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ABSTRACT

A new theory for the generation of the Tsugaru and Alboran gyres is proposed. The essence of the theory
can be described as follows. Using the nonlinear reduced-gravity (shallow water) equations, it has been recently
shown by Pichevin and Nof that a channel emptying light water into an otherwise resting ocean of denser water
on an f plane produces a forever-growing gyre next to the channel mouth. The generation of the gyre is caused
by the (otherwise imbalanced) flow force of the alongshore current downstream regardless of the initial current
vorticity. [By changing the potential vorticity via friction, the fluid creates the required vorticity (on its own)
in the cases where the incoming flow has a vorticity that cannot accommodate the gyre.]

It is shown here, analytically and numerically, that when the channel is oriented eastward (i.e., the channel
is situated along a western boundary as is the case with the Tsugaru and Alboran gyres) the presence of b causes
an arrest of the gyre’s growth. As a result, a steady state corresponding to a flow field resembling a snail is
established. Here, the ‘‘shell’’ of the imaginary snail corresponds to the gyre and the elongated body of the
snail corresponds to the downstream current. The establishment of the modeled steady gyre is inevitable, re-
gardless of the upstream potential vorticity, and the gyre has a length scale involving both b and the Rossby
radius.

The analytical solution to the inviscid nonlinear equations is constructed using a perturbation scheme in «,
the ratio of the Coriolis parameter variation across the current to the Coriolis parameter at the center. It shows
that the gyre size is roughly 2Rd/«1/4 [where Rd is the Rossby radius (based on the downstream thickness H)
and « [ bRd/ f 0] implying that the Tsugaru and the Alboran gyres have a scale that is greater than the usual
current scale (Rd). Numerical simulations, using the Bleck and Boudra model, are in excellent agreement with
the theoretical prediction for the inviscid gyre size; they also show that the gyres are established regardless of
the upstream potential vorticity. Both the analytical and the numerical results are in good agreement with the
observations.

1. Introduction

The question of what establishes the Alboran and the
Tsugaru gyres has troubled oceanographers since their
existence was first reported [by Lacombe and Tchernia
(1972) and Conlon (1982)]. Both gyres (Fig. 1) corre-
spond to an eastward channel situated in the western
boundary of the basin into which the flow debouches.
The dimensions of the two gyres (50–100 km) are com-
parable and so are the transports [;O(1 Sv), see Speich
et al. (1996) and Yasuda et al. (1988)]. The only two
differences between the two gyres are that the Alboran
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is more or less a permanent gyre, whereas the Tsugaru
breaks down during the cold months of the year, and
there is a wall to the south of the gyre in the Alboran
case.

There are numerous articles on the Alboran gyre and
its possible generation process [see, e.g., Speich et al.
(1996) for a thorough review of previous theories]. Most
of them state that negative vorticity must be present
within the Strait of Gibraltar in order for the gyre to be
established. The sole article that specifically addresses
the Tsugaru gyre formation theoretically (Kubokawa
1991) also relies on the presence of low potential vor-
ticity in the strait. Exceptions to these vorticity argu-
ments are the studies of (i) Whitehead and Miller (1979)
who pointed out that, once a jet separates from the coast
and then reattaches itself to the coast, a growing gyre
is inevitable; (ii) Bormans and Garrett (1989) who
showed that a separation occurs whenever the Rossby



40 VOLUME 29J O U R N A L O F P H Y S I C A L O C E A N O G R A P H Y

FIG. 1. The Tsugaru (top panel) and the Alboran (bottom panel)
gyres (adapted from Conlon 1982 and Viúdez et al. 1996).

number, based on the curvature of the exit, is less than
unity; (iii) the studies of Preller (1986), Werner et al.
(1988), and Saint-Guily (1957) who suggest that the
gyre might be a part of a standing Rossby wave; and
(iv) the recent study of Viúdez (1997) who, on the basis
of an earlier analysis that indicated that the relative vor-
ticity of the Alboran jet is not negative (Viúdez et al.
1996; Viúdez and Haney 1997), suggests that evapo-
ration in the Eastern Mediterranean is responsible for
the Alboran gyre formation.

All of these studies (as well as the many studies men-
tioned therein) are informative and useful but it is still
not clear why the gyres are established. In this article,
we shall specifically address the question why the gyres
are established and suggest a new process for the gen-
eration of both gyres. Following Pichevin and Nof
(1997) we shall show analytically in section 2 that the

formation of a gyre is a fundamental property of any
eastward outflow regardless of the fluid’s vorticity. It
results from the impossibility to balance the flow force
associated with the alongshore current without the es-
tablishment of a gyre.

Previous studies (e.g., Nof 1986) have shown that
flow force (or momentum flux) is a more fundamental
property than either energy or vorticity in the sense that
conservation of momentum may require both the energy
and vorticity to change. We shall see that a similar pro-
cess takes place in the establishment of the gyres (sec-
tion 2). Specifically, even an outflow with a cyclonic,
rather than an anticyclonic relative vorticity, generates
a gyre with an anticyclonic vorticity through the alter-
ation of potential vorticity via friction. Using a pertur-
bation expansion, we shall demonstrate analytically that
the presence of b arrests the gyre’s growth (sections 3
and 4). The arrest results from a balance between the
southward b-induced force associated with the gyre and
the northward flow force associated with the alongshore
jet.

