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ABSTRACT

Treating the problem of interleaving in ocean fronts, a linear stability analysis is applied to a thermohaline,
baroclinic front in which the vertical diffusivity for mass and momentum is determined by both the double
diffusion and turbulence. If the mass and momentum diffusivity is controlled by double diffusion solely, inter-
leaving in baroclinic fronts is possible at any value of the geostrophic Richardson number Ri. However, it is
shown that turbulent mixing always works to suppress double-diffusive interleaving. Due to turbulent mixing,
at some range of the input parameters there is a range of Ri where the maximum growth rate of interleaving,

, vanishes. Several asymptotic criteria governing the Ri dependence of are found. These criteria fit wellv9 v9max max

the results of numerical calculations of . One of the criteria has been applied to describe intrusionsv9 (Ri)max

observed in the Azores Front of the North Atlantic.

1. Introduction

It is known that in an inviscid adiabatic fluid the
instability of a geostrophically balanced baroclinic 2D
front with respect to lateral intrusive-like motion cannot
occur unless the geostrophic Richardson number Ri 5
( f/Ngr)2 is less than one (McIntyre 1970). Here, f is
the Coriolis parameter, N is the Brunt–Väisälä frequen-
cy, and gr is the slope of isopycnals with respect to the
horizontal. According to McIntyre (1970), this insta-
bility is referred as the symmetric classical instability.
The same criterion for instability, Ri , 1, is valid for
the case of viscous fluid provided that Pr 5 1, where
Pr is the Prandtl number, that is, the ratio of momentum
to mass transfer coefficients. However, if Pr ± 1 the
viscous/diffusive destabilization of the flow is possible
(McIntyre 1970), and the criterion for monotonic insta-
bility generalizes to Ri , , where 5 (1 1Ri* Ri*M M

Pr)2/4 Pr. Since . 1 both for Pr , 1 and Pr . 1,Ri*M
the viscous/diffusive destabilization of geostrophic flow
at 1 , Ri , is referred as the McIntyre instability.Ri*M

In the case of interleaving at baroclinic fronts in the
ocean, the vertical mass and momentum transfer may
be governed by double diffusion and Ri-dependent tur-
bulent mixing. Therefore, one may expect some changes
in the above criteria for instability.

Since the pioneering work by Stern (1967), several
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models of double-diffusively driven interleaving have
been developed for the purely thermohaline front with
no baroclinicity (Ruddick and Turner 1979; Toole and
Georgi 1981; McDougall 1985a, b; Niino 1986; Walsh
and Ruddick 1995). The first model treating the effects
of baroclinicity and turbulent mixing on double-diffu-
sive interleaving in the framework of linear stability
problem was suggested by Kuzmina and Rodionov
(1992), hereafter referred as KR92. Further development
of the KR92 model has been recently undertaken by
May and Kelley (1997).

Analyzing examples of numerically computed Ri de-
pendence of taken from KR92 convinced us thatv9max

the double-diffusive destabilization of baroclinic fronts
is possible even at Ri . . In this paper, we will focusRi*M
on determining new criteria for instability in the cases
under consideration.

2. Formulation of the problem and governing
equations

In the wake of KR92, let us consider an infinitely
wide, baroclinic thermohaline front with constant back-
ground gradients of temperature (T x and T z), salinity
(S x and S z), and density (r x 5 2T x 1 S x and r z 5 2T z

1 S z) both in the cross frontal and vertical directions
(the x and z axes, respectively). To simplify the notation,
by T, S, and r we will imply the product of the thermal
expansion coefficient a with temperature, the product
of the salinity contraction coefficient b with salinity,
and the ratio of density to the reference density r0,
respectively. The z axis is directed upward. The x axis
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is directed across the front in such a way that S x $ 0
while T x and r x can be both positive and negative. The
background stratification is assumed to be hydrostati-
cally stable (i.e., r z , 0) and favorable for salt fingering
(0 , S z , T z).

The base state is the geostrophically balanced flow

]p
2 f y 5 2 (1)

]x

]p
5 2gr, (2)

]z

where y is the y-component of background velocity, p
is the mean pressure divided by r0, g is the gravitational
acceleration, and r is the mean density. According to
(1) and (2), the vertical shear, y z, is related to horizontal
density gradient by the thermal wind relationship,

g
y 5 2 r .z xf

According to KR92, the linearized governing equa-
tions for two dimensional perturbations are

2 2]u ]p ] u ] u
2 fy 5 2 1 Prk 1 Prk* (3)

2 2]t ]x ]z ]z
2 2]y ] y ] y

1 fu 1 wy 5 Prk 1 Prk* (4)z 2 2]t ]z ]z

]p
5 2gr (5)
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]u ]w
1 5 0 (6)

]x ]z
2 2]S ] S ] S

1 uS 1 wS 5 k 1 k* (7)x z 2 2]t ]z ]z
2 2]r ] S ] r

1 ur 1 wr 5 (1 2 n)k 1 k* , (8)x z 2 2]t ]z ]z

where u, y , w, p, S, r are perturbations of velocity com-
ponents, pressure, salinity, and density, k is the apparent
diffusivity for salt due to salt fingering, k* is the ap-
parent diffusivity for salt, heat, and mass due to the
small-scale turbulence, n 5 aFT/bFS is the nondimen-
sional flux ratio for salt fingering (n , 1). Following
Stern (1967), the momentum balance in the vertical di-
rection is reduced to the hydrostatic relationship (5)
implying that the slope of intrusions is small, that is,
intrusive motions are quasihorizontal. The first term on
the right side of (7) and (8) is the parameterization of
salinity and mass fluxes due to salt fingering suggested
by Stern (1967); the second term describes the effect of
small-scale turbulence. Similarly, the last two terms in
the right side of (3) and (4) describe the viscosity caused
by salt fingering and wave/turbulence mixing, respec-
tively. Note that the effect of viscosity on thermohaline
intrusions was first studied by Stommel and Fedorov

(1967) and then incorporated into the Stern’s problem
by Toole and Georgi (1981). Following Kuzmina and
Rodionov (1992), the effect of baroclinicity is presented
by the terms wy z in (4) and ur x in (8).

To perform a linear stability analysis of infinitely
wide, baroclinic, thermohaline fronts, we have to seek
harmonic solutions for the Eqs. (1)–(8), namely

C 5 Re{C9 exp(vt 1 ilx 1 imz)}, (9)

where C denotes any of variables under consideration
(u, y , w, p, S, or r); C9 is the complex amplitude for
C; Re is real part of { · · · }; v is the growth rate (real
or complex); l and m are the cross-front and vertical
wavenumbers, respectively.

The problem (1)–(9) is just the same considered in
KR92 and is two-dimensional. Being applied to the ther-
mohaline front with no baroclinicity, all the above-men-
tioned models except (Niino 1986) treated the 3D in-
terleaving, that is, intrusions were allowed to have a
nonzero along-front tilt. When considering 3D inter-
leaving in baroclinic fronts one has to add into the Eqs.
(3)–(8) the background advection terms, that is, y ]u/]y,
etc. Since y 5 y 0 1 y zz, where y 0 is the mean velocity
at z 5 0, the perturbation equations for 3D problem in
the baroclinic front are no longer autonomous. That is,
the simple harmonic form of solution [;exp(vt 1 ilxx
1 ilyy 1 ilzz)] is no longer valid, and, in general, we
have to solve a complex, eigen function problem. For
this reason, dealing with the baroclinic front we focus
on a relatively simple, 2D problem.

