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1. Pseudo-injective modules

A module Mp, is called pseudo-injective if for every R-monomorphism 3:0 — A — M and
a:0— A — M there exists a v € End(Mg), such that 8 = ya. Our first task is to describe

several characterizations of these modules.

Proposition 1.1 Let Mg be a module, then the following statements are equivalent:

(1) Mg is a (principally) pseudo-injective module;

(2) For every R-monomorphism 3:0— A — M and a: 0 — A — N (A is principal) where
N embeds in M, there exists v € Homg(N, M) such that f = vyo;

(3) For every R-monomorphism 3:0— A — M and o: 0 — A — N (A is principal) where
N is a submodule of M, there exists v € Homg(N, M) such that 8 = y«;

(4) Every R-monomorphism 3 :0 — N — M (N is principal) where N is a submodule of

M, can be extended to an endomorphism of M.

Proof (1)= (2). Let 8 : 0 = A - M and @ : 0 - A — N where N embeds in M be
R-homomorphisms. Then there exists an R-homomorphisms v, : 0 — N — M. It is not difficult
to check that 77 : 0 — A — M is monic. Then there exists 72 € End(Mg) such that § = yom«
by (1). Let 42y1 =~ : N — M. Then § = ~va.

(2)= (3)= (4). Clearly.

4= (1). Let : 0 - A — Mand §: 0 - A — M be R-monomorphisms. Then

a: A — Ima is an isomorphism, so there exists a~! : Ima — A such that a 'a = 14. Then
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Ba~t: 0 — Ima — M is monic. Hence there exists v € End(Mg) such that v|ime = Ba™!, for
every a € A, ya(a) = Ba"ta(a) = f(a), that is ya = 3.

Corollary 1.2 Let Mpr be a pseudo-injective module. Then

(1) Every R-monomorphism « € End(Mg) splits.

(2) For every R-monomorphism  : 0 — A — M and o : 0 — A — A, there exists
~v € Hompg(A, M) such that 8 = ya.

(3) Every R-monomorphism o € Hompg(M, N) where N embeds in M splits.

Proof (1) For R-monomorphism « € End(Mp) and 1) € End(MEg), there exists § € End(Mp)
such that 15, = Ba. So « splits.

(2) Let 6:0— A — M and a: 0 - A — A be R-monomorphisms. Then A embeds in M.
So there exists a v € Hompg(A4, M) such that 8 = ya by Proposition 1.1 (2).

(3) Let & € Hompr(M,N) be a R-monomorphism. Then for « : 0 — M — N and
1y 00 = M — M, there exists 8§ € Hompg(N, M) such that 1), = Ba by Proposition 1.1
(2).

Proposition 1.3 Let (U,)scr be an indexed set of right R-modules. If &;U, is (princi-
pally) pseudo-injective, then for every R-monomorphism (K is principal) § : 0 — K — U,
and «: 0 — K — U, where a € I, b € I, there exists v € Homg(Uy, U,,) such that 3 = ya.

Proof Let 5 :0 —- K — U, and « : 0 - K — U, be R-monomorphisms. For i,08 : 0 —
K — ®;U, and a : 0 — K — Uy, there exists vy € Hompg(Uy, ®;U,) such that i,0 = Ja by
Proposition 1.1 (3). Let v = w7y : Uy, — U,. Then ya = maya = maiq8 = O.

Corollary 1.4 Every direct summand of a (principally) pseudo-injective module is also (prin-

cipally) pseudo-injective.
Proof Let U, = Uy in Proposition 1.3. It is clear.

Proposition 1.5 Mpy is a pseudo-injective module with S = End(Mp). Let o € S. Then
a € J(S) & kera C°°° M.

Proof It is similar with the case of injective modules and the details of the proof are ommitted.

Remark The Jacobson radicals of the endomorphism rings of the injective modules, quasi-
injective modules and the pseudo-injective modules have the same property. The reason is that
such modules have the same characterization: Every R-monomorphism « € End(Mg) splits. So,
if Mg is a module such that for every §: K — M — 0 and o : 0 — K — M, there exists
~v € End(Mpg) such that 8 = va, then its Jacobson radical has the same property.

2. Principally pseudo-injective modules

An R-module M is called principally pseudo-injective if each R-monomorphism from a
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principal submodule of M to M can be extended to an endomorphism of M. If Mg is a module,
we write Ipr(r) = {m € M|mr = 0} for all r € R, rr(m) = {r € R|mr = 0} for all m €
M, Ay ={n € M |rg(n) =rr(m)}, Sam) =18 € S|kerNmR = kera N mR} for all m € M
and By, = {a € S|kera(\mR = 0} for all m € M.

Proposition 2.1 For a given module Mr with S = End(MRg), the following conditions are
equivalent for an element m € M :

(1) Mg is principally pseudo-injective;

(2) A, = Bpym;

(3) If A,,, = A,,, then B,,m = B,n;

(4) For every R-monomorphism « : 0 - mR — M and 8 : 0 — mR — M, there exists
v € End(Mpg) such that o = /3.