Using a numerical reduced-gravity model of the Bleck
and Boudra type, we shall then show that, as the ana-
lytical solution predicts, the variation of the Coriolis
parameter with latitude arrests the growth of the gyre
(section 5). As a result, a permanent gyre with a radius
of roughly 2Rd/(bRd/ f 0)1/6 is established. The derivation
of this solution as well as the proceeding numerical
simulations are the main new aspects of this article. The
limitations of our model are discussed in section 6; de-
tailed application of the models to the Tsugaru and Al-
boran gyres is discussed and the results are summarized
in section 7.

2. Formulation

This section describes the physics of the problem and
the mathematical approach. Consider an eastward zonal
channel carrying relatively light water (with density r)
emptying into an otherwise stagnant ocean (with density
r 1 Dr) and assume that the streamlines remain parallel
to the channel wall until the opening (i.e., the channel
mouth) is reached (Fig. 2). In reality one would expect
the streamlines to be somewhat curved a distance of up
to O(W), where W is the channel width, upstream from
the mouth. This assumption implies that the channel
width W is small compared to the gyre’s scale so that
the curvature of the flow at the mouth does not con-
tribute to the momentum flux along the coast. We shall
see later that this assumption essentially means that W
K Rd/«1/4 (where Rd is the current downstream Rossby
radius, « [ bRd/ f 0, and Rd/«1/4 is the gyre’s Rossby
radius; here, b is the familiar linear variation of the
Coriolis parameter with latitude and f 0 is the Coriolis
parameter), implying that the Burger number is large.

The reader who is concerned about the validity of
this assumption is referred to Pichevin and Nof (1997)
and Nof (1988, Fig. 4 and pages 188–191) where it is
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FIG. 2. Schematic diagram of the model under study. An eastward
channel carrying water with density (r) empties into an otherwise
stagnant ocean with density (r 1 Dr). The streamlines in the channel
are assumed to remain parallel to the channel walls until the coastline
is reached (i.e., section AB). Assuming (and later verifying with the
numerical simulations) that there is an inviscid steady state corre-
sponding to the current hugging the coastline on the right-hand side,
one finds that the momentum imparted on the region bounded by
ABCDEFA by the water exiting through CD is balanced by the south-
ward b force associated with the gyre. Without loss of generality we
may choose c 5 0 along the front (h 5 0).

shown that in the limit, W → 0, the flow becomes sym-
metrical with respect to the x axis so that the contri-
bution of the curved flow in the channel to the along-
shore momentum flux (in conventional notation) huyB∫A

dx goes to zero. This assumption of parallel streamlines
at the mouth is reasonable and has been used before in
many similar problems (see, e.g., Nof, 1978a,b; 1981;
1996). However, it filters out the regime where the Bur-
ger number is small (W k Rd/«1/4), a regime frequently
associated with a no-gyre situation (see, e.g., Whitehead
and Miller 1979; Bormans and Garrett 1989; Kawasaki
and Sugimoto 1984; Gliezon et al. 1996). We shall re-
turn to this important point later.

The region immediately to the right of corner B,
which is a point of infinite speed (see, e.g., Batchelor
1967), might involve a separation from the wall and

reattachment (see, e.g., Cherniawsky and LeBlond
1986), but whether or not such a separation exists has
no bearing on our calculations.

As the light current exits the channel it must turn to
the right and hug the coast because this is where Kelvin
waves will propagate to and this is the only place where
such a current can have a finite cross-sectional area.
Assuming that a steady state can be reached and inte-
grating the steady nonlinear y momentum equation over
the fixed region S bounded by the dashed line ABCDE-
FA shown in Fig. 2, we get

]y ]y
hu 1 hy dx dyEE 1 2]x ]y

S

1 ( f 1 by)uh dx dyEE 0

S

g9 ]
21 (h ) dx dy 5 0, (2.1)EE2 ]y

S

which by using the continuity equation and stream-
function c can be reduced to

] ]
2(huy) 1 (hy ) dx dyEE [ ]]x ]y

S

]c
2 ( f 1 by) dx dyEE 0 ]y

S

2g9 ](h )
1 dx dy 5 0. (2.2)EE2 ]y

S

Here, the notation is conventional, that is, u and y are
the horizontal velocity components in the x and y di-
rection, h the thickness of the upper layer, c a stream-
function defined by ]c/]y 5 2uh; ]c/]x 5 yh, and g9
is the reduced gravity, gDr/r. For convenience, all vari-
ables are defined both in the text and in the appendix.

