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ABSTRACT

A framework for mesoscale eddy parameterization based on density-weighted averaging at fixed height is
developed. The method uses the fully non-Boussinesq equations of motion and is connected to the equations
carried by Boussinesq ocean models only after the averaged equations have been developed. The framework
applies to the continuity, tracer, and momentum equations within a single formalism. Two methods for applying
parameterizations in ocean models are obtained. The first, based on the tracer equation, corresponds to the
approach commonly taken when including eddy effects in ocean models. The second puts the forcing for the
eddy-induced transport into the averaged momentum equation where it appears as the divergence of a generalized
Eliassen–Palm flux.

It is then shown how to solve for the tracer transport velocity. The solutions form a family closely related to
the temporal residual mean (TRM) velocity of McDougall and McIntosh, valid to O(a3), where a is perturbation
amplitude. The analysis is extended to obtain a family of exact solutions for the eddy-induced mass transport,
valid at any order in perturbation amplitude. It is also shown how to obtain a generalization of the TRM to take
account of diffusion and time dependence in the instantaneous equations. The solution suggests that the tracer
transport velocity could be different for different tracers, depending primarily on the structure of the mean field.
This conclusion also applies in the case of isopycnal averaging; it is not a result that is peculiar to averaging
at fixed height.

Finally, it is shown how the non-Boussinesq analysis presented in the paper can be modified to analyze output
from eddy-resolving, Boussinesq ocean models.

1. Introduction

As parameterizations are developed for the transport
of tracers by mesoscale eddies, different ways of av-
eraging the equations of motion are being considered.
For example, the widely used Gent and McWilliams
(1990, hereafter GM90) parameterization is often in-
terpreted in terms of averaging on an isopycnal surface
(Gent et al. 1995), and other approaches to eddy pa-
rameterization have used thickness-weighted averaging
on an isopycnal surface (e.g., de Szoeke and Bennett
1993; Dukowicz and Smith 1997; Greatbatch 1998; Du-
kowicz and Greatbatch 1999; Smith 1999). While av-
eraging on an isopycnal surface has been justified on
the grounds that we believe mesoscale eddies mix along
isopycnal surfaces, measurements obtained from moor-
ing arrays are generally available at fixed height, rather
than at fixed density, and averaging is commonly done
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at fixed height. In addition, many ocean models, in-
cluding the widely used Modular Ocean Model (MOM)
code (Pacanowski and Griffies 1999), use the height z
as their vertical coordinate. There is also the difficulty
in the ocean of defining exactly what is meant by iso-
pycnal averaging. This is because the ocean is com-
pressible (be it only weakly), and although progress has
been made by thinking in terms of ‘‘neutral density’’
(McDougall 1987), problems remain because ‘‘neutral
density’’ cannot be defined globally, and an approximate
form must be used (e.g., Jackett and McDougall 1997;
Eden and Willebrand 1999). There is, therefore, con-
siderable motivation to develop an approach to meso-
scale eddy parameterization based on averaging at fixed
height rather than averaging at fixed density. Very little
work has been done, however, to investigate averaging
at fixed height. McDougall and McIntosh (1996, here-
after MM) introduced the ‘‘temporal residual mean’’
(TRM) velocity using averaging at fixed height, but later
modified their approach to mimic isopycnal averaging
(McDougall and McIntosh 2001). More recently, Mc-
Dougall et al. (2001, manuscript submitted to J. Phys.
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Oceanogr.; hereafter MGL) have suggested a method
of interpreting the variables in Boussinesq ocean models
based on averaging at fixed height, but questions remain
as to how to connect their work to approaches for pa-
rameterizing mesoscale eddies. This is especially prob-
lematic since all the most widely known approaches to
eddy parameterization in the ocean are based on the
Boussinesq equations of motion.

Here, we extend the analysis of MGL by showing,
in section 2, how an approach to mesoscale eddy pa-
rameterization fits within their framework. The analysis
is based on the non-Boussinesq equations of motion and
uses density-weighted averaging at fixed height. Only
after the basic framework has been set up within the
non-Boussinesq system do we then show how the Bous-
sinesq approximation can be applied to the averaged
equations of motion for use in Boussinesq ocean models.
The analysis also has the advantage that the continuity,
tracer, and momentum equations are treated together
within a single framework. In section 3, we show how
to solve for the tracer transport velocity. The solutions
form a family that are all related to the TRM velocity
introduced by MM. The original TRM solution is valid
only to O(a3) in perturbation amplitude. In section 4,
the analysis is extended to find an exact solution, valid
at any order in perturbation amplitude. The results sug-
gest that the tracer transport velocity may be different
for different tracers, depending mostly on the structure
of the mean field. In section 5, it is shown how the
analysis in sections 2, 3, and 4, all of which is based
on the non-Boussinesq equations of motion, can be ap-
plied to the analysis of eddy-resolving, Boussinesq
ocean models. Finally, section 6 provides a summary
and conclusions.