Proof (1)= (2). If n € A,,,, then A4,, = A,, hence o : mR — M is well defined by a(mr) = nr
and « is an R-monomorphism. So let s € S extend « by (1). Then s(m) = a(m) = n = sm
where s € By,. (Indeed, if mr € {kersNmR}, then s(mr) = a(mr) =0, so mr = 0.) Conversely,
if sm € Bpm, then s € B,,, that is {kers N mR} = 0. It is clear that rgr(sm) 2 rr(m).

If r € rr(m), then smr = 0, so mr € {kers N mR} = 0, and r € rr(m). Now we have

rr(sm) = rr(m). Then sm € A,,.

(2)= (3). Let A,,, = A,,. Then A,, = B,ym, A,, = B,n. So B,,m = B,n.

3)= (4). Let ¢ : 0 = mR — M and 8 : 0 - mR — M be R-monomorphisms. Then
rr(Bm) = rr(am). So Aam = Agm, Bamam = Bg,fm by (3). Because {kerly; NamR} = 0,

1y € Bam. Then am € Bg,,Sm. There exists v € Bgy, such that a = 8.
(4)= (1). Let 8 =imp. It is clear.

Proposition 2.2 Let Mg be a principally pseudo-injective module with S = End(Mpg). Then
S(a,m) = Boma + ls(m).

Proof If 3 € S(q,m), then kerf N mR = kera N mR. We claim rg(am) = rr(fm). (Indeed,
if a(m)r = 0, then mr € kera N mR = ker N mR, so f(m)r = 0. If B(m)ry = 0, then
mry € kerf NmR = kerfNmR, so a(m)ry = 0.) Hence fm € Bymam by Proposition 2.1. Say
Bm = bam,b € Byy,. This means that 5 — ba € lg(m). Conversely, let ba+ s € Boma + ls(m)
with b € Bam,s € ls(m). If mr € ker(ba + s) NmR, then (ba + s)(mr) = bamr + smr =
bbamr = 0. Hence amr € kerbNamR = 0. So mr € kera N mR. If mry € kera N mR, then
amry = 0, so (ba+ s)(mry) = bamry 4+ smry = bamry = 0. This means ba + s € S(q,,,). Thus,
S(a,m) = Boma + ls(m).

Proposition 2.3 Let Mg be a principally pseudo-injective module with S = End(Mpg) and
a €S, me M. Then
a € B, & B, = Bama + ls(m).

Proof (=). If a € By, then Sy ) = Brm. So By, = Bama + ls(m) by Proposition 2.2.
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(«<). Suppose a € S — By, such that B, = Bama + ls(m), then there exists 0 # mr € mR
such that a(mr) = 0. Because 1y € By, then 1 = ba + s with b € Bam, s € lg(m), so

mr = bamr 4+ smr = bamr = 0, contradicting o € S — By,.

Proposition 2.4 Let Mg be a principally pseudo-injective module with S = End(Mg). Then
we have the following conclusions.

(1) If K is a simple submodule of Mg, then socx(Mpg) = SK.

(2) If kR is a simple R-module, k € M, then Sk is simple S-module.

(3) soc(Mp) = soc(sM).

Proof (1) Let 0 : K — K; be an R-isomorphism where Ky C M. If K = kR then rg(k) =
rr(ck). So Brpk = Byrok by Proposition 2.1 (3). Thus ok € Bpk C Sk C SK. So if & is an
extension of o to S, and we have K; = ckR = 6kR C SK. This shows sockg (M) C SK. The
other inclusion always holds.

(2) Let 0 # ak € Sk. Then « : kR — «a(kR) is an isomorphism by hypothesis. So let
§ : a(kR) — kR be the inverse. If § € S extends 4, then §(ak) = §(ak) = k, and so k € Sak.
Therefore, Sk C Sak. Then Sk = Sak. So Sk is simple S-module.

(3) This follows from (2).

Proposition 2.5 Let Mg be a principally pseudo-injective module with S = End(Mpg) and
let my,mo,...,m, denote the elements of M. If &;Sm; is direct then any R-monomorphism

a:0—-mR+msR+---+m, R — M has an extension in S.

Proof Let a; and 3 denote the restriction of « to m; R and (mq +ma+- - - +my,) R, respectively,
and let a; and B extend «; and 3 to M. Then

B(ma +ma+ -+ +my) = Blma) + Blma) + -+ + B(my)
= a(m1) +a(mz) + - + a(mn)
= a(m1) + a(ma) +--- + a(my,)

Because @®;Sm; is direct, we obtain B(m;) = & (m;) = a(m;).
Proposition 2.6 If Mg is a principally pseudo-injective module with S = End(Mg), then
W(S) ={w € S|1— pw is monomorphism for all 5 € S}.