Equation (2.2) can be rewritten as

] ] ]c ]
22 (huy) 1 (hy ) dx dy 2 f dx dy 2 (byc) 2 bc dx dyEE EE 0 EE[ ] [ ]]x ]y ]y ]y

S

g9 ]
21 (h ) dx dy 5 0, (2.3)EE2 ]y

and application of Stokes theorem to (2.3) gives

2 2huy dy 2 (hy 1 g9h / 2) dx 2 f c dx 1 b yc dx 1 b c dx dy 5 0, (2.4)0 EE6 6 6 6
f f
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FIG. 3. The gyre radius (R) as a function of the channel discharge
(Q) for zero and finite potential vorticity flow. Note that Q* # ½
because along the left bank h* $ 0. For Q* 5 ½, the depth near the
left wall vanishes and the structure of the flow in the channel is
identical to that of the alongshore current. The cases correspond to
an upstream flow with negative relative vorticity that is strong enough
to form the gyre (i.e., friction plays no role in the establishment of
the gyres): h (0)(0) is the gyre’s zeroth-order depth in the center and
Hp is the potential vorticity depth.

where f is the boundary of S and the arrowed circles
indicate counterclockwise integration.

Next, we define c to be zero along the front (h 5 0)
and note that at least one of the three variables h, u,
and y vanishes on every portion of the boundary f, so
(2.4) can be rearranged and written as

D

2 2[hy 1 g9h / 2 2 ( f 1 by)c] dxE 0

C

2 b c dx dy 5 0. (2.5)EE
S

Assuming (and later verifying with our numerical ex-
periments) that the downstream flow is parallel to the
wall and, hence, geostrophic in CD [so that ( f 0 1 by)y
5 g9]h/]x which, upon multiplication by h and inte-
gration in x from a point within the current to its edge,
where c 5 h 5 0, gives ( f 0 1 by)c 5 g9h2/2], relation
(2.5) reduces to the simple relationship,

L

2hy dx 2 b c dx dy 5 0, (2.6)E EE
0

S

where L is the width of the current downstream.
Equation (2.6) represents a balance between two forc-

es. The first is a northward force associated with the
alongshore current. It is analogous to the force produced
by a rocket or a sprinkler. The second is a southward
b force resulting from the fact that as a particle circu-
lates in a clockwise manner within the gyre it senses a
larger Coriolis force on the north side than it senses on
the south side.

The curious result is that, when b [ 0, condition
(2.6) cannot be satisfied because y 2 is always positive
along CD and the integration is done from small to large
x. The impossibility to satisfy (2.6) with b [ 0 implies
that on an f plane there cannot be a steady state because
the integrated momentum (or flow force) imparted by
the fluid exiting through CD on the control volume
bounded by ABCDEF cannot be balanced. This f -plane
case was already discussed in Pichevin and Nof (1997)
and need not be repeated here. It is sufficient to say
that, according to their f -plane analysis, a forever-grow-
ing gyre is established near the mouth. The gyre is con-
stantly growing because the curving flow bifurcates as
it impinges on the wall. Namely, as a result of the bi-
furcation, part of the flow turns backwards causing the
volume of the gyre to constantly grow.

On a b plane, the situation is quite different because
the gyre’s growth causes a steady increase in the south-
ward force b ∫ ∫ c dx dy. This increasing southward b
force ultimately balances the northward flow force as-
sociated with the southward current downstream, im-
plying that the role of b in this case is merely to arrest
the growth of the gyre.

The above balance of forces holds regardless of the

fluid’s potential vorticity. When the incoming relative
vorticity is not negative enough to permit the establish-
ment of the anticyclonic gyre,1 something else must ad-

1 It may not be entirely obvious to the reader that an anticyclonic
gyre requires a core with anticyclonic vorticity. To see this, consider
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FIG. 4a. Numerical simulation of experiment 1. Depth contours (in centimeters) for the steady state are shown
in the upper panel, and a comparison of the volumes and momentum fluxes at the entrance and exit are shown in
the lower panels. The momentum fluxes correspond to the two terms associated with Eq. (3.4). (The southern edge
of the gyre was defined to be the point where the radius of curvature of the outermost contour reaches a minimum.)
Note that a steady state is reached within 80 days. Basin size is 750 3 300 km2. In the lower panels, the dashed
lines denote the downstream current; the solid line the inflow, and the dotted line b.

just to produce the gyre. We shall see that friction comes
in and alters the potential vorticity until the necessary
vorticity is created. However, when the channel is ori-
ented westward instead of eastward, the downstream
current must flow northward and, consequently, the two
terms in (2.6) are of the same sign and can never balance
each other. As a result, a steady state cannot be reached
and a convoluted periodic detachment of eddies is es-
tablished (see Pichevin 1996, his Fig. 5.2).

the relative vorticity in polar coordinates (1/r)(d/dr)(ryu) and assume,
for the moment, that it is constant (say, A). It is easy to show that,
under such conditions, yu 5 Ar/2 1 C/r (where C is an integration
constant). The requirement of zero speed at the center implies that
C must be zero and the requirement that yu , 0 implies that A , 0.

Before proceeding it is appropriate to point out that
the above balance of forces may not exist in the case
of a curved coastline, a curved strait, or a topography
that depends on y because under such conditions the
flow force may be exerted on the wall rather than the
fluid. We shall return to this important point in section 6.