2. The governing equations

We begin by writing down the instantaneous equa-
tions governing conservation of mass, a conservative
scalar, C, and momentum. Following Batchelor (1967)
and Gill (1982), these are

r 1= · (r u) 5 0, (1)t

(r C) 1 = · (r uC) 5 = · (r k =C), (2)t C

(r u) 1 = · (r uu) 1 f 3 (r u)t

1
5 2=p 2 kgr 1 = · (m=u) 1 =(m= · u). (3)

3

The terminology here is standard, with m being the vis-
cosity and kC being the diffusivity of tracer, C. Here
f 5 f k̂ where k̂ is a unit vector in the upward vertical
direction, and f is the Coriolis parameter (for simplicity,
we neglect the horizontal component of the earth’s ro-
tation vector). It should be noted that C is defined as
the mass of tracer contained in unit mass of fluid (Gill
1982). Throughout the following, C is usually either
salinity or potential temperature. In the case of potential

temperature, the diffusion term strictly requires modi-
fication from the form given in (2) [see Gill 1982, Eq.
(4.4.7)], a difference that is not important for the anal-
ysis here and will be ignored. It should also be noted
that McDougall and Jackett (unpublished manuscript)
have argued that a more accurate form of the heat equa-
tion is obtained using potential enthalpy, rather than
potential temperature, as the prognostic variable. Apart
from these issues regarding potential temperature, (1)–
(3) are the fully non-Boussinesq equations of motion.
None of the analysis that follows depends on making
the Boussinesq approximation.

We now consider what happens when the instanta-
neous equations are time averaged. Rather than use the
normal Reynolds averaging, we use density-weighted,
or Favre, averaging at fixed height (after Favre 1965a,b).
We therefore define

r
r ru 5 ru /r, C 5 rC /r, u9 5 u 2 u , andr

r
C9 5 C 2 C , (4)r

where r, are the density-weighted averages of ve-
r

u C
locity u and tracer concentration, C, respectively, and

5 0 and 5 0. Averaging the instantaneousr u9 r C9r r

conservation equations, (1)–(3), then leads to
rr 1 = · (r u ) 5 0, (5)t

r r
r(r C ) 1 = · (r u C ) 5 2= · (r u9C9), (6)t r r

r r r r(r u ) 1 = · (r u u ) 1 f 3 (r u )t

5 2=p 2 kgr 2 = · (r u9u9). (7)r r

For simplicity, the molecular diffusion and viscosity
terms have been neglected in comparison with the tur-
bulent correlation terms. Perhaps the major advantage
of using density-weighted averaging is that no turbulent
correlation terms appear in the averaged mass conser-
vation equation (5), as appear with conventional Reyn-
olds averaging. Indeed, the form of (5)–(7) closely fol-
lows that of the instantaneous equations, (1)–(3).

The tracer transport velocity is the effective velocity
by which time-averaged tracer fields are advected
(Plumb and Mahlman 1987; Gent et al. 1995). We shall
begin by assuming the tracer transport velocity is the
same for all conservative tracers, and then show, in
sections 3 and 4, how this assumption may require mod-
ification. By analogy with Gent et al. (1995), we expect
the tracer transport velocity u# to satisfy

#r 1 = · (r u ) 5 0,t (8)

thereby ensuring conservation of mass by the transport
velocity, u#. Comparing with (5), it follows immediately
that

# r= · [r (u 2 u )] 5 0, (9)

and hence that

# rr u 5 r u 1 = 3 B, (10)
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where B is a three-dimensional vector field. [In this
paper, the terminology ‘‘tracer transport velocity’’ is
used to refer to the total effective velocity by which
mean tracer fields are advected, i.e., u#, and the ‘‘eddy-
induced transport velocity’’ to (u# 2 r). Similarly theu
‘‘eddy-induced mass transport’’ refers to (u# 2 r).]r u
We note that, without loss of generality, we can always
write B in the form

B 5 (A , 2A , 0).2 1 (11)

This is because we are interested only in the curl of B,
so the gradient of a scalar field can always be added to
B to obtain the form in (11). The two-dimensional vector
A 5 (A1, A2) is then the vector streamfunction for the
mass flux associated with = 3 B in (10). The form of
B given by (11) will prove useful in the later analysis.

Let us begin by considering the tracer equation (6).
Using (10), this can be written

r r r
#(r C ) 1 = · (ru C ) 5 2= · [r u9C9 2 C = 3 B].t r r

(12)

Since u# is the tracer transport velocity, it is usual to
assume that the right-hand side of (12) can be param-
eterized in terms of a symmetric diffusion tensor K so
that

r r r
#(r C ) 1 = · (r u C ) 5 = · (r K=C ).t (13)

This is equivalent to adopting a Fickian diffusion pa-
rameterization for the flux of tracer in terms ofr u9 C9r r

an antisymmetric tensor associated with u# and a sym-
metric tensor K. Written in terms of r, (13) becomesu

r r r r
r(r C ) 1 = · (r u C ) 5 = · [rK=C 2 C = 3 B].t

(14)

We now follow MGL and introduce a new velocity
variable,

r u r
rũ 5 5 u , (15)

r ro o

where ro is a representative density for seawater. (Note
that ũ here corresponds to in MGL.) Writing (5), (14),ũ
and (7) in terms of ũ yields

