nonzero to begin with or a bulge whose po-
tential vorticity has been very gradually altered (by fric-
tional processes) over a very long period of time. To
do so, we consider a gyre whose mean (instantaneous)
orbital flow ( ) is given byyu

a fr
y 5 2 , a , 1, (3.9)u 2

so that its (instantaneous) volume V is a(2 2 a)pf 2R4/
16g9 and its radius is R 5 2 Rd/a1/2(2 2 a)1/2. NoteÏ2
that, in general, this gyre does not correspond to a uni-
form PV outflow. [However, for a 5 1, (3.9) reduces
to the familiar uniform zero PV case.] Note further that
our governing equations (3.2a) and (3.3b) are still ap-
plicable because, with our perturbation scheme, the
speed of the downstream current fR/2 is taken to be
uniform across the current regardless of the gyre’s PV.
We find that the ratio of the mass flux going into the
gyre and the incoming mass flux Q is

dV 2a
Q 5 , (3.10)@dt (1 1 2a)

and that the gyre growth rate dR/dt is

dR 8g9Q
C 5 5 . (3.11)y 2 3dt p f R (1 1 2a)(2 2 a)

We also find

1/4
32g9Q(t 2 t )i4R 5 R 1 (3.12)i 2[ ]p f (1 1 2a)(2 2 a)

1/2
2 2f a (2 2 a)Q(t 2 t )i2H 5 H 1 , (3.13)i[ ](1 1 2a)2pg9

which reduce to (3.7) and (3.6) for a 5 1, as should
be the case. We see from (3.10) that, in the weak gyre
case (a K 1), most of the outflow’s mass flux Q now
goes into the downstream current rather than into the
bulge.

4. Numerical simulations

To further analyze the validity of our assumptions
(e.g., that the flow is parallel to the wall downstream),

we shall now present numerical simulations and quan-
titatively analyze the results.

a. Numerical model description

We used a modified version of the Bleck and Boudra
(1986) reduced-gravity isopycnic model with a passive
lower layer and employed the Orlanski (1976) second-
order radiation conditions for the open boundary. We
found that this condition is satisfactory because the
downstream streamlines were not disturbed when they
crossed the boundary.

We performed several experiments with outflows
whose initial PV is either zero or finite. The results of
each experiment within a given group were very similar
to each other and, consequently, we present here only
one experiment of each group. Since each run provides
numerous data points we believe that this presentation
is adequate. As is typical for these kinds of experiments,
our wall was slippery and we took the vorticity to be
zero next to it. We began the experiment by turning on
an outflow at t 5 0; our numerical source was a channel
containing streamlines parallel to the channel walls. The
width of the channel was such that the thickness van-
ished along the left wall (looking downstream). The
initial phase involved the initial establishment of the
gyre, which could last up to several days.

Both runs that we present were conducted with a rel-
atively high resolution corresponding to Dx 5 Dy 5 3.6
km in a basin 360 km 3 720 km. For numerical stability,
we chose an eddy viscosity of 360 m2 s21; the time step
was 5 min and the upstream thickness along the
channel’s right bank was 450 m. Our mass flux was
always 20 Sv and, as mentioned, we chose the channel
width so that the thickness was zero along the left wall.
We ran both the zero PV and the finite PV experiment
for a long time (100 days) so that even the zero PV
experiment ultimately had its potential vorticity altered
by the cumulative effects of friction. This enabled us
to obtain data for nonzero PV outflow even from the
‘‘zero PV’’ experiment. The above resolution choices
were certainly adequate for our Rossby radius of 30 km
(corresponding to g9 5 2 3 1022 m s22, f 5 1024 s21,
and H 5 450 m). Furthermore, these choices always
allowed for at least ten grid points across the down-
stream current, which is also adequate.

