
2958 VOLUME 31J O U R N A L O F P H Y S I C A L O C E A N O G R A P H Y

q 2001 American Meteorological Society

Coastal-Trapped Waves and Tides at Near-Inertial Frequencies

ANDREW C. DALE

College of Oceanic and Atmospheric Sciences, Oregon State University, Corvallis, Oregon

JOHN M. HUTHNANCE

Proudman Oceanographic Laboratory, Bidston Observatory, Merseyside, United Kingdom

TOBY J. SHERWIN

Centre for Applied Oceanography, Marine Science Laboratories, Anglesey, United Kingdom

(Manuscript received 18 September 2000, in final form 6 March 2001)

ABSTRACT

The nature of the transition in coastal-trapped wave behavior from trapped, subinertial modes to imperfectly
trapped, superinertial waves (not modes), is investigated. When formulated purely in terms of pressure, the
coastal-trapped wave eigenvalue problem admits a spurious inertial mode that distorts numerical calculations at
nearby frequencies. By solving a pair of coupled equations, involving the component of velocity normal to the
coastline as well as pressure, this spurious mode is removed. The transition through the inertial frequency is
examined analytically by considering the effect on trapped inertial modes of a small frequency increment. It is
shown that, to first order in this increment, modes remain trapped. At higher frequencies, the modal approach
breaks down and a primitive equation model is used to represent the, now fully three-dimensional, situation.
The scattering of energy from an oscillating barotropic alongshore flow by a topographic feature is considered.
At superinertial frequencies, internal energy is scattered in all directions, although preferentially alongshore in
the direction of coastal-trapped wave propagation. There is not a sudden change in behavior at the inertial
frequency. As frequency becomes increasingly superinertial there is a gradual increase in the three-dimensionality
of the response and a decrease in the proportion of energy represented by the trapped component. The work
highlights the potential for spurs and canyons to generate alongslope-propagating internal tides.

1. Introduction

The behavior of coastal-trapped waves near the in-
ertial frequency is poorly understood, yet important in
view of the energy concentrations at such frequencies.
In linear theory, low frequency (subinertial) energy at
ocean margins is channeled along topography and/or the
coastline as coastal-trapped waves of various types. At
superinertial frequencies, however, linear theory admits
free gravity waves and coastal-trapped waves cease to
be perfectly trapped (Dale and Sherwin 1996, hence-
forth DS). This study investigates the nature of the tran-
sition from sub- to superinertial frequencies and dis-
cusses the changes in behavior that can be expected.
One major motivation is to gain a greater understanding
of the potential for alongshore transport of internal tidal
energy within this frequency range. The M2 tidal fre-

Corresponding author address: Dr. Andrew C. Dale, College of
Oceanic and Atmospheric Sciences, Oregon State University, 104
Ocean Admin. Bldg., Corvallis, OR 97331-5503.
E-mail: acd@oce.orst.edu

quency (period 12.42 h) lies within 10% of the inertial
frequency at all latitudes greater than 61.58.

Coastal-trapped wave modes are generally calculated
by solving a second-order equation describing pertur-
bations in pressure in a vertical section normal to the
coastline and topography. Unfortunately, close to the
inertial frequency this approach becomes inaccurate be-
cause the pressure formulation admits a spurious (phys-
ically meaningless) inertial mode (Brink 1982). This
spurious mode arises because boundary conditions in-
volving the velocity component normal to the coast must
be expressed in terms of pressure, but the relation be-
tween this component and pressure is singular at the
inertial frequency. When modes are calculated numer-
ically close to the inertial frequency, the spurious mode
interacts with the physical modes of the system, causing
dispersion curves to distort around the inertial frequency
(DS).

An additional complication is a change in the nature
of the governing differential equation from elliptic (sub-
inertial) to hyperbolic (superinertial). Modal solutions
to the superinertial coastal-trapped wave problem can
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FIG. 1. Configuration of axes.

TABLE 1. Resolution dependency of the modes of the u, p for-
mulated eigenvalue problem. Eigenvalues are of k (m21) for fixed
frequency s/ f 5 0.9.

Mode
num-
ber

k
(10 S levels,
Dx 5 2 km)

k
(20 S levels,
Dx 5 1 km)

k
(30 S levels,

Dx 5 0.5 km)

1
2
3

20.425 3 1024

20.971 3 1024

21.896 3 1024

20.429 3 1024

20.950 3 1024

21.678 3 1024

20.430 3 1024

20.945 3 1024

21.628 3 1024

never be entirely satisfactory due to difficulties in set-
ting a realistic offshore boundary condition. Although
modal shapes may appear acceptable close to the to-
pography, they always contain components that either
become large far offshore or require onshore phase and
energy propagation from the ocean (DS). In addition,
if the bed has points of critical slope at which the bed
slope matches that of internal-wave characteristics, so-
lutions may contain discontinuities that lie along char-
acteristics. The difficulties with the modal approach are
symptomatic of the increasing three-dimensionality of
the problem, in the sense that the alongshore and cross-
shore dependency are no longer separable when rea-
sonable physical constraints (trapping conditions) are
imposed. The modal approach becomes increasingly in-
appropriate as frequencies rise above the inertial fre-
quency.