(r/r ) 1 = · ũ 5 0, (16)o t

r r r
C 1 = · (ũC )1 2ro t

1 r r
5 = · [rK=C 2 C = 3 B], (17)

ro

roũ 1 = · ũũ 1 f 3 ũt 1 2r

1 r 1
5 2 =p 2 kg 2 = · (r u9u9). (18)r rr r ro o o

Following MGL, we note that making the Boussinesq

approximation is equivalent to replacing everywherer
by ro, except in the buoyancy forcing term in the vertical
momentum equation, in which case (16)–(18) reduce to

= · ũ 5 0, (19)

r r r r = 3 B
C 1 = · (ũC ) 5 = · K=C 2 C ,t [ ]ro

(20)
1 r

ũ 1 = · (ũũ) 1 f 3 ũ 5 2 =p 2 kgt r ro o

1
2 = · (r u9u9). (21)

ro

The hydrostatic version of (19)–(21) are the equations
commonly integrated by Boussinesq ocean models. It
is usual to parameterize 2 = · ( ) on the right-21r r u9 u9o r r

hand side of (21) as a Fickian diffusion of momentum,
and to use the GM90 parameterization to represent

= 3 B. In fact, GM90 can be obtained by putting21r o

A 5 (A1, A2) 5 krok̂ 3 =H / z in (11), where k isr r
the thickness diffusivity and =H is the horizontal gra-
dient operator. In practice, GM90 is implemented either
by taking the = 3 B term to the left-hand side of (20),
in which case it appears as an additional advective ve-
locity (e.g., Danabasoglu and McWilliams 1995), or by
incorporating it with the diffusion tensor K (Griffies
1998). In either case, K in (20) combines diapycnal
mixing with the isopycnal mixing tensor introduced by
Redi (1982).

An alternative approach is to keep the tracer equation
in the form (13) and write the momentum and continuity
equations in terms of u# to give

#r 1 = · (ru ) 5 0, (22)t

r r r
#(r C ) 1 = · (ru C ) 5 = · (rK=C ), (23)t

r r# #(r u ) 1 = · (ru u ) 1 f 3 (ru )t

5 2=p 2 kgr 1 f 3 (= 3 B)
r2 = · [r u9u9 2 u = 3 B]. (24)r r

In writing the momentum equation, we have retained
r as the primary velocity variable (apart from in theu

Coriolis term), but have used u# as the advective ve-
locity, in keeping with the continuity equation (22). This
is because, as noted by Greatbatch et al. (2001) the
kinetic energy is naturally defined in terms of r. How-u
ever, if desired, it is simple matter to use (10) to write
the momentum equation entirely in terms of the single
velocity variable u#. The appearance of two different
velocity variables in (24) is, nevertheless, commonly
the case when writing the averaged momentum equation
in a form to take account of the eddy forcing. It is a
feature, for example, of the transformed Eulerian mean
under zonal averaging (Andrews et al. 1987), Eq. (2.8a)
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in Tung (1986), and Eqs. (54) and (55) in Greatbatch
(1998).

We next note that writing B in terms of the vector
streamfunction A, as in (11), we can express the right-
hand side of (24) as the divergence of a generalized
Eliassen–Palm flux, analogous to that in Gent and
McWilliams (1996), that is,

r r# #(r u ) 1 = · (ru u ) 1 f 3 (ru )t

5 2=p 2 kgr 1 = · E, (25)

where

rE 5 2(ru9u9 2 u = 3 B) 1 k̂f 3 A. (26)r r

In (25), the term arising from A takes the form ](f 3
A)/]z, indicating that f 3 A has the form of a horizon-
tally acting stress [in fact, this term corresponds to what
Greatbatch (1998) called the ‘‘eddy stress’’]. In the case
of the GM90 parameterization, ](f 3 A)/]z is the term
appearing on the right-hand side of Eq. (23) in Gent et
al. (1995) and corresponds to the divergence of a vertical
flux of geostrophic momentum.

Written in terms of u#, the continuity, tracer, and mo-
mentum equations are

#r 1 = · (ru ) 5 0, (27)t

r r r
#(r C ) 1 = · (ru C ) 5 = · (rK=C ), (28)t

r r# #(r u ) 1 = · (ru u ) 1 f 3 (ru )t

5 2=p 2 kgr 1 = · E. (29)

To see what form these equations take when the Bous-
sinesq approximation is applied, we again follow MGL,
except that this time we define the new velocity variable
in terms of u# rather than r. We therefore defineu

r
# #ũ 5 u . (30)

ro

In terms of ũ#, (27)–(29) become

#(r/r ) 1 = · ũ 5 0, (31)o t

r r r 1 r
#C 1 = · (ũ C ) 5 = · (rK=C ), (32)1 2r ro ot

r
r r# #u 1 = · (ũ u ) 1 f 3 ũ1 2ro t

1 r 1
5 2 =p 2 kg 1 = · E. (33)

r r ro o o

Making the Boussinesq approximation then reduces
these equations to

#= · ũ 5 0, (34)
r r r

#C 1 = · (ũ C ) 5 = · (K=C ), (35)t

r r# #u 1 = · (ũ u ) 1 f 3 ũt

1 r 1
5 2 =p 2 kg 1 = · E. (36)