3. Scaling and expansion

a. Scales

We shall now show that the balance previously dis-
cussed implies that the gyre scale is inversely propor-
tional to b and that its length scale (Rdg) is greater than
the current’s length scale Rd. (Note that the subscript g
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FIG. 4b. As in Fig. 4a except that the variables are those of experiment 2; basin size is 1200 3 525
km 2 . Again, the dashed lines denote the downstream current, the solid line the inflow, and the dotted
line b. Here, a steady state is reached much later (4000 days) because the upstream relative vorticity
is weakly anticyclonic (see Table 1) so that the potential vorticity has to be altered (by friction) and
this takes time.

indicates association with the gyre). To see this, note
that a comparison of the two terms in (2.6) gives,

2g9Hg2 2H·R ·g9H ; O bR · ,d g dg1 2f

which, together with the condition (H/ ) 5 (Rd/Rdg)4,2H g

yields,

Rdg ; O(Rd/«1/4), (3.1)

where « [ bRd/ f 0 K 1. Thus, the gyre’s scale is in-
versely proportional to b1/4. In deriving the above scale
it has been taken into account that, due to the Bernoulli
integral, the speed along the gyre edge (h 5 0) is the
same as the speed along the downstream current edge.

Two comments should be made with regard to (3.1).

First, as is frequently the case, the scaling may conceal
potentially large numbers such as powers of the known
2 2 ratio between the gyre minimum radius and theÏ
Rossby radius (see, e.g., Nof 1981; Killworth 1983).
Second, the 1/4 power of « implies that, for most cases,
Rdg will not be greatly different from Rd (though it will
be larger).

Given the above scales we now introduce the follow-
ing nondimensional parameters. For the alongshore cur-
rent leaving the control volume through CD, denoted
by the subscript l, the scaled variables are

1/2x* 5 x/R ; y* 5 y/R ; y* 5 y /(g9H )l d l d l g

1/2h* 5 h /H; R [ (g9H ) / f . (3.2)l d 0

Similarly, the scaled variables for the gyre are
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FIG. 4c. As in Fig. 4b except that the shown variables are those of experiment 3. Basin size is 975 3 675
km2. Again, the alteration of potential vorticity is slow so that a steady state is reached later than it is in
the no alteration case.

h
x* 5 x/R ; y* 5 y/R ; h* 5g dg g dg g 2RdgH1 2Rd

1/4R 5 R /« ; « [ bR / f K 1;dg d d 0

c
c* 5 , (3.3)g 2(g9H / f )g 0

where Rdg is not necessarily based on the gyre maximum
depth but rather is merely a length scale for the gyre.

The above scaling implies that the ratio of the gyre’s
depth to the parent current depth is O(«1/2), which means
that the gyre is deeper than the current. Since, in the
mean, the gyre must have an anticyclonic vorticity, the
inviscid parent current must also have anticyclonic vor-

ticity. Furthermore, this anticyclonic vorticity must be
large so that it can compensate for the stretching of the
water columns that occurs during the gyre formation.
Of course, one can think of parent currents with cyclonic
rather than anticyclonic vorticity and we shall show later
(with the aid of our numerical experiments) that through
the action of small friction the potential vorticity of a
(parent) cyclonic current is gradually altered so that an
anticyclonic gyre is produced.

b. The nondimensional equations

Substitution of (3.2) and (3.3) into the integrated mo-
mentum (2.6) gives
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FIG. 4d. As in Fig. 4a except that the variables are associated with experiment 5. Basin size is 750 3 300
km2. Here again, there is also an alteration of potential vorticity but it is completed quickly due to large
shear at the exit. Consequently, a steady state is reached relatively fast (within 80 days).

L*

2h*(y*) dy* 1 c* dy* dx* 5 0. (3.4)E l l l EE g g g

0
S

Similarly, the continuity equation can be written as

L*

Q* 5 h*y* dx*, (3.5)E l l l

0

where Q* is the known nondimensional mass flux out
of the channel, defined by Q/[g9H 2/ f 0]. Recall that, in
addition to the above two equations, the field is gov-
erned by the potential vorticity equation and the steady
Bernoulli principle. We shall shortly see that these will
enable us to close the inviscid problem.

c. Expansions

To obtain the solution, all the dependent variables of
the gyre are now expanded in a power series in «1/6, for
example,

(0) 1/4 (1)h* 5 h 1 « h 1 · · · g g g

(0) 1/4 (1) c* 5 c 1 « c 1 · · ·g g g . (3.6)
(0) 1/4 (1)y* 5 y 1 « y 1 · · ·l l l 
(0) 1/4 (1)h* 5 h 1 « h 1 · · · l l l

The expansion implies that the gyre’s circular basic state
is subject to a perturbation of O(«1/4). This reflects the
condition that the deviation of the gyre from a circular
shape is proportional to the current’s width downstream.

Substitution of (3.6) into (3.4) and (3.5)gives the fol-
lowing leading-order balance:
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(0)L

(0) (0) 2 (0)h (y ) dx* 5 c dx* dy*. (3.7a)E l l l EE g g g

0

(0)L

(0) (0)Q* 5 h y dx* (3.7b)E l l l

0

Equation (3.7a) implies that the flow force associated
with the downstream current is balanced by the b force
applied to a circular f -plane gyre.