This paper begins by describing a method by which
modes can be calculated accurately at near-inertial fre-
quencies. The second-order pressure equation is re-
placed by a pair of equations involving pressure and the
component of velocity normal to the coastline, enabling
the boundary conditions to be set in a manner that re-
mains valid at the inertial frequency. Similar techniques
have been used in equatorial-wave calculations (e.g.,
Proehl 1991). The nature and implications of the tran-
sition from sub- to superinertial frequencies are then
investigated analytically by considering slightly super-
inertial frequencies. At frequencies a finite interval
above the inertial frequency, the breakdown of the mod-
al approach necessitates solution of a fuller (and, in
particular, three-dimensional) set of equations. To this
end, the Bryan–Cox primitive equation model is used,
first to make comparisons with the linear modal solu-
tions, then to investigate the form of coastal-trapped
waves generated by local forcing representing the in-
teraction between an oscillating current and topography.

2. The coastal-trapped wave eigenvalue problem

Consider coastal topography of depth h(x) that is uni-
form in the alongshore (y) direction (Fig. 1). Buoyancy

frequency N(z) is horizontally uniform. A motionless
background state is perturbed by velocity components
u, y, and w, pressure p, and density r. All these per-
turbations are expressed as functions of x and z in the
form

u(x, y, z, t) 5 Re{u(x, z) exp[i(ky 2 st)]},

where u(x, z) and wavenumber k may be complex but
frequency s is real. Thus, a nonzero imaginary com-
ponent of k implies alongshore growth or decay. The
linear, Boussinesq equations of motion are nondimen-
sionalized with respect to scales L, U, f , H, , N0, HU/r
L, and fUL for horizontal position, velocity, frequency,r
depth, density, buoyancy frequency, vertical velocity,
and pressure, respectively:

]p
isu 1 y 5 (1)

]x

isy 2 u 5 ikp (2)

]p
2r 5 (3)

]z

]u ]w
1 iky 1 5 0 (4)

]x ]z
2isr 1 SN w 5 0, (5)

where u, y, w, r, p, s, and k are now nondimensional,
without change of notation. Two dimensionless param-
eters remain, S [ H 2/ f 2L2 and D2 [ f 2L2/gH (which2N 0

appears in the free-surface condition, below). Here L
and H are taken to be the offshore and vertical scales
of the topography, with H 5 limx→`h(x). The hydrostatic
approximation has been made in (3), effectively assum-
ing that s2 K N 2.
p formulation:

A second-order equation for p is obtained by ex-
pressing the velocity perturbations in terms of p:

i ]p
u 5 s 2 kp , (6)

21 21 2 s ]x

1 ]p
y 5 2 ksp , and (7)

21 21 2 s ]x

is ]p
w 5 ; (8)

21 2SN ]z

then substituting into the continuity equation (4)
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TABLE 2. Resolution dependency of the modes of the u, p
formulated eigenvalue problem at frequency s/ f 5 1.1.

Resolution k, mode 1

10 S levels, Dx 5 2 km
20 S levels, Dx 5 1 km
30 S levels, Dx 5 0.5 km

20.543 3 1024 2 0.007 3 1024i
20.548 3 1024 2 0.002 3 1024i
20.546 3 1024 2 0.003 3 1024i

2 21 2 s ] ]p /]z ] p
21 2 k p 5 0. (9)

2 21 2S ]z N ]x

Boundary conditions are a free surface

]p
2 2 2isD p 1 w 5 0 ⇒ D SN p 1 5 0

]z

(z 5 0), (10)

no flow through the bed

2dh 1 2 s ]p dh ]p k
w 1 u 5 0 ⇒ 1 2 p 5 0

21 2 1 2dx SN ]z dx ]x s

(z 5 2h(x)), (11)

and a coastal wall

]p
u 5 0 ⇒ s 2 kp 5 0 (x 5 0). (12)

]x

The open ocean is assumed to be flat bottomed, so per-
turbations in this region can be decomposed into a linear
combination of vertical structure modes with horizontal
structure arranged to match the alongshore wavenumber
k (DS). The vertical structure mode eigenvalue problem
for pressure perturbations p9(z) is