3. Instability models

Substituting (9) into (3)–(8) gives a system of linear,
homogeneous, algebraic equations. Therefore, a solu-
tion of the form (9) exists only if the determinant of
this system vanishes. This yields the following quartic
relationship in v between the growth rate and wave-
numbers:

v4 1 C3v3 1 C2v2 1 C1v 1 C0 5 0, (10)

where

C l l S0 x25 Pr(1 1 z)N « 2z2 4 1 2[k m m m Sz

l l rx1 (1 1 z) 21 2]m m rz

1 z(z 1 1)

l rx2 2 2 4 2 23 Pr (1 1 z) k m 2 N 1 f (11)[ ]m rz
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C l l S1 x25 N « 2z2 1 2[km m m Sz

l l rx1 (Pr 1 1)(1 1 z) 21 2]m m rz

2z
2 2 4 21 Pr k m (1 1 z) 1 1 2z 1[ ]Pr

l rx2 22 (1 1 2z)N 1 (1 1 2z) f (12)
m rz

l l rx2C 5 N 2 22 1 2m m rz

z
2 41 Pr(1 1 z)k m Pr(1 1 z) 1 2 1 4z 1[ ]Pr

21 f (13)
2C 5 km [2Pr(1 1 z) 1 1 1 2z], (14)3

where z 5 k*/k is the ratio of turbulent to salt fingering
vertical diffusivities, «z 5 (1 2 n)/(Rr 2 1) is a non-
dimensional measure of contribution of the mean salin-
ity gradient to the vertical density gradient scaled by
the efficiency of density diffusion by salt fingering in-
troduced by Toole and Georgi (1981), Rr 5 T z/S z is the
density ratio (Rr . 1 when the stratification is favorable
for salt fingering), N 2 5 2gr z is the squared Brunt–
Väisälä frequency.

Introducing the following nondimensional variables
and parameters

2H
l9 5 lL, m9 5 mH, v9 5 v ,

k

1/2Prk H S f LxH 5 , 5 « , x 5 ,z1 2f L S N Hz

where L and H are typical horizontal and vertical scales
of intrusion, we rewrite (10)–(14) in a nondimensional
form

4 3 2v9 1 Q v9 1 Q v9 1 Q v9 1 Q 5 0 (109)3 2 1 0

2 22Q x l9 l9 l9 l90 21/25 Pr(1 1 z) « 2 1 (1 1 z) 2 sign(g g )xRiz S r2 4 5 1 2 1 2 6[ ]Pr m9 m9 m9 m9 m9

l9
2 2 4 21/2 21 z(1 1 z) (1 1 z) x m9 2 sign(g g )xRi 1 x (119)S r[ ]m9

22Q x l9 l9 l91 21/25 [« 1 (Pr 1 1)(1 1 z)] 2 2 sign(g g )[(Pr 1 1)(1 1 z) 1 1 1 2z]xRiz S r2 2 1 2Pr m9 m9 m9 m9

2z
2 4 21 (1 1 z) 1 1 2z 1 m9 1 1 1 2z x (129)1 2[ ]Pr

22Q x l9 l9 (1 2 z)[(1 2 z)Pr 1 2 1 4z 1 z /Pr]2 21/2 4 25 2 2 sign(g g )xRi 1 m9 1 1 x (139)S r2 1 2 5 6Pr m9 m9 Pr
2Q 5 m9 [2Pr(1 1 z) 1 1 1 2z], (149)3

where Q0 5 C0H 8/k4, Q1 5 C1H 6/k3, Q2 5 C2H 4/k2,
Q3 5 C3H 2/k are nondimensional coefficients of (109),
gS 5 2 S x/S z is the cross-front slope of isohalines.

If Q0 , 0, we are assured of at least one real root
for which v is greater than zero (e.g., Stern 1967), and
a growing, nonoscillating intrusion exists. Since we are
going to find out new criteria for monotonic instability,
we have to examine when the condition Q0 , 0 being
sufficient is necessary as well. In general, the number
of positive real roots of a polynomial with real coeffi-
cients Qn, Qn21, . . . , Q0 either is equal to the number
Na of sign changes in the sequence Qn, Qn21, . . . , Q0

of coefficients, or it is less than Na by a positive even
integer (so-called Descartes rule of signs; Korn and
Korn 1968). It means that at least one positive root does
exist if the number of sign changes in the sequence of
coefficients is an odd positive integer. Because in our
quartic polynomial (109) Q4 5 1 and Q3 . 0 at any Pr
. 0, the Descartes rule yields the following sufficient
conditions for instability

1) Q0 , 0, Q1 . 0, Q2 . 0;
2) Q0 , 0, Q1 , 0, Q2 . 0;
3) Q0 , 0, Q1 . 0, Q2 , 0;
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4) Q0 , 0, Q1 , 0, Q2 , 0.

Therefore, the above four cases can be reduced to the
single sufficient condition for monotonic instability,
namely, Q0 , 0. Moreover, if Q0 , 0, Q1 . 0, Q2 .
0, we are assured of one and only one positive root
while if Q0 . 0, Q1 . 0, Q2 . 0, we are assured of
no one positive root. Therefore, Q0 , 0 is the criterion
for instability—a necessary and sufficient condition,
provided that Q1 . 0, Q2 . 0. One more sufficient
condition for instability and respective criterion will be
introduced in section 3e. In the following, we will con-
sider these conditions and criteria in more detail.

To start with, let us consider the case of no turbulent
mixing. With z 5 0, (119)–(149) reduces to a simpler
form:

2 23 4Pr m9 l9 l9 l9
Q 5 « 2 10 z2 1 2 1 2[x m9 m9 m9

l9
21/22 sgn(g g )xRi (110)r S ]m9

22 2Pr m9 l9
Q 5 (« 1 1 1 Pr)1 z2 5 1 2x m9

l9
21/22 [1 1 sgn(g g )(Pr 1 2)xRi ]S r m9

4 21 (m9 1 1)x (120)6
22Pr l9 l9

21/2Q 5 2 2 sgn(g g )xRi2 r S2 1 2[x m9 m9

Pr 1 2
4 21 m9 1 1 x (130)1 2 ]Pr

2Q 5 m9 (2Pr 1 1). (140)3

The right side of (110) consists of four terms. Two
of them, the second and the fourth, can be negative, so
two types (mechanisms) of instability do exist. The sec-
ond term is responsible for thermohaline, double-dif-
fusive instability which was discovered by Stern (1967).
The fourth term is responsible for another type of in-
stability which can exist only in baroclinic fronts. The
last type of instability has been already described by
Kuzmina and Rodionov (1992), and a question arises
whether this instability is really a new one or is a mod-
ification of the McIntyre instability.

According to (110), when x Ri21/2 K 1, x Ri21/2 k
1, and x Ri21/2 ø 1 the instability is determined by
thermohaline, baroclinic, and both factors, respectively.
Therefore, being first introduced in KR92, the x Ri21/2

criterion makes it possible to recognize which factors,
thermohaline or baroclinic, dominates in double-diffu-
sive interleaving in an oceanic front. Note that in ac-

cordance with (11), one can write the following ex-
pression for x Ri21/2:

x Ri21/2 5 |gr/gS |/«z.