4. Solution

As mentioned, since our scaling implies that the gyres
must be deeper than the parent current [Hg ; O(H/«1/2)],
it follows that, in the inviscid case, the parent current
must have strong anticyclonic vorticity, that is, the
gyre’s vorticity will be anticyclonic (despite the severe
stretching of the water column that occurs during its
formation) only if the parent current vorticity is strongly
anticyclonic. What happens when the parent current vor-
ticity is not strongly anticyclonic? As mentioned, we
shall see later that, since the momentum flux (i.e., the
flow force) is a more fundamental property than the
vorticity, friction becomes very important when nec-
essary and changes the potential vorticity so that it can
accommodate the required balance and resulting for-
mation of the gyre.

a. Zero potential vorticity gyres

We shall first look at the case where both the incoming
current and the gyre have zero potential vorticity be-
cause it is the simplest possible case. Note that such a
situation is established whenever the upstream basin
from which the fluid originates is much deeper than the
sill depth. Under such conditions, the solutions for both
the alongshore current and the zeroth-order gyre are
straightforward despite the nonlinearity. Specifically,
the leading-order solution for the alongshore down-
stream current is

··· y 5 V 1l  , (4.1)f0 ···h 5 V (L 2 x) 1l g9 

where Vl is the near-wall speed, L is the alongshore
current width, and, for simplicity, we have returned to
dimensional variables. Hence, the alongshore current
near-wall depth Hl is

Vl ···H 5 f L 1 (4.2)l 0 g9

Note that the application of the Bernoulli principle to
the wall on the right-hand side gives

1 1
2 2(U ) 1 g9H 5 (V ) , (4.3)l[ ]2 2

where both U and H are known upstream parameters
near the right bank.

Similarly, the leading-order solution for the zero po-
tential vorticity gyre is

y 5 2 fr/2 ug

, (4.4)
2 8g9ĥf 0 2h 5 2 r g 21 28g9 f 0 

where, for simplicity, we use here a polar coordinate
system (r, u) whose origin coincides with the center of
the gyre; ĥg is the gyre’s maximum depth; and the bars
(2) denote association with the zeroth-order circular
state. The above general solution has one unknown: the
gyre’s maximum depth at the center ĥg.

Leaving the derivation of the general solution aside
for a moment, we note that insertion of the nondimen-
sional form of (4.1)–(4.3) into (3.5) gives the straight-
forward solution for the downstream current,

2(V*)l2Q* 5 (L*) , (4.5)
2

where , the alongshore current near-wall speed, isV*l
given by

1/2V* 5 (2B*) , (4.6)l

where, to avoid flow reversals, the positive root was
chosen. Here B* is the known upstream Bernoulli re-
lation (U 2/2 1 g9H) along the right wall, nondimen-
sionalized by g9H (which is also known). Equations
(4.5) and (4.6) can be combined to give

1/2L* 5 (2Q*) /2B*. (4.7)

We now return to the derivation of the general so-
lution. Equation (4.5) together with the substitution of
the zeroth-order solution (4.4), in nondimensional form,
into (3.7) gives the desired solution in terms of the
known upstream flux Q and the known Bernoulli energy
along the upstream wall B. For zero potential vorticity
the dimensional zeroth-order radius of the gyre R is
given by

1/4 3/2 1/264 R B QdR 5 20 (4.8)
1/4 21 2 1 2 1 25p « g9H g9H / f

and is shown graphically in Fig. 3.

b. Finite potential vorticity gyres

For finite potential flow the final calculations must
be done numerically because there is no known ana-
lytical solution for the zeroth-order gyre (see, e.g., Flierl
1979). Such calculations were performed for the cases
where the potential vorticity depth is 5% and 100%
greater than the gyre’s maximum depth (Fig. 3). These
correspond to a relative vorticity of 20.05F and 20.5 f,
typical for many outflows. All of the presently shown
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cases (Fig. 3) correspond to upstream flows with suf-
ficient anticyclonic vorticity to allow for the inviscid
establishment of the gyres, that is, friction plays no role
and potential vorticity is conserved. Note that the main
difference between the zero and finite potential vorticity
gyres is that in the finite potential vorticity case the gyre
size is larger than that of the zero potential vorticity
case.

5. Numerical simulations

To further analyze the validity of our assumptions
(e.g., that the flow is parallel to the wall downstream)
and examine what happens when the upstream vorticity
is cyclonic, numerical simulations were performed and
the results were quantitatively analyzed.

a. Numerical model description

We used the Bleck and Boudra (1986) reduced-grav-
ity isopycnic model with a passive lower layer and em-
ployed the Orlanski (1976) second-order radiation con-
ditions for the open boundary in the south. We shall see
later that this condition is satisfactory because the down-
stream streamlines are not disturbed when they cross
the boundary. Also, placing the boundary in different
locations did not alter our results. To speed up the ex-
periments and make our runs economically feasible, we
sometimes used a magnified value for b. For the same
reason, we also took a transport of roughly 17.5 Sv (Sv
[ 106 m3 s21), an order of magnitude larger than the
actual transports. These choices were unavoidable; since
our final plots are nondimensional, the discrepancy be-
tween the actual and the modeled variables is tolerable.