r r ro o o

To implement (34)–(36) [or, more generally, (31)–
(33)] in a numerical model, we need to parameterize
= ·E, B (or equivalently, the vector streamfunction, A)
and the diffusivity tensor K. Knowing B, r and ũ# areu
related by (10) and (30). Likewise, to implement (19)–
(21) [or, more generally, (16)–(18)] in a numerical mod-
el we must parameterize B, K, and 2 = · ( ) on21r r u9 u9o r r

the right-hand side of (21) and (18). As noted earlier,
the common approach is to work with the form (19)–
(21), that is, to parameterize the eddy-induced transport
through the tracer equation. Equations (34)–(36), on the
other hand, have the advantage of revealing how eddies
influence the mean flow, analogous to the approach ad-
vocated by Wardle and Marshall (2000).

3. The connection between the vector
streamfunction A and the TRM velocity of
McDougall and McIntosh (1996)

In this section, we show how the vector streamfunction
A for the eddy-induced mass flux, and hence the vector
B in (10), is related to the TRM velocity introduced by
MM. We work with a conservative tracer C, which, as
before, could be potential temperature or salinity. We note
that MM choose C to be neutral density, and that our
analysis differs from MM in that we do not make the
Boussinesq approximation. Rather, we work with the ful-
ly non-Boussinesq governing equations.

To begin, we assume there are no sources and sinks,
and that we are in a statistically steady state. The effect
of adding diffusion to the right-hand side of (2) will be
discussed later. The instantaneous equation governing
C is then

(r C) 1 = · (r uC) 5 0.t (37)

Density-weighted averaging leads, as before, to (6),
which in statistically steady state reduces to

r
r= · (r u C ) 5 2= · (r u9C9). (38)r r

We also have the eddy variance equation, the statisti-
cally steady version of which is

r
r 3= · (r u f) 5 2(r u9C9) · =C 1 O(a ), (39)r r

where f 5 ½ . The triple correlation term is shown2C9r
as O(a3), where a measures perturbation amplitude. (An
exact solution, including the triple correlation, is derived
in section 4.)

We shall begin by seeking the vector B such that the
right-hand side of (12) is zero. Then, later, when we add
diffusion to (37), we shall show that a solution can be
found for which K in (13) is nonzero. It follows that at
this stage, the problem is reduced to finding B such that

r
r u9C9 2 C = 3 B 5 = 3 D, (40)r r
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where D is a ‘‘gauge’’ that enters because all we require
is that the divergence on the left-hand side of (12) be
zero. We next note that (40) can be rewritten as

r
r u9C9 5 = 3 Q 1 B 3 =C , (41)r r

where
r

Q 5 (C B 1 D). (42)

Using (11) to write B in terms of A, and noting that,
without loss of generality, we can write

Q 5 (u , 2u , 0)2 1 (43)

we obtain
r

]T ]C r
r u9C9 5 2 A, 2= · T 1 A · = C , (44)r r H H1 2]z ]z

where

T 5 (u , u ).1 2 (45)

Equating the horizontal components in (44), we obtain

1 ]T 1
A 5 r 2 r r v9C9, (46)r rC ]z Cz z

where y is the horizontal component of u.
Equation (46) gives an expression for A. To complete

the solution, we must now find a solution for T, or,
equivalently, Q. To do so, we first take the scalar product
of = r with (41). The term on the far right-hand sideC
of (41) then drops out, and we are left with

r r
(r u9C9) · =C 5 = · (Q 3 =C ). (47)r r

We now substitute for the left-hand side of (47) from
the eddy variance equation, (39), and use (43) and (45)
to obtain (dropping the triple correlation)

r
]C r

r= · (r u f) 1 2T , T · = C 5 0. (48)H5 1 26]z

The general solution is

r
]C r ]F

r(r u f) 1 2T , T · = C 5 , 2= · F ,H H1 2 1 2]z ]z

(49)

where F is a two-dimensional vector.
Let us seek a solution by putting F 5 0. Then

r
]C r

r(r u f) 1 2T , T · = C 5 0. (50)H1 2]z

Equating the horizontal components, we obtain

1
rT 5 r (r v f). (51)

C z

Using (38), it is easy to show that with this choice for
T, the vertical component of (50) is also satisfied to
O(a4), where, as before, a measures perturbation am-

plitude. Since we have already neglected terms of O(a3),
it follows that (51) gives a consistent solution for T to
this order in a. Substituting back in (46), we obtain

1 ] 1 1
rA 5 r r (r v f) 2 r rv9C9. (52)r r5 6C ]z C Cz z z

Apart from the factors of r that appear because we
have used density-weighted averaging, (52) is identical
to the formula given by MM for the vector streamfunction
C associated with the temporal residual mean velocity
[cf. (52) with Eq. (11) in MM). It follows that we have
found a strong connection between the TRM introduced
by MM, and the eddy-induced mass transport associated
with the eddies in (10) and (14). It should also be noted
that repeating the analysis leading to (52) with r 5 1
throughout, and using Reynolds averaging instead of den-
sity-weighted averaging, gives an alternative derivation
for C to that given by MM. Indeed, in the Boussinesq
system usually integrated by models (see section 5), (52)
corresponds to an eddy-induced transport velocity with
vector streamfunction, A#, given by