b. Results

The results are shown in Figs. 3–9. All show very
good agreement with the theory despite the fact that the
error in the perturbation expansion is relatively large
[of O(«2) where «, the ratio between the downstream
current width and the bulge radius, was roughly 0.4].
The reason for the relatively small deviations of the
numerics from the analytics (despite the relatively large
«) is that the calculation is based on surface integrations,
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FIG. 3. Nondimensional thickness contours (h/Ĥ) for a zero PV
outflow. Note that, as originally assumed (Fig. 2c), the gyre center
moves both away from the wall and away from the source. It drifts
approximately in the two o’clock direction away from the source.
This migration is not exactly as we have assumed (1½ o’clock di-
rection, corresponding to a 458 angle) because of the shape distortion.
Physical constants: f 5 1024 s21; g9 5 2 3 1022 m s22; Q 5 20 Sv;
Rd 5 30 km; Ĥ 5 450 m; grid size Dx 5 Dy 5 3.6 km; time step,
Dt 5 5 min; eddy viscosity, 360 m2 s21.

FIG. 4. The nondimensional mean vorticity (averaged over the gyre)
as a function of time. The parameter a is the relative vorticity non-
dimensionalized with the Coriolis parameter. Note that, due to the
length of our integration and the accumulative effect of (small) fric-
tional effects, the mean vorticity decreases significantly even in the
zero PV outflow case (upper panel). The reduction is less dramatic
in the finite PV case (lower panel) because the initial velocities are
smaller so that the frictional forces are smaller too. (The finite PV
outflow case corresponds to a PV depth of 500 m, i.e., an upstream
relative vorticity of 0.1f near the right bank.)

which usually are not very sensitive to the gyre’s shape
because they smooth out the errors.

Figure 3 shows that, as the theory predicts, a gyre
whose size increases in time is indeed established. The
flow separates from the wall to the right of the source
but this has no bearing on our solution even in the limit
of no viscosity, which may involve velocity disconti-
nuities because the equations that are used must still be
satisfied. Figure 4 shows that, on the long timescale, the
PV is (very gradually) altered by the small frictional
forces. The alteration in time is greater in the zero PV
case (upper panel) than in the finite PV case because
the velocities and, hence, the frictional effects are larger.
Since our slowly varying approach merely requires the
PV to be conserved at each moment (i.e., on the short
timescale), this small frictional effect that accumulates
over the long time to become important does not in-
validate the theory.

Figure 5 is the ‘‘backbone’’ of our analytical–nu-
merical comparison as it shows a comparison of the two
most important numerical momentum fluxes as a func-
tion of time. We see that, although the fluxes vary with
time, at each moment, the integrated Coriolis force (re-
sulting from the offshore migration) balances the down-

stream momentum flux, as (2.8) and (3.3a) imply.
Namely, it illustrates that there are no unaccounted forc-
es and that, despite the fact that frictional effects ac-
cumulate over time to become an important effect, at
each moment in time the inviscid balance of forces is
a valid approximation to the problem.

Figure 6 shows a comparison of the analytical and
numerical mass fluxes for the zero and finite PV out-
flows. We see that the strict zero PV solution (dashed
line in upper panel) is really never in good agreement
with the numerics because it is supposed to hold only
in the very beginning of the experiment at, say, t , 5
days (before the PV has been altered by friction) but in
this short time the gyre is not yet well established. After
this time, the PV is already altered so the altered solution
[solid line corresponding to (3.10)] applies. Again we
see that the agreement is better in the finite PV case
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FIG. 5. A comparison of the (numerical) downstream current mo-
mentum flux (dashed line) to the (numerical) Coriolis force associated
with the growth of the gyre and the resulting movement of its center
away from the wall (solid line). It is clear that, at all times, the two
are almost the same, in excellent agreement with our inviscid ana-
lytical derivation (2.8) and the ‘‘slowly varying’’ assumption.

FIG. 6. The ratio of the downstream current mass flux to the in-
coming mass flux as a function of time. Note that, in the intense
outflow case (i.e., zero PV), most of the initial mass flux goes to the
bulge. After a while, the opposite is true and most of the flux goes
to the downstream current. This is due to the reduction in vorticity
(see text). The difference between the numerics and the analytics is
primarily due to the frictional forces, which, as expected, are higher
in the intense-outflow case because of the associated higher speeds.
The dashed line in the upper panel represents the analytical solution
for a zero PV bulge (a 5 1). Since the PV is gradually altered (on
the long timescale), we also present an analytical solution based on
the numerically observed vorticity shown earlier in Fig. 4. This is
shown by the thick solid line.

because the frictional effects are smaller. The same can
be said of the gyre volume (Fig. 7), the mean radius
(Fig. 8), and the maximum depth (Fig. 9).