In accordance with the above choices, our grid size
was 15 km, which is adequate for processes where the
Rossby radius is roughly 30 km. It would, of course,
have been better to use a higher resolution but our com-
puting time was limited and, consequently, we could
only perform a limited number of experiments. Our time
step was 1500 s and, for numerical stability, we intro-
duced a small (horizontal) Laplacian friction of n 5 3
3 106 cm2 s21. Our walls were slippery and, as is usu-
ally the case, we took the vorticity to be zero next to
the walls. As is typical for the Tsugaru Strait and the
Alboran gyre, we took f 0 5 1024 s21 and g9 of roughly
1.4 cm s22.

b. General results

We show a total of eight experiments with an eastward
channel emptying into an infinite ocean (Table 1) and
three additional experiments with a channel discharging
into an ocean with a corner (to simulate the African
continent). In five of the first eight experiments (1, 4,
6, 7, and 8) the initial relative vorticity was negative
enough to directly allow the establishment of the anti-
cyclonic gyre. The initial relative vorticity of the re-

maining three experiments (2, 3, and 5) was either cy-
clonic or weakly anticyclonic so that the stretching as-
sociated with the formation of the gyre forced an al-
teration of the potential vorticity which occurred
through the action of horizontal friction. The general
features described by our analytical theory are clearly
present in our numerical simulations. In all of our ex-
periments the flow becomes steady, turns to the right
(southward) after leaving the channel, and, as expected,
forms a gyre (Fig. 4); the lower panels of Fig. 4 show
that the assumed steadiness and the corresponding bal-
ance of forces are indeed achieved. Furthermore, the
experiments where the initial upstream vorticity was not
negative enough to permit the establishment of the gyre
show a clear alteration of the potential vorticity (Figs.
5 and 6).

A comparison of the analytical prediction for the
gyre’s radius to the numerical no-potential-vorticity-al-
teration cases (i.e., negligible friction) shows (Fig. 7)
excellent agreement, with errors no more than 11%. This
is remarkable considering that «1/4 is relatively large
(;0.4); it results from the integration which is not very
sensitive to the gyre’s shape. (Note that a comparison
of the analytical results to the cases where the potential
vorticity is changing, as one follows a particle, has no
meaning because our analytical results are not supposed
to be valid in these cases.)

c. The influence of a southern wall

We also examined the effect of a southern zonal wall
(to simulate the influence of the African coast on the
Alboran gyre) and noted that, although its presence al-
tered the structure of the gyre, it does not prevent its
establishment. Figure 8 shows the general structure of
the flow in this case. Assuming (and later verifying with
our numerical experiments) that the flow is parallel to
the southern wall downstream (so that y [ 0 across
DE), we find that (2.6) is modified to

D Dg9
2h dx 5 [( f 1 by)c] dxE E 02 C C

1 b c dx dy. (5.1)EE
Here, all terms are positive and the first term on the
right-hand side is simply the integral of the known trans-
port along the wall, that is, the balance states that the
gyre’s growth is arrested when the northward force ex-
erted by the wall compensates for the southward b force.
Equation (5.1) shows that a steady state corresponding
to a gyre is still possible but, in contrast to the no-zonal-
wall case, it is impossible to determine the scale of the
gyre. This is because a priori it is difficult to estimate
the difference between the term on the left and the first
term on the right. All that we know is, since the velocity
is zero in the corner (point C), the thickness h is rela-
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FIG. 5. Potential vorticity contours (within the gyre) associated
with expt 2 (in cm21 s21). For a comparison the (steady) depth con-
tours are also shown (upper-left panel). Note that the potential vor-
ticity alteration takes place first in the center of the gyre (after 200
days the nondimensional potential vorticity is 1.5 3 1029, after 550
days it is 1.3 3 1029, and after 1200 days it is 1.1 3 1029); it then
propagates outward. Basin size is 1200 3 525 km2.

tively large there because of the Bernoulli effect. Nu-
merical experiments (Fig. 9) clearly illustrate, however,
that a gyre is indeed established.

6. Limitations

As is frequently the case, both the analytical and the
numerical model have their limitations. The two most
important ones result from the parallel streamlines at-
the-mouth assumption and the use of a layer-and-a-half
model. We shall address these issues one by one.

The first assumption eliminates the contribution of
the curved flow in the channel to the alongshore mo-
mentum flux because the (assumed) straight streamlines
are perpendicular to the coast. The assumption has been
used successfully before (e.g., Nof 1978a,b; 1981), and
Nof (1988, his Fig. 4, 188–191) has shown that it is
valid as long as the channel width is narrow compared
to the outflow length scale. However, although the as-
sumption is reasonable, it essentially excludes the ef-
fects of the strait curvature and shape from the model.
Thus, it eliminates the possibility that some of the mo-
mentum flux associated with the alongshore downstream
current be balanced by a pressure force exerted on the
fluid by the channel walls instead of being balanced by
the b-induced force associated with the gyre.