21 2 s d dp9/dz
25 k p9 (13)

21 2S dz N

with boundary conditions D2SN 2p9 1 dp9/dz 5 0 at the
surface (z 5 0) and dp9/dz 5 0 on the bed (z 5 21).
The nth vertical mode (z) has eigenvalue kn, relatedp9n
to component wavenumbers k and ln in the y and x
directions respectively through

2 2 2k 5 k 1 l .n n (14)

Thus, the decomposition at the offshore boundary is
written

`

p(x, z) 5 a p9(z) exp(l x), (15)O n n n
n51

where the an are coefficients to be determined. The sign
of each ln is chosen to ensure offshore decay, although,
when k is complex, this choice may not be consistent
with a second trapping condition, that energy flux can
only be outward through the boundary (DS).

The relation (6) between u and p is singular at the
inertial frequency (s 5 1), leading to problems with the
boundary conditions (11) and (12) when the problem is

expressed purely in terms of pressure. A spurious in-
ertial ‘‘mode,’’

p(x, z) 5 A(z) exp(kx), (16)

where A(z) is an arbitrary function that satisfies the sur-
face boundary condition, is a solution to the pressure-
formulated problem for any k, although the underlying
physical problem is not necessarily satisfied. A more
careful treatment of the inertial frequency is required
(next section).

u, p formulation
In order to avoid the spurious mode, (9) is replaced

by two independent equations in u and p: (6) and

2]u ik k is ] ]p /]z
1 p 1 u 1 5 0, (17)

21 2]x s s S ]z N

which is implied by (2), (4), and (8). Boundary con-
ditions are also expressed in terms of u and/or p. The
surface condition (10) is unchanged and no flow through
the bed is written as

is ]p dh
1 u 5 0 (z 5 2h(x)). (18)

2SN ]z dx

The coastal condition is

u 5 0 (x 5 0), (19)

and the flat-bottomed open ocean is again treated by
decomposition into vertical structure modes, now of the
coupled u,p system.

3. Expansion about the inertial frequency

At the inertial frequency, (1) and (2) together imply
that ]p/]x 5 kp, so inertial modes can be written in the
form p(x, z) 5 p0(z) exp(kx). It will be seen that inertial
modes occur at discrete values of k, in contrast to the
spurious mode (16) that occurs at all k. Expanding to a
slightly superinertial frequency s 5 1 1 e (where e K
1), solutions are written

f(x, z) 5 {f (z) 1 ef (x, z)} exp(kx),0 1 (20)

where k 5 k0 1 ek1 with f representing p, u, y, w, or
r. Equations (1)–(5) become

i(1 1 e)(u 1 eu ) 1 (y 1 ey )0 1 0 1

]p15 e 1 (k 1 ek )(p 1 ep ), (21)0 1 0 1]x

i(1 1 e)(y 1 ey ) 2 (u 1 eu )0 1 0 1

5 i(k 1 ek )(p 1 ep ), (22)0 1 0 1

dp ]p0 12(r 1 er ) 5 1 e , (23)0 1 dz ]z
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]u1(k 1 ek )(u 1 eu ) 1 e 1 i(k 1 ek )(y 1 ey )0 1 0 1 0 1 0 1]x

dw ]w0 11 1 e 5 0, and
dz ]z

(24)

2i(1 1 e)(r 1 er ) 1 SN (w 1 ew ) 5 0. (25)0 1 0 1

On the bed

dh
(w 1 ew ) 1 (u 1 eu ) 5 0 (z 5 2h(x)), (26)0 1 0 1dx

and at the free surface

2iD (1 1 e)(p 1 ep ) 1 (w 1 ew )0 1 0 1

5 0 (z 5 0). (27)

Order e0: Inertial solutions
From the order e0 terms of (21)–(25), u0 and w0 can

be expressed in terms of p0 as

i 1 d dp /dz0u 5 2 1 k p and (28)0 0 021 2[ ]2 k S dz N0

idp /dz0w 5 . (29)0 2SN

The bed condition (26) then yields a differential equa-
tion in p0(z),

d Edp /dz0 21 k SEp 5 0, (30)0 021 2dz N

where E 5 exp(2k0X) and X(z) is defined by z 5 2h(X)
with X 5 0 at z 5 0. Boundary conditions on p0(z) are

dp0 2 21 D SN p 5 0 (z 5 0) (31)0dz

at the surface and

dp0 5 0 (z 5 21) (32)
dz

far offshore where the bed is flat (w 5 0).
Together, (30), (31), and (32) constitute a one-di-

mensional Sturm–Liouville system for p0(z) with ei-
genvalues of S (Huthnance 1978). Thus, for fixed wave-
number k0, inertial modes exist at discrete values of the
stratification parameter S. The spurious nature of the
inertial mode of the pressure-formulated problem (9)–
(12) and (15) is now apparent since p(x, z) 5 exp(kx)
was a solution for any combination of k and S. Note
that, if inertial modes are sought with fixed S and ei-
genvalues of k0, the problem is no longer in Sturm–
Liouville form. There will always be an essentially bar-
otropic Kelvin-like mode (assuming the surface is free),
but there may be no baroclinic modes when S is small,
since coastal-trapped wave dispersion curves do not
necessarily reach the inertial frequency.