1 ] 1 1
#A 5 (vf) 2 v9C9. (53)5 6C ]z C Cz z z

Equation (52) is a special solution that was obtained by
putting F 5 0 in (49). For F ± 0, we can use the
horizontal component of (49) to obtain an expression
for T, as before, that is,

1 ]F
rT 5 r r v f 2 , (54)1 2C ]zz

and use the vertical component of (49) to place a con-
sistency condition on F. Using (38), the consistency
condition, to O(a4), is

r r
2F · = C 1 = · F C 5 0.z H H z (55)

In other words, F is the vector streamfunction for a flux
of eddy variance that must lie in surfaces of . Any

r
C

F satisfying this condition can be used to obtain a pos-
sible solution for T, and hence A. The lack of unique-
ness implied by this result has already been noted by
MM who argue that the solution given by (52) is, nev-
ertheless, the physically relevant one.

Let us now seek a solution when diffusion is added
to the right-hand side of (37), so that we now work with
(2). In a statistically steady state, the eddy variance
equation (39) becomes

r
r= · (r u f) 5 2(r u9C9) · =Cr r

r r
1 k r{=(C9=C9) 2 =C9 · =C9 }C r r r r

31 O(a ). (56)

The term is small in its effect compared to
r

=(C9 =C9)r r

(McDougall and Garrett 1992) and will be=C9 · =C9r r

dropped. We now seek a solution such that the right-
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hand side of (12) can be written as a diffusion, as in
(13). Then (40) is replaced by

r r
r u9C9 2 C = 3 B 5 = 3 D 2 rK=C , (57)r r

where K is a symmetric, positive definite diffusion ten-
sor [in models, K combines diapycnal mixing with the

isopycnal diffusion tensor of Redi (1982)]. As in the
previous analysis, we write (57) as

r r
r u9C9 5 = 3 Q 1 B 3 =C 2 rK=C . (58)r r

Taking the scalar product with = and using the eddy
r

C
variance equation (56) (dropping the term),

r
=(C9 =C9)r r

we obtain

r
r r r ]C r

r 3k r[=C9 · =C9 ] 2 r=C · K=C 5 2= · (r u f) 1 2T , T · = C 1 O(a ). (59)C r r H5 1 26]z

We can find a solution by adopting a generalization
of the flux decomposition suggested by Marshall and
Shutts (1981). In particular, we associate the diffusive
part ( K= ) of the flux in (58) with the local,

r
r C r u9 C9r r

irreversible, removal of tracer variance, and the rota-
tional part (= 3 Q) with the advection of tracer vari-
ance, . Doing so puts the left-hand side of (59) to zerof
so that

r r r
=C · K=C 5 k [=C9 · =C9 ]. (60)C r r

Note that, since K is positive definite, kC[ ]=C9 · =C9r r

must also be positive, as is indeed the case. Since the
right-hand side of (59) must also be zero, we can choose
T as before [i.e., as in (51)]. Note that, just as before,
the choice of solution given by (51) requires consistency
in the sense that the vertical component of the vector
inside the = operator on the right-hand side of (59) must
also be zero. In a statistically steady state, this condition
is again satisfied to O(a4). [This result uses the steady
version of (6). Note that, if the local time derivative
term in (6) is not zero, the requirement on the vertical
component is satisfied only to O(a2), so reducing the
accuracy of the solution in this case.] Finally, we note
that although we have made a very special choice of
solution, based on the flux decomposition of Marshall
and Shutts (1981), Peterson and Greatbatch (2001) have
found evidence to support this decomposition in nu-
merical experiments using a layered model.

Putting these results together, and using (58), we fi-
nally obtain a modified solution for A given by

1 ] 1
rA 5 r r (r v f)5 6C ]z Cz z

1 r
2 r {r v9C9 1 (rK=C ) }, (61)r r HC z

where ‘‘H’’ denotes horizontal component. Unfortu-
nately (60) does not determine the diffusivity K unique-
ly, so clearly additional equations are required to close
the system. Nevertheless, we have shown how a solution
can be found and its relation to both the TRM of MM
and the flux decomposition introduced by Marshall and
Shutts (1981).

Finally, in this section, we note that the approximate
solution found for the vector streamfunction, A, has been
derived for a single tracer, C. A question naturally arises
as to whether the resulting eddy-induced transport repre-
sented by A is tracer invariant, as assumed in section 2;
in particular, is the eddy-induced transport velocity the
same for any tracer, C? We note that in addition to the
appearance of kC (which is tracer dependent) in the ex-
pression for K in (60), the expression for A given in (52)
also depends on the details of the mean field, represented
by , and the strength of the fluctuations, . There isrC C9z r

also the difficulty that (52) is only an approximate solution,
valid to O(a3), and it is not clear what happens at finite
amplitude. With these thoughts in mind, we now proceed
to generalize the analysis in this section to find an exact
solution for the eddy-induced mass transport represented
by the vector B in (10) and, hence, for the temporal re-
sidual mean velocity itself.