We also ran an experiment (not shown) where we
doubled the eddy viscosity. We found that the mass flux
of the downstream current increased. That is, the fric-
tional effect (which causes an increased downstream
current) explains why the theoretical volume increases
more rapidly than the actual numerical values (Fig. 7).
The results of the second set of experiments (weak, finite
PV outflow) are in better agreement with the numerics
than the zero potential vorticity case because the ve-
locities are smaller so that the frictional forces are small-
er too.

c. Limitations

As is frequently the case, both the analytical and the
numerical model have their limitations. The three most

important weaknesses of the analytical solution result
from the slowly varying assumption, the fact that we
did not find the complete first-order solution, and the
use of a 1½-layer model. (Note that the latter limitation
is also present in the numerics.) We shall take these
three issues one by one.

The first assumption eliminates the contribution of
the time-dependent terms to the alongshore momentum
flux. The assumption has been used successfully before
and is valid as long as the bulge is much larger than
the downstream current. The second limitation can be
important because the complete first-order solution may
impose constraints that may restrict the validity of our
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FIG. 7. A comparison of the numerical and analytical values for
the volume of the bulge as a function of time. As before, the analytical
calculations are based on a relative vorticity that is altered in time
(Fig. 4). Since the errors shown in Fig. 6 accumulate over time, the
discrepancy between the analytical and the numerical volumes in-
creases with time.

FIG. 8. The mean radius of the bulge [defined by the square root
of the area occupied by the bulge (up to the point where the curvature
reaches a minimum, i.e., the streamlines become parallel to the wall)
divided by p] as a function of time. As before, the analytical solution
is based on the altered relative vorticity (Fig. 4).

solution. Our third limitation (resulting from the 1½-
layer approach) excludes baroclinic instabilities (of both
the bulge and the downstream current) and prevents the
bulge from radiating energy outward. This essentially
eliminates a nonfrictional decay from the problem.

5. Discussion and summary

The foregoing theory is applicable to various situa-
tions because almost all bodies of water are connected
to each other. We assumed that the inviscid bulge in-
volves two timescales, a fast timescale (i.e., the orbital
timescale) and a slow timescale (i.e., the time associated
with its growth and the resulting offshore displacement
of its center). Alternatively, the problem can be thought
of as involving two speeds, a fast orbital speed (of the
fluid within the bulge) and a slow offshore migration
of the (growing) bulge center.

The results of our theory can be summarized as fol-
lows:

1) The general analytical solution [(3.10)–(3.13)] cor-
responds to a balance between two alongshore forc-
es, the momentum flux resulting from the down-
stream current and the integrated Coriolis force re-
sulting from the offshore movement of the bulge
center (Fig. 2). The nonlinear analytical solution
shows that the bulge volume, radius, and central
depth all gradually increase (see Figs. 3–9).

2) Intense outflows (i.e., zero PV) are associated with
a relatively rapid growing bulge where 66% of the
outflow mass flux Q goes into the bulge and the
remaining 33% goes into the downstream current.
Weaker outflows [i.e., small relative vorticity (af/2,
where a K 1) bulges], on the other hand, display
the opposite kind of behavior. Here, most of the mass
flux Q/(1 1 2a) goes to the downstream current and
a smaller fraction 2aQ/(1 1 2a) goes into the bulge.
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FIG. 9. The maximum thickness of the bulge as a function of time.
Again, the analytical solution (3.13) is based on the altered relative
vorticity shown in Fig. 4.

3) The numerical simulations illustrate that the balance
of the two forces associated with the analytical so-
lution is indeed valid (Fig. 5). Although the small
frictional effects accumulate over time and change
the potential vorticity, our most general inviscid so-
lution [(3.10)–(3.13)] is a valid approximation to the
instantaneous structure (Figs. 6–9).