Order e1: Near-inertial solutions
The order e1 terms of (21)–(25) are

]p1iu 1 y 2 k p 2 5 2iu 1 k p , (33)1 1 0 1 0 1 0]x

iy 2 u 2 ik p 5 2iy 1 ik p , (34)1 1 0 1 0 1 0

]p1r 1 5 0, (35)1 ]z

]u ]w1 1k u 1 1 ik y 1 5 2k u 2 ik y , and (36)0 1 0 1 1 0 1 0]x ]z

2ir 1 SN w 5 2ir . (37)1 1 0

The bed condition is

dh
w 1 u 5 0 (z 5 2h(x)) (38)1 1dx

and the free surface

2iD a(p 1 p ) 2 w 5 0 (z 5 0).0 1 1 (39)

From (33), (34), and the e0 terms of (24),

]p 1 d dp /dz1 05 [ P(z), (40)
21 2]x k S dz N0

defining P(z), which can be calculated from the inertial
solution. Integrating in x,

p (x, z) 5 xP(z) 1 Q(z),1 (41)

where Q(z) remains to be determined. Proceeding by
expressing u1 and w1 in terms of the inertial solution,
then using the bed condition (38), it is straightforward
to obtain

i dp dP dQ0w 5 1 x 1 (42)1 21 2SN dz dz dz

and more involved to obtain

] P x d dP /dz
(u E ) 5 2ik E k p 2 1 xk P 11 0 1 0 0 21 2 1 2[]x k k S dz N0 0

3P k p0 01 2 1 k Q02 2

1 d dQ/dz
1 ,

21 2]k S dz N0

(43)

using (30), (34), (36), and (40). Integration yields u1,
with the constant of integration (a function of z) set to
zero to ensure u 5 0 far offshore. Substitution into (38),
and further manipulation involving (30) and (40), results
in an equation for Q,
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1 d EdQ/dz
1 k EQ021 2k S dz N0

P x d EdP /dz
5 k E 2 p 2 xk EP 21 0 0 21 2 1 2k k S dz N0 0

E d dP /dz 3
1 1 k Ep , (44)0 02 21 22k S dz N 20

in which the first-order deviation of wavenumber k1 re-
mains to be determined. Boundary conditions on Q are

dQ
2 21 D SN Q 5 0 (z 5 0) (45)

dz

at the free surface and

dQ
5 0 (z 5 21) (46)

dz

at the maximum depth. Wavenumber k1, which effec-
tively gives the gradient of the dispersion curve through
the inertial frequency, is found by projecting (44) onto
the inertial mode p0(z) of the Sturm–Liouville system
by multiplying by p0 and integrating in z. The left-hand
side of (44) becomes

0
E dQ dp0p 2 Q021 2[ ]k SN dz dz0 21

0 1 d Edp /dz01 Q 1 k Ep dz, (47)E 0 021 2[ ]k S dz N021

which is zero in view of (30) and the boundary con-

ditions on Q and p0. The full equation (44), after several
integrations by parts, yields

0 p (dX /dz)(dp /dz)0 022k E p 1 dz1 E 0 21 2[ ]k SN021

0 03 1
2 25 Ek p dz 1 EP dzE 0 0 E2 2k021 21

0
1 p (dP /dz) 2 (dp /dz)P0 01 , (48)
2 2[ ]2k S N0 21

using (30), (40), X 5 0 at z 5 0 and E → 0 as z →
21.

Note, in particular, that k1 must be real since all other
terms in this expression are real. Thus, to first order
above the inertial frequency, wavenumber remains real
(as it is at subinertial frequencies). The problems that
arise in setting the open boundary condition for complex
k must only become apparent at higher order.

4. Comparative linear solutions

Comparisons are now made between numerical so-
lutions of the two-dimensional p formulated eigenvalue
problem [(9)–(12) and (15)], the equivalent u, p for-
mulated problem [(6), (17), (10), and (19)] and the one-
dimensional inertial eigenvalue problem [(30)–(32)].
Dimensional variables will be used from this point on-
ward, and a rigid lid assumed (D 5 0), removing the
barotropic Kelvin-like mode.