Let us consider different limits (asymptotic) of (110)
and (119).

a. Double-diffusive interleaving controlled by
thermohaline factors

When x Ri21/2 K 1, the last term in and (110) can be
dropped, and the consideration reduces to a well-known
case of double-diffusive interleaving in purely ther-
mohaline fronts with no baroclinicity (Stern 1967; Toole
and Georgi 1981, and their followers). Substituting r x

5 0, z 5 0 into (11) and applying C0 , 0, we can find
an instability condition in terms of intrusion slopes:

l l 1 2 n S « Sx z x0 , , 5 5 . (15)1 2m m R 2 n S « 1 1 Sr z z zmax

Manipulating (15), one can show that if the intrusion is
tilted with the maximum slope allowed for instability
(l/m)max, the along-intrusion density ratio DT/DS (where
DT and DS are the along-intrusion gradients of tem-
perature and salinity) will equal the flux ratio:

(DT/DS)| 5 n.l/m5(l/m)max
(159)

b. Double-diffusive interleaving controlled by both
thermohaline and baroclinic factors

If x Ri21/2 ø 1, both factors, thermohaline and bar-
oclinic, are important, and (110) yields the following
expression for the slope of growing intrusions (May and
Kelley 1997):

l l « (S /S ) 1 (r /r )z x z x z0 , , 5 . (16)1 2m m « 1 1zmax

It is clear that (15) is a partial case of (16). Moreover,
manipulating (16) one can show that the along-intrusion
density ratio for the growing intrusion of the maximum
slope equals the flux ratio, that is, the expression (159)
is valid even in baroclinic fronts. It is worth noting that
the expression (159) differs from what was written by
May and Kelley (1997) who declared that the same is
valid for the fastest-growing intrusion, that is,

l
(DT /DS)| 5 n, g 5 ,l /m5g maxmax 1 2m

v5vmax

where vmax is the growth rate of fastest-growing intru-
sion. Since the maximum slope of growing intrusion is
about twice as large as the slope of the fastest-growing
intrusion,

l l
ø 2 ,1 2 1 2m m

max v5vmax
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(e.g., May and Kelley 1997) there is no reason to expect
that observed values of the along-intrusion density ratio
do equal the double-diffusive flux ratio. The last state-
ment is of primary importance when dealing with ob-
servations of intrusions in the ocean.

It is interesting that double-diffusive interleaving can
exist even in baroclinic fronts with no thermoclinicity,
that is, when isopycnals, isohalines, and, consequently,
isotherms have the same slope (gr 5 gS 5 gT, where
gT 5 2T x/T z). In this case, (16) yields (l/m)max 5 r x/r z.

c. Double-diffusive interleaving controlled by
baroclinic factor

If x Ri21/2 5 |gr/gS |/«z k 1, (16) reduces to

R 2 1l 1 r r rrx x x0 , , 5 , . (17)
m « 1 1 r R 2 n r rz z r z z

In this case, the slope of growing intrusions is limited
by the slope of isopycnals, and can be much greater than
slopes of both isohalines and isotherms, in accordance
with a relationship gr 5 (gT Rr 2 gS)/(Rr 2 1). There-
fore, this instability may be identified as a form of bar-
oclinic instability. However, in contrast to the symmetric
classical baroclinic instability that works only if Ri ,
1, and the McIntyre instability that cannot occur unless
1 , Ri , , the double-diffusive destabilization ofRi*M
the baroclinic front can occur with no limitation on Ri,
in accordance with (110). Therefore, at Ri . and xRi*M
Ri21/2 k 1, the double-diffusive interleaving controlled
by baroclinic factors may be considered as a new form
of baroclinic instability.

The physical reason for the baroclinic instability ef-
fected by double diffusion to occur at any value of Ri
lies in the fact that the case x Ri21/2 k 1 may be in-
terpreted as a limiting case when (1 2 n) vanishes.
Indeed, n → 1 causes x Ri21/2 k 1 and (l/m)max → r x/r z.
Moreover, in accordance with (8), if (1 2 n) and k*
vanish, the vertical diffusion of mass vanishes too, while
the diffusion of momentum still exists [see Eqs. (3) and
(4)]. That is, the ratio of momentum to mass diffusivities
approaches infinity, and applying the McIntyre (1970)
theory we conclude that the viscous/diffusive destabi-
lization of the flow can occur at any (large) value of Ri
because 5 (1 1 Pr)2/4 Pr → `.Ri*M

d. Interleaving in the haline front

By haline front, we mean a thermohaline front in
which the horizontal gradient of density is determined
mainly by salinity rather than temperature, that is, |Rrx |
, 1, where Rrx 5 T x/S x is the cross-front density ratio.
The relationship between isopycnal and isohaline slopes
can be written as

R 2 1rx
g 5 g . (18)r S R 2 1r

The relationship (18) implies that in the haline front
with the stratification favorable for salt fingering (i.e.,
Rr . 1) the isopycnal slope opposes the isohaline slope:
sign(gr gS) 5 2 1. Therefore, the second and fourth
terms of (110) responsible for thermohaline and baro-
clinic factors of instability, respectively, are opposite in
sign. In this case, thermohaline and baroclinic wedges
of instability do not overlap (May and Kelley 1997). It
can be shown from (16) that if (1 2 n)|S x/r x | . 1, the
maximum interleaving slope lies between zero and the
isohaline slope, that is, the growing intrusions fall into
the thermohaline wedge of instability. If (1 2 n)|S x/r x |
, 1, the maximum interleaving slope lies between zero
and the isopycnal slope, that is, growing intrusions fall
into the baroclinic wedge of instability.

Note, that if (1 2 n)|S x/ r x | 5 1 and sign(gr gS) 5
21, thermohaline and baroclinic factors will cancel each
other; the term independent of v is not allowed to be
negative, and double-diffusive interleaving controlled
by both thermohaline and baroclinic factors does not
exist. Therefore, the growth rates of fastest-growing in-
trusions in the haline front are expected to be less than
those in a thermal front provided that other parameters
of these fronts are the same. Moreover, assuming that
larger growth rates yield larger steady state amplitudes
of intrusions we may expect the intensity of intrusions
to be generally higher in thermal fronts rather then ha-
line fronts in the ocean.