4. An exact solution for the TRM mass transport

Let us begin with the case in which kC 5 0 so that
the instantaneous tracer equation is (37). As before, we
seek vectors Q and B to satisfy (41), that is,

r
r u9C9 5 = 3 Q 1 B 3 =C . (62)r r

Without loss of generality, we can seek a solution for B
that has the property that B · = 5 0. This can be un-

r
C

derstood because in (62), B appears only in the form B
3 = so that the component of B parallel to = plays

r r
C C

no role. Another way to look at this is that, whereas pre-
viously [cf. (11)] we simplified B by putting the vertical
component to zero, here we can put the component parallel
to = to zero. Taking (62) 3 = then gives

r r
C C

1 r
B 5 r =C 3 {(r u9C9) 2 = 3 Q}. (63)r r2|=C |

This is obviously similar in structure to (46). As before,
the next step is to solve for Q. Taking the scalar product
of = with (62) leads, as before, to

r
C

r r
(r u9C9) · =C 5 = · (Q 3 =C ). (64)r r

We now substitute for ( ) · = from the eddy
r

r u9 C9 Cr r
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variance equation. However, to obtain an exact solution
we need the exact form of that equation. In a statistically
steady state, that is

r r
r= · (r u f 1 r u9f) 5 2(r u9C9) · =C . (65)r r r

[Note that now we use the density-weighted average of
f in the (= · ( r r) term.] Combining with (64) givesr u f

r r
r= · (r u f 1 r u9f 1 Q 3 =C ) 5 0. (66)r

This can be solved for Q, again noting that we can put the
component of Q in the direction of = to zero, to obtain

r
C

1 r
Q 5 2 r =C

2|=C |
r

r3 {r u f 1 ru9f 1 = 3 G}, (67)r

where G is a ‘‘gauge’’ vector. In fact, the three-dimensional
vector G corresponds to the two-dimensional vector F in
(49), and the condition (55) corresponds to noting that the
component of = 3 G in the direction of = plays no

r
C

role in the solution for Q. The general solution for B is
then

1 r 1 r r
rB 5 r =C 3 (ru9C9) 1 = 3 r =C 3 (r u f 1 ru9f 1 = 3 G) . (68)r r r2 25 6[ ]|=C | |=C |

Comparison with (52), which corresponds to putting G 5
0, shows the obvious similarities. It is important to note
that there is no restriction on the amplitude of the fluc-
tuations in (68). Equation (68) is an exact solution to any
order in perturbation amplitude. The nonuniqueness of the
solution, noted when discussing (52), is reflected by the
appearance of the = 3 G term.

The solution can be extended to include diffusion in the
instantaneous tracer equation by invoking the flux decom-
position of Marshall and Shutts (1981) exactly as before.
Time dependence can also now be included without any
loss of accuracy in the solution. Equation (62) is now
replaced by (58), as before, and the eddy variance equation
becomes (dropping the term, as before)

r
=(C9=C9)r r

r r r r
r(r f ) 1 = · (r u f 1 ru9f) 5 2(ru9C9 ) · =C 2 k r =C9 · =C9 ). (69)t r r r C r r

Following the same flux decomposition as previously, the solution becomes

1 r r 1 r r
rB 5 r =C 3 (ru9C9) 1 rK=C 1 = 3 r =C 3 (r u f 1 ru9f 1 = 3 G) (70)r r r2 25 6[ ]|=C | |=C |

with
r r r r

21=C · K=C 5 r (r f ) 1 k [=C9 · =C9 ]. (71)t C r r

Since K is positive definite, this time we require
r r

21r (r f ) 1 k [=C9 · =C9 ] $ 0. (72)t C r r

In a statistically steady state, this condition is satisfied,
as before. The difference from (60) is the inclusion of
time dependence. If there is growth in eddy variance,
( r) t . 0, then clearly (72) is satisfied, as one wouldr f
expect.

Let us examine the solution given by (70) in more
detail. We note that to obtain B, the diffusive part of
the eddy flux ( K= ) and the rotational part (given

r
r C

by the = 3 term) are removed from the total eddy flux
( ), and the remainder is projected on to surfacesr u9 C9r r

of uniform r. The formula applies for a particularC
choice of tracer, C, and, as noted at the end of section
3, it is far from clear that the eddy-induced transport
velocity associated with B is tracer invariant. In the case

of zonal averaging, Plumb and Mahlman (1987) diag-
nosed the transport velocity in the vertical plane from
the Geophysical Fluid Dynamics Laboratory general cir-
culation/tracer model using two independent tracers
with nonzero and nonparallel mean gradients. The di-
agnosed tracer transport circulation is similar to the re-
sidual mean circulation given by the transformed Eu-
lerian mean (Andrews et al. 1987), suggesting that tracer
dependence may not be a serious problem in that case.
(Under zonal averaging, and for small perturbations
about the zonal flow, Plumb and Mahlman note that the
transport velocity is indeed tracer invariant. However,
it is not clear that tracer invariance holds at large am-
plitude.) Nevertheless, particularly in the ocean, where
the potential temperature and salinity fields have very
different mean structures and where the continental
boundaries complicate the geometry, lack of tracer in-
variance could be a problem, requiring careful numerical
experimentation to sort out. If B, and hence u# in (10),
is not tracer invariant, then to write the governing equa-
tions in the form of (31)–(33) or, in the Boussinesq case
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(34)–(36), will require the choice of a particular tracer
to define u#, and then adjustment of each tracer equation
to allow for differences in the tracer transport velocity.
This is clearly undesirable and would favor writing the
equations in the form (16)–(18), or (19)–(21).