Topography and stratification are prescribed analyt-
ically, loosely based on the Iberian shelf around 408N.
Bottom depth is

h 1 (h 2 h )x/x , x # xc match c match match

3/4 1 p
h(x) 5 (49)h 1 1 2 cos (x 2 x ) (h 2 h ), x 1 W . x . xs s o s s match7 5 68[ ]2 W
h , x $ x 1 W, o s

where hc 5 50 m, hs 5 100 m, and ho 5 3100 m are
the depths at a coastal wall (x 5 0), at the shelf edge
(x 5 xs 5 12 km), and in the ocean (x . xs 1 W),
respectively; W 5 31 km is the width of the slope. The
shelf slants linearly to a depth hmatch at x 5 xmatch, values
chosen such that the depth and gradient of the shelf and
slope match, and in practice very close to hs and xs.
Note that a flat shelf has been avoided since it would
imply a singularity | Xz | → ` in (30). The flat ocean
floor leads to a similar singularity at z 5 2ho, although
the inertial eigenvalue problem is still solvable with this
singular endpoint. The buoyancy frequency is surface

intensified, decreasing exponentially with a vertical
scale of z0 5 500 m:

2 25 22N 5 2.7 3 10 exp(z/z ) s .0 (50)

Computations are made on a (vertically stretched) S
grid with 20 equally spaced vertical levels and 50 hor-
izontal levels (Dx 5 1000 m). The u, p formulation has
u and p levels staggered in x. The coastal wall is placed
at a u level, and the upper and lower levels lie on the
surface and bed respectively. Solutions are found by a
resonance-searching approach (DS), in which the hy-
perbolic or elliptic system is inverted subject to forcing
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FIG. 2. Resonance scan for the two-dimensional problem formulated in terms of p only. Shading has a log scale,
with dark corresponding to strong resonance. Topography is given by (49) and buoyancy frequency by (50); Dx 5
1000 m, 20 vertical levels. White circles indicate solutions of the corresponding one-dimensional inertial eigenvalue
problem.

FIG. 3. Near-inertial distortion of the lowest subinertial-mode dis-
persion relation at three different computational resolutions: Dx 5
2000 m, 10 vertical levels (solid line); Dx 5 1000 m, 20 vertical
levels (dashed line); and Dx 5 500 m, 30 vertical levels (dotted line).
A white circle indicates the mode of the corresponding one-dimen-
sional inertial eigenvalue problem.

of some wavenumber and frequency (following Lindzen
and Kuo 1969). The response is large close to a dis-
persion curve, so, by scanning through values of fre-
quency and wavenumber, dispersion curves can be
mapped out in (k, s) space. When the scanned resonance
field is displayed as a grayscale image (Figs. 2 and 4),

dispersion curves appear as lines of enhanced resonance
(dark).

In the p formulated case, the effect of the spurious
inertial mode on dispersion curves is clear (Fig. 2),
with strong distortion of the lowest mode within the
range s/ f ∈ [0.9, 1.1] such that the subinertial and
superinertial segments of its dispersion curve bend to
avoid crossing the inertial frequency. This distortion
is a purely numerical effect since the p and u, p for-
mulations are entirely equivalent at any noninertial
frequency. Distortion reduces when grid resolution is
improved (Fig. 3) and is greatest for higher, less well
resolved modes. The u, p formulated problem has no
apparent inertial distortion (Fig. 4, with dispersion
curves closely matching those of Fig. 2 away from
the inertial frequency).

The change in the nature of the problem from elliptic
to hyperbolic is evident through noise in the superiner-
tial resonance fields (Figs. 2 and 4) and modal shapes
(Fig. 5). This noise is due to inability to resolve the
discontinuities and/or strong gradients that arise in cases
with critical or near-critical bed slope. Dale and Sherwin
also encountered noisy resonance fields, although, in
their case of uniform buoyancy frequency, resolution
was less critical and the noise less severe. Investigation
of the effect of varying computational resolution on
subinertial (s/ f 5 0.9) eigenvalues (Table 1) suggests
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FIG. 4. Resonance scan for the two-dimensional problem formulated in terms of both u and p. Topography is given
by (49) and buoyancy frequency by (50); Dx 5 1000 m, 20 vertical levels. White circles indicate solutions of the
corresponding one-dimensional inertial eigenvalue problem, with the gradient of the dispersion curves implied by
calculated k1 shown. Black circles indicate resonances of the Bryan–Cox model at s/ f 5 0.9 and s/ f 5 1.1.

that the calculated values are close to convergence. The
same is true of superinertial (s/ f 5 1.1) eigenvalues
(Table 2), although they converge less predictably. In
determining these (complex) superinertial eigenvalues,
the offshore boundary condition has been set as de-
scribed by DS.