It is worth noting that, in accordance with (18),
sign(gr gS) 5 21 is valid also for a thermal front pro-
vided that Rrx , 21, that is, when mean horizontal
gradients of temperature and salinity are of opposite
sign. However, fronts with Rrx , 21 being possible are
not typical for the open ocean (Fedorov 1986).

e. Instability at low Richardson numbers

In addition to Q0 , 0, there is one more sufficient
condition for instability, namely, Q2 , 0, which is valid
for our particular polynomial (10)–(109). To prove it,
let us present (109) in a form

4 3 2 2 4P(m9, v9) 5 v9 1 v9 m9 q 1 v9 [q 1 O(m9 )]3 2

2 41 v9m9 [q 1 O(m9 )]1

4 41 m9 [q 1 O(m9 )],0 (100)

where qi, i 5 0, 1, 2, 3, are some functions of l9/m9 and
the governing parameters Pr, x, z, etc., O(h) is a function
of the order of h when h vanishes, that is,
limh→0 [O(h)/h] 5 const ± 0. It is important to note
that sign(qi) 5 sign(Qi). To prove our ‘‘theorem’’ it is
enough to find some pairs ( , ) and ( , ), ,m9 v9 m9 v9 v90 0 1 1 0

. 0, for which P( , ) , 0 and P( , ) . 0v9 m9 v9 m9 v91 0 0 1 1

provided that q2 , 0. If we consider a partial case m9
5 v9, v9 K 1 (100) reduces to
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4 5 2 3P(m9 5 v9, v9) 5 v9 1 v9 q 1 v9 q 1 v9 q3 2 1

4 61 v9 q 1 O(v9 ). (10-)0

It is clear from (100) and (10-) that

lim P(m9 5 const, v9) 5 1`;
v9→1`

2lim [P(m9 5 v9, v9)/v9 ] 5 q .2
v9→10

The latter limits offer a straightforward way to find the
pairs ( , ) and ( , ) we need.m9 v9 m9 v90 0 1 1

In accordance with the above proof and the Descartes’
rule, if Q2 , 0, Q1 . 0, Q0 . 0, we are assured of two
and only two positive roots in (109), while if Q2 . 0,
Q1 . 0, Q0 . 0, we are assured of no one positive root.
Therefore, Q2 , 0 is the criterion for instability (a nec-
essary and sufficient condition) provided that Q1 . 0,
Q0 . 0.

Rewriting (139) in a form
2sgn(g g )xQ 1 l9 1S r2 5 2 2

2 2 1/21 2Pr x m9 Ri Ri

(1 2 z)[(1 2 z)Pr 1 2 1 4z 1 z /Pr]
41 m9

Pr

1 1, (13-)

we find that Q2 , 0 can be satisfied only if

Ri , 1.

Therefore, growing modes which result from these two
roots may be attributed to the symmetric classical bar-

oclinic instability. In addition, according to (13-), if Q2

, 0, the following expression is valid:

(j 2 1)2 1 Ri 2 1 , 0, (19)

where j 5 (l/m)/(r x/r z) is the ratio of intrusion to is-
opycnal slopes. Equation 19 implies that the maximum
slope of growing intrusions is twice as large as the is-
opycnal slope (because j → 2 when Ri → 0). This is
an important difference between the symmetric classical
baroclinic instability and baroclinicity controlled dou-
ble-diffusive interleaving when the slope of growing
intrusions is restricted by the isopycnal slope [cf. (17)].

Since Q1 . 0 is necessary for the sufficient conditions
Q2 , 0 and Q0 , 0 to be the criteria for instability, let
us consider asymptotics of (129) at small and large z:

2
2 1 1 sgn(g g )(Pr 1 2)xQ x l9 S r1 5 (« 1 1 1 Pr) 2z2 2 1/2[ ]Pr m9 m9 2(« 1 1 1 Pr)Riz

21/2 2[1 1 sgn(g g )(Pr 1 2)xRi ]S r
2

4(« 1 1 1 Pr)z

4 21 (1 1 m9 )x , z K 1 (129.1)
2

2Q x l9 (Pr 1 3)x1 5 z(Pr 1 1) 2 sgn(g g )S r2 2 1/2[ ]Pr m9 m9 2(Pr 1 1)Ri

2Pr 1 1 (Pr 1 3)
3 2 4 21 2z x m9 1 2zx 1 2 ,[ ]Pr 8(Pr 1 1)Ri

z k 1. (129.2)

In accordance with (129.1) and (129.2), the following
conditions are sufficient for Q1 to be positive:

2 2x (Pr 1 2) 
Ri . 

1/2 2[2x(« 1 1 1 Pr) 2 1] at sgn(g g ) 5 1, z K 1z S r (20.1)


1/22x(« 1 1 1 Pr) . 1z

2 2x (Pr 1 2) 
Ri , 

1/2 2[1 2 2x(« 1 1 1 Pr) ] at sgn(g g ) 5 21, z K 1z S r (20.2)


1/22x(« 1 1 1 Pr) , 1z

2(Pr 1 3)
Ri . at z k 1. (20.3)

8(Pr 1 1)

If z 5 0 (the case of no turbulence), the sufficient
condition for instability Ri , 1 (i.e., Q2 , 0) is not a
criterion for instability, because, in accordance with
(110), Q0 is allowed to be negative at any Ri , 1, except
a case sign(gS gr) 5 21, x Ri21/2 5 1 when Q0 5 0.
All the same, if z k 1 and Pr ± 1, the condition Ri ,
1 is not the criteria for instability in view of (20.3) [see

also section 3f(3)]. If z k 1 and Pr 5 1, the condition
Ri , 1 is the criteria for instability, because in this very
special case all the coefficients Q0, Q1, Q2 are negative
(for some values of wavenumbers) at Ri , 1 and pos-
itive at Ri . 1 for any wavenumbers [concerning Q0,
see section 3f(3)]. Finally, if z K 1 (the case of weak
turbulence), in accordance with (20.1), (20.2), and con-
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siderations in sections 3f(1) and (2), it is possible that
Ri , 1 is the criteria for instability at some values of
governing parameters Pr, x, z, «z. The last case is just
presented in Figs. 4 and 5 (for details see the description
of these figures in section 5).

f. Effect of turbulent mixing on the instability

In accordance with (109)–(149), for given input pa-
rameters Pr, x, «z, z, and Ri the growth rate v9 is a
function of the cross-front slope (2l9/m9) and vertical
wavenumber (m9). Maximizing v9 on (2l9/m9, m9)-
plane numerically, Kuzmina and Rodionov (1992)
showed that the turbulent mixing works to suppress the
double-diffusive interleaving, that is, to decrease the
maximum growth rate . In some cases, wasv9 v9max max

found to vanish due to the turbulence. Here, we will
examine this issue analytically.

In general, z, the ratio of turbulent to double-diffusive
salt diffusivities, may be assumed to be a monotonically
decreasing function of the Richardson number based on
a superposition of internal-wave shear and geostrophic
current shear. Physical reasons for the Ri dependence
of z are (i) increasing probability for generation of tur-
bulence by shear instability at low Ri and (ii) the de-
crease of salt finger fluxes due to vertical shear tilting
over the fingers (Kunze 1994). In most oceanic situa-
tions near-inertial-internal-wave shear is larger than that
of geostrophic current, so that z will be mainly a func-
tion of the internal-wave Richardson number which, in
its turn, is governed by the Brunt–Väisälä frequency N.
However, in this study we focus on the baroclinicity
dependence of maximum growth rate, that is, the geo-
strophic Richardson number dependence of pro-v9max

vided that N 5 constant. For this reason, we will assume
that z is a decreasing function of the geostrophic Rich-
ardson number instead of the real internal-wave-influ-
enced Richardson number. We will use for this z(Ri) a
simple power formula

z 5 A Ri2s, (21)

where A . 0 and s $ 0 are some constants. Let us
consider different limits of (119) with (21):

1) x Ri21/2 K 1, z K 1

In this limit, (119) reduces to

2
2Q x l9 10 5 Pr(« 1 1) 2z2 4 [ ]Pr m9 m9 2(« 1 1)z

2Pr Ax
42 1 (1 1 m9 ). (22)

s4(« 1 1) Riz

The first and second items in the right part of (22) de-
scribe the double-diffusive instability controlled by ther-
mohaline factors, do not depend on Ri, and their sum
is negative in the case of instability. The last item in

the right side of (22) describes the effect of turbulent
mixing, is positive and decreases with Ri. Therefore,
due to the effect of turbulent mixing, the maximum
growth rate of double-diffusive intrusions controlled by
thermohaline factors is expected to fall with the decrease
of Ri, in accordance with the numerical calculations by
KR92.