It should be noted that the problem of tracer depen-
dence is not a peculiarity of using density-weighted av-
eraging at fixed height. In fact, the same solution pro-
cedure can be used to solve for the eddy-induced trans-
port velocity in the case of isopycnal averaging. In that
case, the problem is simpler, because it is in two di-
mensions. More importantly, most of the effect of the
eddies is contained in the thickness-weighted, isopyc-
nal-averaged velocity, û 5 /zr [see Eq. (32) in Great-z ur

batch 1998]. In the formalism, û plays the role of ru
in (10), and a solution with B 5 0 is acceptable in the
case of isopycnal averaging, as was, in fact, assumed
in Gent et al. (1995), Eqs. (6) and (7). On the other
hand, when using density-weighted averaging at fixed
height, the flux associated with B is an essential part of
the effect of the eddies, and a solution with B 5 0 is
not an acceptable one. This can be understood from the
discussion following Eq. (26), where we noted that the
GM90 parameterization is a parameterization for A, the
vector streamfunction associated with B. Putting B 5
0 actually amounts to saying that the form drag effect
of eddies, transferring momentum vertically, is not im-
portant, and is unlikely to be the case, in general. It
follows that the issue of tracer dependence is probably
more serious for the height averaging used in this paper
than it is for isopycnal averaging. Tracer dependence,
nevertheless, remains an issue for further investigation.

5. Application to the analysis of eddy-resolving
Boussinesq ocean models

There is a strong need to analyze eddy-resolving mod-
el output in order to verify ideas about eddy-parame-
terization (e.g., Lee et al. 1997; Killworth 1998; Mar-
shall et al. 1999; Roberts and Marshall 2000; Peterson
and Greatbatch 2001). Since almost all eddy-resolving
ocean model experiments are carried out using Bous-
sinesq model codes, it may not be immediately obvious
how the analysis in this paper, which is carried out using
the non-Boussinesq governing equations, can be applied
to the output from a Boussinesq ocean model. In this
section, we briefly describe the modifications to the
analysis that are required in the case of a z-coordinate,
Boussinesq ocean model such as the MOM code. All
the averaging is done at fixed height, as in the main part
of the paper. The analysis can also be modified to apply
to the analysis of isopycnal coordinate models, with the
thickness (h) playing the role of density (r ), although
we do not discuss this case further here. The equations
integrated by a Boussinesq ocean model are (with some
possible differences in the dissipation terms) the Bous-
sinesq version of (1)–(3) in which r is replaced by the

constant reference density, ro, everywhere except in the
gravitational acceleration term. Applying Reynolds av-
eraging to the model equations then leads to

= · u 5 0, (73)

C 1 = · (uC) 5 2= · (u9C9), (74)t

1 r
u 1 = · (u u) 1 f 3 u 5 2 =p 2 kgt r ro o

2 = · (u9u9). (75)

Here is the Eulerian mean of the model’s instanta-u
neous velocity. By analogy with (8), we now require
that the tracer transport velocity u# satisfy

#= ·u 5 0. (76)

Now and u# are related by (10) with replaced byu r
ro; that is,

B
#u 5 u 1 = 3 . (77)

ro

The factor ro has been retained so that the vector B used
here corresponds directly to the vector B in section 2.
Introducing the diffusion tensor K, as before, we arrive
at either (19)–(21) or (34)–(36), with ũ replaced by

and ( ) replaced by ro( ), i.e.u r u9 u9 u9u9r r

= · u 5 0, (78)

= 3 B
C 1 = · (uC) 5 = · K=C 2 C , (79)t [ ]ro

1 r
u 1 = · (u u) 1 f 3 u 5 2 =p 2 kgt r ro o

2 = · (u9u9) (80)

or
#= · u 5 0, (81)

#C 1 = · (u C) 5 = · (K=C), (82)t

1 r
# #u 1 = · (u u) 1 f 3 u 5 2 =p 2 kgt r ro o

1
1 = · E, (83)

ro

where

E 5 2(r u9u9 2 u= 3 B) 1 k̂f 3 A. (84)o

The analysis of sections 3 and 4 also has its parallel,
Boussinesq version. All that is required is to replace (i)
r everywhere by ro and (ii) density-weighted averages
by Reynolds averages. The factor ro is, once again,
included to ensure a direct correspondence between the
variables used in the non-Boussinesq and Boussinesq
versions, as in Eq. (77). It follows that the exact solution
for the vector B corresponding to equation (68) is now
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1 1
21 21r B 5 =C 3 (u9C9) 1 = 3 =C 3 (uf 1 u9f 1 r = 3 G) . (85)o o2 25 6[ ]|=C| |=C|

In this way, all the formulae developed in sections 2, 3
and 4 can be applied to the output from eddy-resolving
Boussinesq ocean models. Obviously, care is neverthe-
less required in the finite difference application of for-
mulae such as given by (85), an issue that will be model
specific and is not addressed here.