Proof Assume that 1 — Sw is monomorphism for all 3 € S and let ker(w)(\mR =0, m € M.
Then rgr(wm) C rr(m). And rr(m) C rr(wm). So Awm = Am, and Bypmwm = Bpm. So
m € Bymwm by Proposition 2.1. This means that m € ker(1 — 8m) for some 8 € By,. So
m = 0. This proves that w € W(S). Conversely, if w € W(s), then kerw N ker(1l — fw) = 0 for

all g € S implies that 1 — fw is monomorphism.

Proposition 2.7 Let Mg be a principally pseudo-injective module with S = End(Mpg). Then

J(S) CW(S) C Z(Ss).



No.2 DU X N, et al: Pseudo-injective modules and principally pseudo-injective modules 227

Proof J(S) C W(S) will be showed in Proposition 3.2. Because W (S) is an ideal of .S, suppose
a € W(S)— Z(Ss). Then kera is not essential in Mg, so let kerae "' mR = 0 where 0 # m € M.
Hence @ : mR — M is monomorphism and 1,,g : mR — M is also monomorphism. So,
by Proposition 2.1, there exists 8 : M — M such that Sa = 1,,5. Thus (1 — Sa)(m) = 0,
contradicting Proposition 3.2.

A module Mp, is said to satisfy the C3-condition if every submodule of M that is isomorphic

to a direct summand of M is itself a direct summand of M.

Proposition 2.8 Let Mg be a principally pseudo-injective module with S = End(Mpg). Then
we have the following conclusions

(1) If N and K are isomorphic principal submodule of M and K is a direct summand of
M, then N is also a direct summand of M.

(2) Every principal principally pseudo-injective module has the Cy-condition.

Proof Clearly, (1) implies (2). Let 0 : N — K be an isomorphism and let 7 : M — K be a
projection. If & : M — M is an extension of o, define « = o~ '76 : M — N. If n € N write
on =k e K,soan =oc"tr(on)] = o tn(on)] = o7 n(k)] = 071 (k) = 071 (on) = n. Hence

the inclusion map N — M splits, which proves (1).

3. Principally pseudo-injective modules

We say that Mg is a principal self-generator if every element m € M has the form m = «a(m;)

for some o : Mp — mR.

Lemma 3.1 Mp is a principal self-generator, then every principal submodule is in the form of

mR where rr(m) 2 rr(mo), M = moR.

Proof Let nR be a principal submodule of M. Then there exists @ : M — nR such that
n = a(my). It is clear that Ima = nR. Note a(mg) = m. Then Ima = mR = nR and

m € lyrr(mo).

Proposition 3.2 Let Mgi be a principal module which is a principal self-generator and let
S = End(Mg). The following conditions are equivalent:

(1) Mg is principally pseudo-injective;

(2) Sta,m) = Bam +1ls(m) for alla € S and all m € M;

(3) If Ao = Apm, then B € Boma + ls(m).

Proof (1)= (2). This follows from Proposition 2.2.

(2)= (3). Let Aum = Apgm, then rr(am) = rr(Bm) and Sm) = Sig,m), 50 Bama +
ls(m) = Bgm + lg(m). Let 1y € Bgm,0 € lg(m), then 8 € Bama + lg(m).

(3)= (1). Let v: 0 - mR — M be an R-monomorphism. Because M is principal, there
exists mg € M such that M = moR. And M is also idempotent principal self-generator, so

there exists a : M — mR with a(mg) = m by Lemma 3.1. Similarly, we can find 8 : M —
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~v(n)R such that y(n) = B(mg). Because v is a monomorphism, rg(y(m)) = rr(m), that is
rr(Bmo) = rr(amg). This means kera = ker3. So keraNmR = kerBNmR , S(q,m) = S(3,m) and
Aam = Agm. So f € Bama+1ls(m) by condition (3), then 8 = fa+ s where 6 € By, s € lg(m).
Then sa = 0 because 0 = s(m) = s(a(mg)) = sa(mg). So Ba = #a? and « is an epimorphism,
then 8 = fa, 8(m) = 0a(mg) = B(mg) = v(m).

Proposition 3.3 Let mg be a principally pseudo-injective module with S = End(Mg). If M
is nonsingular, then J(S) = 0.

Proof Since J(S) C W(S) by Proposition 2.6, we show that W(S) = 0. If w € W(S), then
ker(w) C°** Mp. But ker(w) is closed in Mp because Mg is nonsingular, so ker(w) = Mp and

w = 0.

Proposition 3.4 If My is a principal, principally pseudo-injective module, then J(S) = W (S)
where S = End(Mpg).

Proof J(S) = W(S) is shown in Proposition 2.5. Because Mg is principally pseudo-injective,
Mp is pseudo-injective. So every R-monomorphism « € S splits that is a left inverse. So
W (s) C J(S) by Proposition 2.1 (2) in [4].
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