Applying Q0 , 0 to (22), we find the following suf-
ficient conditions for instability:

1/s
24Ax (« 1 1)zRi . Ri* 5 ,1 [ ]Pr

21/2(s . 0, z K 1, xRi K 1) (23.1)

Pr
A , A 5 ,1 24x (« 1 1)z

21/2(s 5 0, z K 1, xRi K 1). (23.2)

The conditions (23) do not allow this type of insta-
bility to exist at low Ri when s . 0 and high A when
s 5 0, that is, when the turbulence is high enough to
suppress the double-diffusive interleaving controlled by
thermohaline factors. Sufficient condition (23.1) be-
comes the criterion for instability provided that .Ri*1
1 and (20.1)–(20.2) is satisfied at Ri 5 :Ri*1

2) x Ri21/2 k 1, z K 1

In this case, (119) reduces to
2

sgn(g g )xQ Pr(« 1 1) l9 S r0 z5 Pr(« 1 1) 2z2 4 2 0.5[ ]Pr m9 x m9 2(« 1 1)Riz

4Pr A(1 1 m9 )
2 1 .

s4(« 1 1)Ri Riz

(24)

Depending of the value of s, (24) yields the following
sufficient conditions for instability:

1/(12s)
Pr

Ri , Ri* 5 ,2 [ ]4A(« 1 1)z

21/2(0 # s , 1, z K 1, xRi k 1) (25.1)

Pr
A , A 5 ,2 4(« 1 1)z

21/2(s 5 1, z K 1, xRi k 1) (25.2)
1/(s21)

4A(« 1 1)zRi . Ri* 5 ,3 [ ]Pr
21/2(s . 1, z K 1, xRi k 1). (25.3)

Sufficient conditions (25.1) and (25.3) become the
criteria for instability provided that . 1 and .Ri* Ri*2 3

1, and (20.1)–(20.2) are satisfied at Ri 5 and Ri 5Ri*2
, respectively.Ri*3

If 0 # s , 1, the turbulent mixing decreases with
Ri slowly, and there is a top Ri limit for the double-



3032 VOLUME 30J O U R N A L O F P H Y S I C A L O C E A N O G R A P H Y

FIG. 1. The maximum growth rate, , vs d [ Ri21/2 at Pr 5 1,v9max

x 5 10, A 5 0, «z 5 0.5; sgn(grgS) 5 1 (top curve) and sgn(grgS)
5 21 (bottom curve).

diffusive interleaving controlled by baroclinic factors to
exist [formula (25.1)]. If s 5 1 the instability can exist
with any value of Ri, provided that A is not too large.
Finally, if s . 1, the turbulent mixing decreases with
Ri rapidly establishing a bottom Ri limit for the insta-
bility.

The above results [sections 3f(1) and 3f(2)] seem to
be new findings and are worth to be discussed. First,
we found that turbulent mixing is able to destroy the
double-diffusive interleaving controlled by baroclinic
factors, and this is an obvious difference between this
instability and the McIntyre instability. Second, there is
a simple physical explanation for the destructive effect
of turbulence on the double-diffusive interleaving.
Namely, following Zhurbas et al. (1988), we may sug-
gest that the value of salt fingering flux ratio, n, has to
be increased due to the turbulent mixing. If the intensity
of turbulent mixing is sufficiently high, the flux ratio
can become greater than unity. That is, the buoyancy
flux changes sign, and the energy source to support
interleaving vanishes.

3) z k 1

Treating the case when the turbulent diffusivity is
much greater than the salt finger diffusivity, we consider
a limit z → `, m92z 5 const or, in dimensional variables,
k → 0, k* 5 const . 0. In this limit, (119) yields

2
2 4 sgn(g g )(Pr 1 1)xQ Prz m9 l9 S r0 5 2

2 2 0.5[ ]Pr x m9 2PrRi

2(Pr 1 1)
4 8 2 41 z m9 1 z m9 1 2 . (26)[ ]4PrRi

Substituting (26) into Q0 , 0, we get
2(Pr 1 1)

Ri , Ri* 5 . (27)M 4Pr

Note that (27) coincides well-known McIntyre criterion,
in accordance with the physical reason. However, we
may not consider the sufficient condition (27) as the
criterion for instability unless we are assured of two
items: 1) our is not less than one, and 2) (20.3) isRi*M
satisfied at Ri 5 . Manipulating these items it canRi*M
be easily shown that (27) is the true criterion for insta-
bility at any Pr . 0.

4. Numerical examples

To illustrate the above theory, using (109)–(149), and
(21) we calculate numerically the maximum growth rate
of intrusions, , versus Ri for different sets of inputv9max

parameters Pr, x, «z, A, s. Following KR92, we will use
the geostrophic Froude number d [ Ri21/2 instead of
Ri. Being proportional to the isopycnal slope gr, this d
is referred as the baroclinicity parameter (Zhurbas et al.
1988). Calculating d-dependencies of has beenv9max

done only for d # 1 (or Ri $ 1) to avoid treating the
case of symmetric classical instability which dominates
at Ri , 1. The problem has too many nondimensional
parameters and instability criteria, and we are not able
to demonstrate all the possibilities in the framework of
a single paper. For this reason we restrict our consid-
eration to the case «z 5 0.5, x $ 1, Pr $ 1.

Figure 1 is versus d for the following input pa-v9max

rameters: Pr 5 1, x 5 10, A 5 0, «z 5 0.5. Two curves
in Fig. 1 have the only difference in parameters, namely
sign(grgS) 5 1 (the top curve) and sign(grgS) 5 21
(the bottom curve). If isohaline and isopycnal slopes
are of the same sign and the turbulence is not considered,

approaches some positive constant when d → 0v9max

(double-diffusive interleaving controlled by thermoha-
line factors) and increases monotonically with d due to
the baroclinicity. If the isohaline slope opposes the is-
opycnal slope, approaches the same value at d →v9max

0, decreases with d as long as it vanishes at xd 5 1
[second and fourth terms of (110) cancel out], and then
increases with d at xd . 1. This case has been consid-
ered in detail by May and Kelley (1997).

Figure 2 demonstrates the effect of turbulence on dou-
ble-diffusive interleaving provided that the turbulent
diffusivity k* does not depend on Ri. Here, d-depen-
dence of is shown both for the cases of turbulencev9max

(A 5 0.1, s 5 0, solid curves) and no turbulence (A 5
0, dashed curves). Comparing respective solid and
dashed curves, we conclude that turbulent mixing re-
duces in the whole range of d, that is, the turbulencev9max

suppresses for double-diffusive interleaving controlled
by both thermohaline and baroclinic factors, as follows
from (22) and (24). To explain (d) curves in detailv9max
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FIG. 2. The same as in Fig. 1 but for the following input parameters:
Pr 5 1, «z 5 0.5, s 5 0, sgn(grgS) 5 1 (all the curves); x 5 10, A
5 0.1 (bold solid); x 5 10, A 5 0 (bold dashed); x 5 1, A 5 0.1
(solid); x 5 1, A 5 0 (dashed).