On this basis one would expect that the excluded re-
gime may not always involve a gyre. Indeed, as has been
shown by Whitehead and Miller (1979), Kawasaki and
Sugimoto (1984), Bormans and Garrett (1989), and Glie-
zon et al. (1996), the excluded regime [of a small Burger
number, that is, a small ratio between the channel width
(or curvature) and the length scale of the flow immedi-
ately to the east of the mouth] is often associated with
a no-gyre situation. We shall see shortly that in both the
Alboran and the Tsugaru cases the length scale of the
flow outside the channel is indeed greater than the chan-
nel width, indicating that the parallel streamlines at-the-
mouth assumption is justified. However, in both situations
we are not very far from the excluded regime.

We shall also see shortly that the observed seasonal
breakdown of the Tsugaru gyre is most likely not related
to the excluded regime. Similarly, it appears that the
occasional breakdown of the Alboran gyre (Heburn and
La Violette 1990; Perkins et al. 1990) is not associated
with the flow transition from one regime to another
because the flow’s Rossby radius seems to increase dur-
ing the no-gyre state. This completes our discussion of
the parallel streamline at-the-mouth assumption.

Our second limitation resulting from the one-and-a-
half layer approach excludes baroclinic instabilities of
both the gyre and the downstream current. Consequent-
ly, the cyclonic eddies noted along the rim of the gyre
in both laboratory experiments (Gliezon et al. 1996) and
numerical models (Speich 1996) are not present in our
numerical experiments. It is noted here in passing that
such cyclones are also observed along the periphery of

other anticyclonic features such as warm core rings
(Kennelly et al. 1985; Nof 1993).

7. Discussion and summary

The foregoing theory is applicable to numerous sit-
uations because many oceans and marginal seas are con-
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FIG. 6. Trajectories of two particles (upper panel) and the associated changes in potential vorticity (central panels) in expt 5. Particle 1
(left panels) is situated outside the gyre and ends up in the downstream current, whereas particle 2 (right panel) is trapped in the gyre. Times
corresponding to every 20 000 s are indicated with solid dots. The lower panel represents the importance of friction as a function of time.
The parameter viscosity–vorticity (shown on the vertical axis of the lower panel) is defined by [( 1 )/( 1 )]1/2, where Fx and Fy

2 2 2 2F F f fx y x y

are the frictional terms and f x and f y are the Coriolis terms in the x and y directions. It is a global measure of the importance of viscosity.
Note that particle 2 experiences a dramatic reduction in its potential vorticity (due to friction), whereas particle 1 experiences no such
reduction. To assure the accuracy of our results, the resolution was increased in this particular experiment; the grid space was 1 km, the
time step 100 s and the viscosity 2 3 106 m2 s21. The first particle was released 11 km from the right bank of the channel whereas the
second was released 2 km from the bank. Both were released after 5 days of integration (to assure completion of the initial adjustment).

nected to each other by zonal channels. The cases of
zonal eastward channels for which there are the most
data available on both the origin of the flow and its final
fate are the Tsugaru and Alboran gyres. For this reason,
we shall attempt to compare our results to the way that
these two gyres are formed. Both the flow through the
Tsugaru and the Strait of Gibraltar carry roughly 1 Sv
of light water into the corresponding basins.

Our present theory suggests that, without the gen-
eration of the gyres, the momentum associated with the
southward flow downstream of the straits could not have
been balanced. It implies that the gyres are generated

in order to offset the flow force associated with the
southward turning jets. For the Alboran gyre we chose
the following numerical values: g9 ø 1.5 3 1022 m s22;
H ø 100 m; f ø 1024 s21, and b ø 2 3 10211 s21 m21.
These values correspond to a transport of roughly 1 Sv,
a Rossby radius of 12 km, and an «1/4 of 0.25. Because
of the tendency of nonlinear frontal models such as ours,
to produce large speeds along the front (see, e.g., Flierl
1979), we have chosen here a relatively low value for
g9. Our predicted analytical radius of the Alboran gyre
(ø2Rd/«1/6) is 87 km, which agrees with the observa-
tions (see, e.g., Viúdez 1997 and Fig. 1) fairly well even
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FIG. 7. A comparison of the inviscid analytical prediction for the
gyre’s mean radius (solid curve) with the numerical experiments with
no potential vorticity alteration (experiments 1, 4, 6, 7, and 8). (A
comparison of the above analytical results to the other numerical
experiments is meaningless as the analytical predictions are not valid
when the potential vorticity is altered.) Recall that h (0) is the depth
at the center of the gyre and Hp is the ‘‘potential vorticity depth.’’
Given the approximations involved in our analytical model the agree-
ment is excellent. As expected, the largest error (11%) is associated
with experiment 1 where the shape distortion (from a circle) is the
largest (Fig. 4a). Note that the mean numerical radius was defined
as the square root of the gyre’s area (i.e., the area between the mouth
and the point where the radius of curvature of the outermost depth
contour reaches a minimum) divided by p .