6. Summary and conclusions

A framework for developing mesoscale eddy param-
eterizations based on density-weighted averaging at
fixed height has been introduced. The approach is to
average the non-Boussinesq equations of motion, and
then use the method of McDougall et al. (2001) to show
how the averaged non-Boussinesq equations can be ap-
proximated for application in Boussinesq ocean models.
The formalism has the advantage that it treats the con-
tinuity, tracer and momentum equations together as a
single entity.

We showed that there are two ways to represent the
averaged equations. For application in Boussinesq ocean
models, these are Eqs. (19)–(21) and (34)–(36), respec-
tively. The set (19)–(21) includes the advective effect
of the eddies in the tracer equation. The GM90 param-
eterization is commonly used to parameterize the eddy-
induced transport velocity = 3 B in (20). It is also21r o

necessary to parameterize the Reynolds stress term,
= · ( ), in the momentum equation (21). This is21r r u9 u9o r r

commonly done using an eddy viscosity approach, using
positive eddy viscosity coefficients. When combined
with the GM90 parameterization, the effect is to remove
energy from the mean flow. The role eddies can play
in driving mean flows (e.g., Holloway 1992; Greatbatch
and Li 2000; Greatbatch and Nadiga 2000; Wardle and
Marshall 2000) is therefore excluded, and further work
is required to find parameterizations to include this ef-
fect.

The second approach, corresponding (in the Bous-
sinesq version) to Eqs. (34)–(36), puts the forcing for
the eddy-induced transport into the averaged momentum
equations and is akin to the approach suggested by War-
dle and Marshall (2000). The effect of eddies in either
extracting energy from the mean flow, or in driving
mean flow, is now contained in a generalized Eliassen–
Palm flux divergence term, analogous to that introduced
by Gent and McWilliams (1996). The approach requires
that two different velocity variables be carried in the
averaged momentum equation. These velocities are re-
lated by the rotational density flux given by = 3 B,
which, as we noted above, is commonly parameterized
using GM90. There is also the issue of how to param-
eterize the Eliassen–Palm flux divergence, = ·E in21r o

(36). It is tempting to try and relate = ·E to the flux21r o

of potential vorticity, as suggested by Greatbatch
(1998), in the case of isopycnal averaging. However,
the Ertel potential vorticity is a fundamentally nonlinear
quantity, and it is not easy to see how best to do this
in the case of averaging at fixed height. One approach
might be to relate this term of the flux of quasigeo-
strophic potential vorticity, following Wardle and Mar-
shall (2000). As pointed out by these authors, the ad-
vantage of using a potential-vorticity-based approach is
that the effect of eddies in driving mean flow appears
naturally as part of the formalism.

In the second part of the paper, we derived a general
solution for the tracer transport velocity, and found a
family of solutions that is closely related to the temporal
residual mean (TRM) velocity introduced by MM. We
started by showing the connection to the approximate
TRM solution derived by MM to O(a3), where a is
perturbation amplitude, and then, in section 4, derived
an exact solution valid to any order in a. By adopting
the flux decomposition suggested by Marshall and
Shutts (1981), we extended both MM, and our exact
solution, to include diffusion of mean tracer within the
TRM framework. The solution, given by either (68) or
(70) (the latter including the diffusive contribution to
the flux), suggests that the tracer transport velocity could
be different for different tracers, depending primarily
on the structure of the mean field. This conclusion does
not depend on our use of density-weighted averaging at
fixed height. In fact, a form of our exact solution [given
by (68)] can be derived in two dimensions for the case
of isopycnal averaging. It follows that concern that the
tracer transport velocity may not be tracer invariant ap-
plies quite generally, although we argued at the end of
section 4 that the issue of tracer dependence is likely
to be more serious in the case of averaging at fixed
height, as in this paper, than in the case of isopycnal
averaging. The possibility that a different tracer trans-
port velocity may be required for different tracers is
suggested by the differing performance of parameter-
ized models on different tracers. For example, the pa-
rameterized model of Danabasoglu and McWilliams
(1995) is much more successful at simulating the ob-
served potential temperature field than the observed sa-
linity field (although it should be noted that there is also
uncertainty in the surface boundary conditions, especially
the freshwater flux that is important for salinity). If the
tracer transport velocity is indeed tracer dependent, then
clearly a particular tracer must be chosen to define u# in
order to write the governing equations in the form (31)–
(33) or (34)–(36), in which eddy effects are primarily
transferred to the momentum equation. It would then be
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necessary to adjust each individual tracer equation to take
account of the difference between the tracer transport
velocity appropriate to that tracer and u#.

Finally, in section 5, we showed how, in principle,
the ideas and formulae developed in the previous sec-
tions can be used to analyze output from eddy-resolving
Boussinesq ocean models, even though the basic anal-
ysis given in this paper used the non-Boussinesq gov-
erning equations.
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Favre, A., 1965a: Équations des gaz turbulents compressibles I.—
Forms générals. J. Méch., 4, 361–390.
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