FIG. 3. The same as in Fig. 1 but for the following input parameters:
Pr 5 10, «z 5 0.5, A 5 0.25, s 5 0.5, sgn(grgS) 5 1 (all the curves);
x 5 100 (bold solid), 30 (bold dashed), 20 (solid), 10 (dashed), 3
(dotted).

we can use the sufficient condition (23.2) and (25.1)/
(20.1) criterion.

For the thin solid curve, A 5 0.1 , A1 5 0.167 [see
(23.2)], and interleaving controlled by thermohaline fac-
tors is allowed at xd , 1, and, therefore, at the whole
range of d , 1 (because x 5 1). However, for a bold
solid curve in Fig. 2, A 5 0.1 . A1 5 1.67 3 1023,
and interleaving controlled by thermohaline factors (at
xd , 1, or d , 0.1) does not exist. Moreover, in the
last case x 5 7.7 k 1, and in accordance with21/2Ri*2
(25.1) the baroclinicity controlled, double-diffusive in-
terleaving is allowed only at d . d2 [ 5 0.77.21/2Ri*2
The latter is the criterion for instability because (20.1)
is satisfied at Ri 5 . That is why the bold solid curveRi*2
in Fig. 2 vanishes at d ø 0.59 which is not far from d2

5 0.77 [the criterion (25.1)/(20.1) is an asymptotic one!]
and does not exist at lower d.

Figure 3 shows the effect of turbulence on double-
diffusive interleaving provided that the turbulent dif-
fusivity k* is weakly dependent on Ri, namely when s
5 0.5 and A 5 0.25 are applied to (21). In this case,

(d) curves are governed by (23.1)/(20.1), andv9max

(25.1)/(20.1) criteria. The (23.1)/(20.1) criterion pre-
dicts interleaving at d , d1 [ provided that xd1

21/2Ri*1
K 1 and (20.1) is satisfied at Ri 5 , while (25.1)/Ri*1
(20.1) does the same at d . d2 provided that xd2 k 1
and (20.1) is satisfied at Ri 5 . Therefore, if d1 KRi*2
d2 one may expect that there is no interleaving in a
range of d1 , d , d2. For a bold solid curve in Fig. 3,
d1 5 6.7 3 1024, xd1 5 6.7 3 1022, d2 5 0.15, xd2 5
15, and (20.1) is satisfied at Ri 5 and Ri 5 ;Ri* Ri*1 2

the numerical calculations show that there is no positive

at 7.0 3 1024 , d , 0.12, which is in good cor-v9max

respondence with the theoretically predicted range of
no interleaving. For the bold dashed curve in Fig. 3 d1

5 7.4 3 1023, xd1 5 0.22, d2 5 0.15, xd2 5 4.5, and
(20.1) is satisfied at Ri 5 and Ri 5 ; the nu-Ri* Ri*1 2

merically calculated range of no interleaving (0.016 ,
d , 0.065) becomes narrower than the theoretically
predicted one (7.4 3 1023 , d , 0.15).

For the rest of curves in Fig. 3 (solid, dashed and
dotted), d1/xd1 are 1.67 3 1022/0.33, 6.7 3 1022/0.67,
0.74/2.2, respectively. Therefore, d1 is no longer much
less than d2 5 0.15 (for the dotted curve, d1 is even
greater than d2), and becomes positive for thev9max

whole range of d.
Figure 4 shows the effect of turbulence on double-

diffusive interleaving for a stronger Ri dependence of
turbulent diffusivity than in Fig. 3, namely for s 5 1.
In this case, ) curves are governed by the (23.1)/v9 (dmax

(20.1) criterion and the sufficient condition (25.2). For
a bold curve, d1 5 0.041, xd1 5 0.41, A2 5 0.167, and
(20.1) is satisfied at Ri 5 . That is, the interleavingRi*1
controlled by thermohaline factors is possible approx-
imately at d , d1 5 0.041 (actually the bold curve
vanishes at d 5 0.067), while baroclinicity controlled
interleaving disappears because A 5 1 is much greater
than A2 5 0.167. There is no interleaving when d is
approaching unity from below and (20.1) is satisfied at
Ri 5 1, that is, this is just the case discussed in section
3e when the criterion for classical instability Ri , 1
(Q2 , 0, Q1 . 0, Q0 . 0) does work.

The thin solid curve in Fig. 4 is for the samev9 (d)max

input parameters as those of the bold line but A is a
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FIG. 4. The same as in Fig. 1 but for the following input parameters:
s 5 1, x 5 10, «z 5 0.5, sgn(grgS) 5 1 (all the curves); Pr 5 1, A
5 1 (bold solid); Pr 5 1, A 5 0.1 (solid); Pr 5 2, A 5 1 (dashed).

FIG. 5. The same as in Fig. 1 but for the following input parameters:
A 5 1, s 5 2, Pr 5 1, «z 5 0.5, sgn(grgS) 5 1 (all the curves), and
x 5 100 (bold solid), 10 (bold dashed), 3 (solid), 1 (dashed).

factor 10 smaller. In this case, d1 5 0.13, xd1 5 1.3
(i.e., the (23.1)/(20.1) criterion does not work), A 5 0.1
, A2 5 0.167 [the sufficient condition (25.2) is satis-
fied], and, therefore, is positive in the wholev9 (d)max

range of d.
The dashed line in Fig. 4 is for the same inputv9 (d)max

parameters as those of the bold curve but Pr is twice
greater. In this case, d1 5 0.058, xd1 5 0.58, and (20.1)
is satisfied at Ri 5 . Therefore, in accordance withRi*1
(23.1)/(20.1), d , d1, or Ri . is the criterion forRi*1
instability (actually, vanishes at d 50.137). Then,v9max

A 5 1 . A2 5 0.33, that is, baroclinicity controlled
interleaving does not exist. However, regains thev9max

positive value at d $ 0.79. Since Q0 . 0 and Q2 . 0
at 0.79 # d , 1 (or 1 , Ri # 1.60), in order to explain
the existence of instability in this range we have to
suggest that Q1 , 0. Indeed, in accordance with (20.1)
Q1 , 0 at d . 0.91 or Ri , 1.21. Some discrepancy
between the numerically computed and predicted by
(20.1) ranges of instability is due to asymptotic nature
of (20.1): it implies that z K 1 while A 5 1 in the case
under consideration [see (21)].

Figure 5 shows the effect of turbulence on double-
diffusive interleaving for a strong Ri dependence of tur-
bulent diffusivity, namely for s 5 2. In this case,

curves are governed by (23.1)/(20.1), andv9 (d)max

(25.3)/(20.1) criteria. For bold solid, bold dashed, solid,
and dashed curves in Fig. 5, xd1 is 6.4, 2.0, 1.1, and
0.64, respectively, that is, the condition xd1 K 1 is not
satisfied, and (23.1)/(20.1) criterion does not work. The
only criterion which can explain the curves inv9 (d)max

Fig. 5 is the (25.3)/(20.1) criterion. In accordance with
(25.3), interleaving is possible at d , d3 [ pro-21/2Ri*3

vided that xd3 k 1. In the case of Fig. 5, d3 5 0.41,
and xd3 5 41, 4.1, 1.2, 0.41 for the bold solid, bold
dashed, solid, and dashed curves, respectively. That is,
for the bold solid and bold dashed curves, (25.3)/(20.1)
predicts to be positive at d , d3 while vanishingv9max

with d → d3. Actually vanishes at d 5 0.44 andv9max

d 5 0.53 for the bold solid and bold dashed curves,
respectively, which is in a good agreement with the
above asymptotic theory. Note that in these two cases
(20.1) is satisfied at any d # 1, so that Ri , 1 (Q2 ,
0) is one more criterion for instability.