Our results can be applied to various oceanic situa-
tions. For instance, the flow via the Yucatan Strait (in
the initial Loop Current ring growth phase) can be
viewed as our f-plane outflow problem. To see this,
recall that PN argued that the associated Loop Current
rings are generated to offset the downstream current
momentum flux. They showed that b is responsible for
the ultimate detachment of the rings and calculated their
generation periodicity to be roughly 300 days. For pe-
riods shorter than 300 days, however, one can argue that
b is perhaps not so important yet so that our present
theory is applicable. Taking the incoming mass flux Q
to be approximately 30 Sv, the radius of the rings to be
300 km, their depth to be 1000 m, and the incoming

inflow shear to be approximately 2f (see, e.g., PN), we
find that 20 Sv would go into the initial buildup of the
ring so that it would take approximately 100 days or so
for a ring to reach a mature state.

In the above scenario, the next 200 days are used
merely for b to take over the ring and force it to detach.
Namely, the ring grows relatively quickly (within 3
months) but takes a long time to detach. Also, note that
during the calculated 100 ring-growth days, the modeled
downstream current carries merely 10 Sv because most
(66%) of the water coming from the Caribbean enters
the ring. On this basis, one would expect to find that
the ring’s growth process is associated with Florida Cur-
rent transport fluctuations. Such changes have not, how-
ever, been observed (see, e.g., Maul and Vukovich
1993), probably because the Gulf of Mexico is closed.
A closed basin means that the water that enters into the
ring must somehow force other (lower layer) water to
find its way out of the basin. Presumably, some of this
advected water goes through the deep Yucatan Passage
back into the Caribbean, but most finds its way into the
Florida Current.

Another important application is to the period that it
takes to establish the Tsugaru gyre. Recently, Nof and
Pichevin (1999) have argued that the size of this gyre
is determined by b, which arrests the gyre’s growth.
Again, one can perhaps argue that in the early stages
of the gyre’s establishment, b is not yet important so
that the f-plane approximation may be adequate. Taking
Q to be 1 Sv, the gyre radius to be 80 km, the reduced
gravity to be 1.5 3 1022 m s22, and the incoming vor-
ticity to have the (admittedly large) value of 2f, one
finds that it would take about 180 days to establish the
gyre. This is in agreement with the observations (see,
e.g., Conlon 1982; Yasuda et al. 1988).

Going down in scale to outflows from rivers (such as
the Mississippi) we find that for f 5 1024 s21, a discharge
of 10 000 m3 s21, a reduced gravity of 2 3 1022 m s22

and a frictionally induced incoming vorticity of, say,
20.05f, about 80% of the discharge goes into the down-
stream current and about 20% into the bulge. Within a
period of 100 days or so a bulge with a radius of 25
km will be formed.

An important question left unanswered is how can
we a priori determine the vorticity of the bulge. In the
large outflow case with an incoming anticyclonic vor-
ticity, the potential vorticity is conserved and we do not
have to worry about this issue. However, in cases where
the vorticity of the incoming fluid is cyclonic rather than
anticyclonic and in the small outflow case, the fluid must
generate an anticyclonic vorticity on its own (via fric-
tion) so that a bulge is established. [Recall that this is
indeed the case as shown numerically by both PN and
Nof and Pichevin (1999).] How we can a priori calculate
the vorticity that will be generated in these cases is not
at all obvious.
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APPENDIX

Definitions of Variables

Cx alongshore migration of the bulge center
Cy offshore migration of the bulge center
f Coriolis parameter
g9 reduced gravity
H bulge maximum thickness
Ĥ nondimensionalization thickness based on the

upstream flow
h thickness
hB thickness of the longshore current along the

wall
L downstream current width
q mass flux via the downstream current
Q outflow mass flux
R bulge radius
S bulge area
t time
u, y horizontal velocity components
V bulge volume
yu mean orbital flow of a gyre
a relative vorticity nondimensionalized with the

Coriolis parameter
f boundary of bulge area S
c streamfunction (defined by ]c/]y 5 2uh; ]c/

]x 5 yh)
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