The one-dimensional inertial eigenvalue problem, de-
fined by (30)–(32), can be solved efficiently at high
resolution. This provides a check on the accuracy of the
modes of the two-dimensional p and u, p formulated
problems. We again consider the topography (49) with
stratification (50) and seek eigenvalues of k. Solution
is carried out on a grid with vertical intervals of unform
spacing Dz. Resolution tests (Table 3) suggest that, when
1000 levels are used, the eigenvalues have almost con-
verged to the accuracy quoted (four significant figures).
Modal pressure fields take the form p(x, z) 5 p0(z)
exp(kx), with p0(z) for the first three modes shown in
Fig. 6. Agreement with the dispersion curves of the
coupled u, p system is excellent (Fig. 4), with a dis-
crepancy of less than 1% in wavenumber. Equivalent
nonhydrostatic calculations (Table 3) demonstrate that,
for this problem, the hydrostatic approximation was jus-
tified.

For a given inertial solution, the first-order pertur-
bation k1 to wavenumber k 5 k 0 1 ek1 at slightly
superinertial frequencies s/ f 5 1 1 e can be eval-

uated directly using (48). The first three inertial modes
have k1 5 20.532 3 10 24 , 21.205 3 10 24 , and
22.063 3 10 24 m 21 , respectively (calculated from
the corresponding 10 000 level solutions), with the
implied gradient of the dispersion curves agreeing
closely with the resonance scans of the coupled u, p
system (Fig. 4).

5. Response of a primitive equation model

Since a superinertial coastal-trapped wave has inher-
ent three-dimensionality and cannot be perfectly de-
scribed as a mode, a primitive equation model (the Bry-
an–Cox model: Cox 1984; Semtner 1985) will be used
to investigate the differences between slightly super-
inertial and slightly subinertial waves. The Bryan–Cox
model is nonlinear, Boussinesq, hydrostatic, has a rigid
lid, and uses a z grid in which coordinate levels are
horizontal, so there are fewer vertical grid levels in shal-
low water. Although viscosity and diffusion are set to
zero, the model has some inherent numerical viscosity
and mixing.

Simulations are made in dimensional coordinates,
with an identical physical setting to the linear results of
the previous section. Grid spacings are Dx 5 2 km,
variable Dy (see next section), and 20 vertical levels of
uneven spacing, providing improved resolution toward
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FIG. 5. Comparative modal shapes of the u, p formulated linear problem (left column, as the real part of
the pressure perturbation p) and at corresponding resonances of the Bryan–Cox model (right column, as an
alongshore velocity y). Shading represents sign, and the scaling is arbitrary. The first two modes are shown
at subinertial and superinertial frequencies s/ f 5 0.9 and s/ f 5 1.1, respectively.

the surface (8 3 25 m, 5 3 100 m, 4 3 200 m, 2 3
500 m, and 1 3 600 m). Alongshore boundaries are
cyclic, the onshore boundary is walled, and the offshore
boundary is open (Stevens 1990). It is not immediately
obvious that such a model will well represent coastal-
trapped waves such as those calculated in the previous
section, so this question is addressed first.

a. Dispersion relations from a primitive equation
model

Consider a shelf edge topography of finite alongshore
extent, but with periodic alongshore boundary condi-
tions (Fig. 7). Such a model domain has an effective
alongshore wavenumber k 5 62p/l, where l is its
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FIG. 6. Vertical pressure distribution p0(z) of the first three inertial
modes. Topography is given by (49) and buoyancy frequency by (50).
Wavenumbers k 5 20.489 3 1024, k 5 21.104 3 1024, and k 5
21.883 3 1024 m21.

FIG. 7. A schematic representation of the method used to determine
the response of the Bryan–Cox model to forcing at varying frequency
s and alongshore length scale l. Alongshore boundaries are cyclic,
so A and A9 are the same point.