5. Comparison with ocean data

Using closely spaced CTD data taken from ocean
fronts, one can introduce a measure of intrusion inten-
sity, sT, and calculate an empirical dependence of this
sT upon d at constant values of the input parameters «z

and x. Assuming that larger growth rates yield larger
steady state amplitudes of intrusions we may expect a
correspondence between empirical dependencies sT(d)
and respective theoretical dependencies . There-v9 (d)max

fore, it would be reasonable to compare empirical de-
pendencies of sT(d) and theoretical dependencies of

provided that they have the same values of «zv9 (d)max

and x. Despite of our inability to estimate the rest of
the input parameters (Pr, A, s) directly from CTD data,
such a comparison seems useful. This approach has been
applied by Kuzmina (1998), and here we consider an
example of the kind.

In this example, we use the data of closely spaced
CTD survey of a fragment of the Azores Front (Zhurbas
et al. 1993; Kuzmina 1997). To extract the mean and
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FIG. 6. Empirical dependencies of the intensity of intrusions sT

upon the baroclinicity parameter d [ Ri21/2 in the Azores Front. The
dependencies are drawn up only for a branch controlled by ther-
mohaline factors (xd , 2), and for the following ranges of x: (a) 1
# x , 2, (b) 5 # x , 10, (c) 15 # x , 20, and (d) 25 # x , 30.

FIG. 7. A map of intensity of intrusions lgsT vs lgx and lgd in the
Azores Front. Gaps in the map show that the respective values of
(x, d) are not observed in this particular front.

finestructure fluctuations from vertical profiles of tem-
perature and salinity, a running cosine filter with a 20-
m half-window was used. The intrusion intensity was
estimated as the root mean square amplitude of tem-
perature fluctuations, sT, for 100-m layers. Subsequent
layers had a depth overlap of 80 m. Values N and Rr

were estimated as the mean values over a layer under
consideration. To estimate locally averaged slopes gr

and gS (or horizontal gradients rx and Sx), the central
differences of respective mean values on the base of
two stations closest to the present one were computed
for each layer of every station. We only left for con-
sideration empirical points with nearly constant values
of N 5 (4 6 0.5) 3 1023.

Since the empirical estimates of «z are in a narrow
range from 0.4 to 0.5 (provided that n 5 0.56; Turner
1973) while x and d do vary in a much wider range, at
least from 1 to 300 and from 0.003 to 1, respectively,
we will consider a dependence of sT on x and d, sug-
gesting that all the data may be characterized by some
constant values of «z and Pr. It is worth noting that in
our case all variations of d [ |gr |N/ f and x [ f/N«z |gS |
are controlled by slopes gr and gS only.

In Fig. 6, the empirical dependencies sT versus d are
shown for some four x intervals: (a) 1 # x , 2, (b) 5
# x , 10, (c) 15 # x , 20, and (d) 25 # x , 30,
provided that xd , 2 (the last inequality is to select the
thermoclinicity controlled part of the dependencies
only). One can see some resemblance between empirical
dependencies sT(d) in Fig. 6 and the sharply descending
branches of theoretical curves (e.g., the boldv9 (d)max

curves in Figs. 3 and 4). Moreover, a remarkable feature

of these empirical sT(d) is that a value of d at which
sT vanishes, decreases with the increase of x. Note that
such a behavior of empirical sT(d) is in accordance with
(23.1)/(20.1) criterion.

Figure 7 is a map of lgsT versus lgx and lgd drawn
using our data. In this map, the lowest values of sT

appear to be aligned to some line close to xd 5 1, while
at xd K 1 and xd k 1 the intrusion intensity is higher.
We believe that such a behavior of sT(x, d) is in ac-
cordance with the above theory of thermoclinicity and
baroclinicity controlled interleaving at xd K 1 and xd
k 1, respectively, implying that relatively low values
of sT at xd ø 1 are due to the suppression of interleaving
by turbulence. In principle, similar behavior of sT(x, d)
(i.e., minimum of sT at xd 5 1) may be expected in
the haline front of no turbulence (see section 3d and
Fig. 1). However, this is not the case because the Azores
Front is a typical temperature front in which sign(grgS)
5 1.

A trough of low sT at xd ø 1 in Fig. 7 resembles
qualitatively theoretical curves in Fig. 3. How-v9 (d)max

ever, in contrast to theoretical curves, the observations
do not display clearly an area of no interleaving because
(a) there is a noise in sT estimates, and (b) the real value
of Prandtl number is not expected to be constant so that
no threshold is evident (cf. Fig. 4).

To estimate quantitatively the slope F of a region of
low sT, we pick up pairs (x, d) for which lgsT , 21.8,
and calculate a slope of the major principal axis of re-
spective cluster of points (lgx, lgd). In Fig. 8, these
points are surrounded by circles. We get F 5 21.05,
and the difference of this value from 21 is not statis-
tically significant.

It may be seen from Figs. 7 and 8 that the region of
low sT displays a tendency to widen with x so that the
bottom boundary of this region, adjacent to xd K 1,
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FIG. 8. A cluster of empirical pairs (x, d ) used in the analysis (dots).
Dots placed inside circles are pairs (x, d ) with low values of the
intrusion intensity lgsT , 21.8.

has a slope F1 , F (i.e., |F1| . |F|). To estimate F1,
we pick up pairs (x, d) for which lgsT , 21.8 and xd
, 2, and apply an approach we used to estimate F. We
got F1 5 21.10, but the difference of this value from
21 was not statistically significant either.

It seems promising to identify the bottom boundary
of the trough of low sT with a line where interleaving
vanishes in accordance with (23.1),

1/2s
Pr

2(1/s)d 5 d [ x , s . 0, (23.19)1 [ ]4A(« 1 1)z

and estimate s, the power of Ri dependence of the tur-
bulent mixing coefficient (21), at s 5 21/F1 ø 0.90.
Recall that, strictly speaking, (23.1) is valid when x
Ri21/2 K 1 and z K 1, while the bottom boundary of
low sT trough lies at x Ri21/2 , 1 (see Fig. 7), and we
may expect that z , 1 because the Azores front is char-
acterized by a rather low mean value of density ratio
Rr 5 1.9–2.0, implying relatively high level of salt fin-
ger activity. Nevertheless, we use (23.1) since a simple
analytical criterion suitable to explain the observations
cannot be derived on the basis of assumptions x Ri21/2

5 O(1) and z 5 O(1). We do not use (25.1)–(25.3)
conditions to compare with Fig. 7 because in contrast
to (23.1) they do not yield an explicit relationship be-
tween measurable parameters x and d.

Unfortunately, estimates of the slopes, F1 and F, and,
therefore, s may be biased, as it was pointed out by
anonymous reviewer. Let us consider this issue in more
detail.

In general, it is possible that estimates of the slopes
F1 and F are biased due to inhomogeneity of statistical

distribution of empirical pairs (x, d) on x–d plane. Fig-
ure 8 shows clearly that the cluster of empirical (x, d)
is stretched along a line x ; 1/d so that estimates of
the slopes F1 and F should be biased toward a value
of 21.

In accordance with the definition of parameters x and
d, one may suggest several reasons for the cluster of
empirical (x, d) to be stretched along the slope 21.

First, because x ; f/N and d ; N/ f, parameters x
and d are not independent, and any variation in N wheth-
er it is caused by ‘‘instrumental’’ noise (i.e., measure-
ment errors), or ‘‘physical’’ noise (e.g., changes of N
due to internal waves), or truly related to intrusion dy-
namics, will stretch the cluster of empirical (x, d) to-
ward the slope 21. However, we exclude this possibility
because only the pairs with nearly constant value of N
have been chosen for the analysis.

Second, since d ; gr and x ; 1/gS, internal waves
would simultaneously add the same value of a random
‘‘physical’’ noise to both gr and gS, stretching the cluster
of empirical (x, d) toward the slope 21. Moreover, the
same effect could be produced by coherent variations
of gr and gS in frontal meanders and mesoscale eddies.
The last variations have a timescale larger than that of
intrusion growth and may not be considered as a noise.

Unfortunately, we have no idea whether one can sep-
arate stretching of empirical (x, d) toward the slope 21
due to the noise from the ‘‘true’’ stretching related to
intrusion dynamics, and we cannot estimate the value
of bias in F1 and s. However, in Figs. 7 and 8, we can
see a tendency that at lgx . 1 the slope of bottom
boundary of low sT region, F1, becomes considerably
less than 21 despite the possibility of bias toward a
value of 21. Moreover, Figs. 7 and 8 do display clearly
the minimum of sT at xd ø 1 and larger values of sT

both at xd k 1, d K 1 and xd K 1, d K 1 which is
qualitatively in accordance with numerical calculations
shown in Fig. 3, and does not fit those of Fig. 5. There-
fore, we may suggest that in the case of data from the
Azores Front the power of Ri dependence of turbulent
mixing coefficient (21), s, is less than 1.

6. Conclusions

In this paper, we have examined the effects of double
diffusion and turbulent mixing on interleaving in bar-
oclinic ocean fronts in the framework of linear stability
approach. We focused on receiving the proper criteria
for instability and the dependencies of maximum growth
rate of growing intrusions upon the geostrophic Rich-
ardson number. An important result of this study is the
conclusion that the viscous/diffusive destabilization of
geostrophic flow is possible at any (large) value of Ri
provided that the momentum/mass transfer is governed
by double diffusion. This differs essentially from the
case of nondouble-diffusive interleaving in the baro-
clinic front which cannot occur unless Ri , (Pr 1
1)2/4 Pr (McIntyre 1970).
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In the thermohaline, baroclinic front, double-diffusive
interleaving can be controlled by the thermohaline fac-
tors (i.e., the horizontal gradient of salinity), baroclinic
factors (i.e., the horizontal gradient of density), and
both, depending on the value of x Ri21/2 (Kuzmina and
Rodionov 1992). At x Ri21/2 K 1, interleaving is con-
trolled by the thermohaline factors, and the baroclinicity
does not affect interleaving. At x Ri21/2 k 1, interleav-
ing is controlled by the baroclinic factors, and the max-
imum growth rate of intrusions can be much greaterv9max

than that of the case x Ri21/2 K 1. If isohaline and
isopycnal slopes have the same sign (provided that the
stratification is favorable for salt fingering), willv9max

increase monotonically with the geostrophic Froude
number d [ Ri21/2. In the case of opposing isohaline
and isopycnal slopes, the terms describing effects of
thermohaline and baroclinic factors on instability have
opposite signs, that is, work against each other, and

vanishes at xd 5 1; this case was considered inv9max

detail by May and Kelley (1997).
The situation is complicated largely if one takes into

account turbulent mixing. In general, turbulent mixing
works to suppress the double-diffusive interleaving,
whether it be controlled by the thermohaline or baro-
clinic factors. Namely, if we ‘‘switch on’’ turbulent mix-
ing, will decrease no matter what magnitudes ofv9max

the input parameters were chosen.

If the coefficient of turbulent mixing, k*, is indepen-
dent of Ri, we will get to two types of the d dependence
of . At small k*, is positive in the whole rangev9 v9max max

of d. When k* is large enough, there are no positive
values of at small d K 1.v9max

In the case of Ri-dependent coefficient of turbulent
mixing, it is possible that positive values of do notv9max

occur in some intermediate range of d ∈ [a, b], a , b
, 1, where a and b are some functions of the input
parameters.

We have formulated several asymptotic criteria that
govern the behavior of under the effect of tur-v9 (d)max

bulent mixing. These criteria were successfully applied
to explain the results of numerical calculations of

.v9 (d)max

Finally, we have applied the above theory to the ocean
intrusions, namely the finestructure intrusions in the
Azores front/current. Analyzing empirical estimates of
intensity of the intrusions, sT, we found a promising
resemblance in the behavior of empirical sT(x, d) and
theoretical . This convinced us that the abovev9 (x, d)max

theory can be used to describe features of interleaving
in the ocean.
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APPENDIX

List of Notations

A The coefficient in the Ri dependence of z; see (21)
A1, A2 Some critical values of A
C0, C1, C2, C3 Coefficients of the growth rate polynomial (10)
f The Coriolis parameter
g The gravitational acceleration
H 5 (Prk/ f )1/2 The vertical scale of intrusion
k, k* Apparent diffusivities due to salt fingering and turbulence, respectively
L A horizontal scale of intrusion
l, m Cross-front and vertical wavenumbers, respectively
l9 5 lL, m9 5 mH Nondimensional wavenumbers
N The Brunt–Väisälä frequency
n The salt fingering flux ratio
p, p The perturbation and mean pressure, divided by r0, respectively
Pr The Prandtl number
Q0, Q1, Q2, Q3 Coefficients of the nondimensional growth rate polynomial (109)
Ri 5 ( f/Ngr)2 The geostrophic Richardson number

, , ,Ri* Ri* Ri* Ri*1 2 3 M Some critical values of Ri
Rr 5 aT z/bS z The density ratio for salt fingering
S, S The perturbation and mean salinity, multiplied by b
T, T The perturbation and mean temperature, multiplied by a
u, y , w Cross-front, along-front, and vertical perturbations of velocity, respectively
y The along-front mean velocity;
x, y, z Cross-front, along-front, and vertical coordinates, respectively
a, b The thermal expansion and salinity contraction coefficients, respectively
g, gr, gS Cross-front slopes of the intrusion, and density and salinity isolines, respectively
d [ Ri21/2 The geostrophic Froude number (parameter of baroclinicity)
d1, d2, d3 Some critical values of d
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«z 5 (1 2 n)/(Rr 2 1) A nondimensional parameter introduced by Toole and Georgi (1981)
z 5 k*/k The ratio of turbulent to salt fingering vertical diffusivities
r, r Perturbation and mean density, divided by the reference density r0, respectively
s The power in the Ri-dependence of z; see (21)
x 5 f/N«z |gS | A nondimensional parameter introduced by Kuzmina and Rodionov (1992)
v, v9 5 vH 2/k Dimensional and nondimensional growth rates, respectively
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