FIG. 8. Background kinetic energy growth rate of the Bryan–Cox model when subject to forcing of varying frequency
s and alongshore scale l. Dark shading indicates strong resonance. The shading scale is not linear. The relative strength
and wavenumber extent of resonances can be seen in Fig. 9.

alongshore extent. From an initial rest state the model
is subjected to periodic forcing of frequency s and in-
tegrated for five forcing cycles. By varying l and s,
the amplitude of the model response can be mapped out
in dispersion space in a manner analogous to the ap-
proach used for the linear eigenvalue problem. The
alongshore grid spacing Dy 5 l/20 scales with l, so
the alongshore length scale of interest is always equally
resolved. The forcing need not have any physical sig-
nificance since the aim is merely to determine the ten-

dency of the model to respond to various frequencies
and length scales in the forcing. In practice, a pertur-
bation to the barotropic streamfunction is applied with
sinusoidal form alongshore, decreasing linearly from its
oceanic amplitude to zero at the coast. The forcing am-
plitude is kept as small as is numerically acceptable to
ensure that the model response is, to a good approxi-
mation, linear. A growth rate for the background model
kinetic energy is determined by taking the time series
of total model kinetic energy, determining the best fit
](KE)/]t by linear regression, then normalizing this by
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TABLE 3. Wavenumber k (m21) of modes of the one-dimensional
inertial eigenvalue problem (30)–(32) for varying resolution. The first
two columns are hydrostatic, the third is nonhydrostatic.

Mode
num-
ber k (1000 levels) k (10 000 levels)

k
(10 000 levels,
nonhydrostatic)

1
2
3

20.490 3 1024

21.104 3 1024

21.883 3 1024

20.489 3 1024

21.104 3 1024

21.884 3 1024

20.490 3 1024

21.105 3 1024

21.887 3 1024

FIG. 9. Kinetic energy growth rate for the Bryan–Cox model when
forced with frequency s/ f 5 0.9 (solid) or s/ f 5 1.1 (dashed) and
varying effective wavenumber 2p/l.

the maximum kinetic energy of the imposed perturba-
tion, which varies with l.

When topography and stratification are equivalent to
those used in the modal calculations, resonances of the
model agree remarkably well with modal dispersion
curves (Figs. 4, 8, and 9). The form of the response at
resonance peaks also matches the calculated linear
modes well (Fig. 5). Note, in particular, that the reso-
nance fields show no discernible change in model be-
havior at the inertial frequency. The close agreement
gives confidence that the Bryan–Cox model is repre-
senting well the low modes of the linear, modal cal-
culations, providing justification for the wave generation
experiments that follow.

b. Wave generation by an oscillating alongshore flow
interacting with topography

The model domain of the previous section is extended
to 750 km alongshore, and a spur is added by displacing
the topography offshore by a Gaussian function of width
20 km (alongshore) and amplitude 20 km (offshore).
Forcing is provided by an oscillating alongshore flow
applied as a periodic perturbation to the barotropic
streamfunction. This perturbation is a function of off-
shore distance only and is not modified by the spur, so
the interaction between the spur and forcing flow is not
accurately represented. In effect, the spur acts as a lo-
calized source of internal energy, and interest here is in
the nature of the response away from the generation
region. Peak velocities of the forcing current are small
(0.01 m s21, with total excursions of order 100 m) en-
suring that the response is largely linear and is domi-
nated by the forcing frequency. Nonlinearity of the mod-
el does, however, mean that other frequencies are also
present.

Three forcing frequencies are considered: slightly
subinertial (s/ f 5 0.9), slightly superinertial (s/ f 5
1.1), and more strongly superinertial (s/ f 5 1.5). The
response in each case consists of a train of coastal-
trapped waves at the forcing frequency and a radial
scattering of nontrapped internal ‘‘ripples’’ from the
spur (Fig. 10). Evanescent modes (e.g., Webster and
Holland 1987), which could potentially spread energy
in the direction opposite to trapped, wave propagation,
need not be considered here because they occur only
when trapped wave dispersion curves peak at a sub-

inertial frequency. The magnitude of the anomalies as-
sociated with the trapped component are similar at each
forcing frequency (Fig. 11, series A), with 0.058C at
350 m corresponding to a vertical displacement of 5.5
m. In each case, the trapped component has a clear
wavelength that matches linear predictions for a mode
1 coastal-trapped wave. This wavelength decreases with
frequency as expected.

The relative importance of the nontrapped response
increases with frequency. At s/ f 5 1.5, time series (Fig.
11) of the temperature anomaly offshore of the spur (C)
and alongshore in the direction opposite to coastal-
trapped wave propagation (B) contain primarily the
forcing frequency. Vertical displacements are an order
of magnitude smaller than the trapped response. At the
near-inertial forcing frequencies (s/ f 5 0.9 and s/ f 5
1.1) the nontrapped response is weaker since energy at
these frequencies is unable to propagate freely (s/ f 5
0.9) or propagates only slowly (s/ f 5 1.1). In each
case, frequency spectra of the temperature anomaly at
B and C peak above the forcing frequency, representing
nonlinear transfer of energy to higher frequency, more
rapidly propagating modes.

6. Discussion and conclusions

A previous work (DS) discussed the differences be-
tween linear coastal-trapped waves at sub- and super-
inertial frequencies. However, there remained consid-
erable questions regarding the behavior of coastal-
trapped waves close to the inertial frequency and the
nature and significance of the transition through the in-
ertial frequency. Here, the aim has been to improve
understanding of the near-inertial frequency range and
gain insight into the sub-/superinertial distinction, in-
cluding the question of whether wave trapping suddenly
breaks down at the inertial frequency, or whether there
is a gradual transition in wave behavior.

Pressure-formulated linear theory is inaccurate close
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FIG. 10. Temperature anomaly at 350 m after three inertial periods of forcing by an alongshore flow oscillating at
three different frequencies: slightly subinertial (s/ f 5 0.9), slightly superinertial (s/ f 5 1.1), and strongly superinertial
(s/ f 5 1.5). A temperature anomaly of 0.058C corresponds to a vertical displacement of 5.5 m.

to the inertial frequency due to a spurious inertial mode.
The approach of using a coupled u, p formulation is
computationally more expensive than a p-only formu-
lation, but has been successful in removing the spurious
mode and consequent near-inertial distortion of the
physical modes. Still, the u, p formulated problem is
only of practical use in mode calculation at subinertial
frequencies because the noise resulting from unresolved

discontinuities/shear above the inertial frequency po-
tentially dominates the calculations. This problem with
shear is a failing of linear theory since, in reality, it
would tend to be smoothed by friction and/or mixing.
Perhaps more reliable superinertial calculations could
be made by parameterizing this friction in some way,
as, for instance, in linear internal tidal theory (e.g.,
Chuang 1980).
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FIG. 11. Time series of temperature anomaly at 350-m depth for the three locations A, B, and C of Fig. 10 and three
forcing frequencies s/ f 5 0.9 (solid line), s/ f 5 1.1 (dashed line), and s/ f 5 1.5 (dotted line).

One-dimensional linear calculations at the inertial fre-
quency both confirm the accuracy of the two-dimen-
sional u, p calculations, and suggest that, to first order
in a small frequency increment, modes remain perfectly
trapped as they become superinertial. This is significant
in that it suggests a smooth transition in wave behavior
at the inertial frequency, rather than a catastrophic
breakdown of the linear approach.

A further problem with linear theory is the increas-
ing three-dimensionality of the problem, in the sense
that a modal description (in which alongshore depen-
dence is written as a, possibly complex, wavenumber)
becomes increasingly inappropriate as frequency rises
above the inertial frequency. To gain some intuition
for the three-dimensional nature of the superinertial
problem, the nonlinear, primitive equation Bryan–
Cox model was used. When wave amplitudes were
kept small to maintain near-linearity, it was found that
the model supported coastal-trapped waves that
agreed very closely in structure and wavenumber/fre-
quency with corresponding linear calculations, de-

spite the apparently crude resolution used. Of course,
although the Bryan–Cox model can represent the full
three-dimensionality of the problem, it is unable to
resolve the strong shears of linear theory, so this fail-
ing is common to all the approaches used.

Generation experiments involved an oscillating, bar-
otropic, alongshore current interacting with a spur pro-
truding from the shelf edge. These experiments were
highly idealized and intended to give an intuitive im-
pression of the differing behavior of locally generated
sub- and superinertial internal energy in the presence of
a topographic ‘‘channel’’ of propagation (the shelf edge
slope and coastline). A gradual change was found in the
response to increasing frequency, with no clear distinc-
tion between sub- and superinertial frequencies. The
balance between the trapped and nontrapped compo-
nents of the generated internal wave field increasingly
favored the more three-dimensional, nontrapped com-
ponent as frequency increased, but there was no sudden
transition in behavior. Of course, in reality, subinertial
trapped waves lose energy both through friction and
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nonlinear transfer of energy to higher, nontrapped fre-
quencies. Superinertial waves would be expected to lose
energy more rapidly since energy at the wave frequency
itself is imperfectly trapped and potentially scattered
offshore by topographic irregularities.

It is still not clear to what extent near-inertial or
superinertial energy is channeled alongshore or along
topography in the ocean. The Bryan–Cox model runs
give a graphic illustration of the potential for spurs
and canyons to generate alongshore-propagating in-
ternal tides. It would obviously be interesting to mod-
el more realistic settings, with realistic topography
and forcing. The extent to which offshore scattering
of energy by alongshore variations in topography
would lead to enhanced decay of such coastal-trapped
waves could also be addressed. Whether the (here
inadequately resolved) shears that occur at superi-
nertial frequencies modify wave behavior signifi-
cantly or lead to significant energy loss is an important
and perhaps more difficult problem.
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