FIG. 8. A gyre with a wall on the southern side. Here, the wall
alters the detailed structure of the gyre but does not alter the main
reason for its formation (see text).

though it ignores the influence of the southern wall. The
parallel streamlines at-the-mouth assumption is ade-
quate because the gyre’s Rossby radius (27 km) is larger
than the strait width (;15 km). Note that it is not clear
to what the observed occasional disappearance of the
gyre (Heburn and La Violette 1990; Perkins et al. 1990)
is related.

For the Tsugaru Strait the situation is somewhat more
complicated because of the bimodal structure. The Tsu-
garu gyre is only observed during the warm months of
the year when the Rossby radius is relatively large (;23
km according to Conlon 1982). It is asserted here that,
when the gyre is not observed (the cold months), the
relatively small Rossby radius (10 km or less according
to Conlon 1982) prevents the flow in the strait from
sensing the left channel bank, which is situated roughly
20 km away. Under such conditions, the flow does not
even ‘‘know’’ that there is a channel and, consequently,
it simply follows the coastline on the right without form-
ing a gyre. During the warm months when the flow in
the strait touches both banks and the gyre is formed,
the parameter «1/4 is 0.46 and the analytically predicted
radius (2Rd/«1/4) is 110 km. This is also in good agree-
ment with the observations (see Fig. 1). As in the Al-
boran gyre case, the parallel streamlines at-the-mouth
assumption is adequate because the (warm) gyre’s Ross-
by radius (38 km) is greater than the strait width (20
km). Of the two applications, the one to the Tsugaru is
probably more adequate because there is no southern

boundary there and the influence of b is more pro-
nounced (due to the larger north–south extent).

A comment should be made here regarding the ob-
served vorticity of the flow in the Gibraltar and Tsugaru
Straits. Presently, it is impossible to tell from the ob-
servations what the actual vorticity is but since the flow
speeds up and shoals as it enters the straits suggests (via
conservation of potential vorticity) that it is anticyclon-
ic. Whether this (unknown) negative vorticity is strong
enough to produce a gyre without the alteration of po-
tential vorticity is, of course, not known; it is a subject
for future investigations. We have seen, however, that
a gyre is established regardless of the initial vorticity.

In summary, it can be said that the primary aim of
our theory and numerical experiments was to examine
a new gyre generation mechanism that is related to the
flow force of a current exiting from an eastward oriented
channel. The new inviscid generation process implies
that a light current exiting from a channel perpendicular
to the coastline (Fig. 2) exerts a flow force (parallel to
the wall) that cannot be balanced without the generation
of a gyre on the opposing side. With a gyre present,
however, the northward flow force of the downstream
current is balanced by the southward b-induced force
associated with the anticyclonic flow in the gyre.

Using an integrated momentum technique, we have
computed analytically the structure of the resulting gyre
(Fig. 3). A new length scale for gyres emerges from our
calculations. Quantitative numerical simulations (Figs.
4–8) show the generation process in detail and verify
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FIG. 9. The establishment of the gyre when a southern wall is added to the basin. The shown steady states correspond to a wall situated
away from the gyre (left panel), at the edge of the gyre (center panel), and at the center (right panel). Clearly, the presence of the zonal
wall does not prevent the establishment of the gyre even though a force is exerted on it (see text). The parameters are the same as those
used in experiment 1. Basin sizes are: 750 3 375 km2 (upper panel), 600 3 375 km2 (lower-left panel), and 450 3 375 km2 (lower-right
panel). Contours are given in centimeters.

the analytical prediction. Finally, we applied our model
to the Tsugaru and Alboran gyres and argue that the
predictions regarding the gyre size are in good agree-
ment with observations and that the generation of these
gyres is inevitable.

The generation of the gyres is not inevitable, however,
in the cases where the parallel streamlines assumption
at the mouth is violated (Rd/«1/4 & W), that is, when the
width and curvature of the channel is of the same order
as the gyre’s Rossby radius. In these cases, the north-
ward flow force associated with the alongshore down-
stream current may be balanced by a pressure force
exerted on the fluid by the channel side walls rather than
by the b-induced force associated with the gyre.
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APPENDIX

List of Symbols

B* known nondimensional upstream Bernoulli
along the right channel wall

f Coriolis parameter ( f 0 1 by)
g9 ‘‘reduced gravity’’ (Dr/r)g
h thickness of light water
ĥg gyre maximum depth
H upstream current depth next to the right

wall (looking downstream)
Hl near-wall depth of alongshore current
L alongshore current width
Q mass flux out of the channel
Q* nondimensional mass flux out of the chan-

nel
r, u polar coordinates
R gyre diameter
Rd Rossby radius of the channel flow, (g9H)1/2/ f
Rdg Rossby deformation radius of the gyre
S integration area
u, y velocities in Cartesian coordinates
yu orbital velocity in the gyre
U upstream velocity along the right bank
V near-wall speed of the alongshore current



54 VOLUME 29J O U R N A L O F P H Y S I C A L O C E A N O G R A P H Y

W width of channel
, , ,x* y* u*l l l

,y* h*l l

scaled variables associated with the steady
alongshore current on the right

, , ,x* y* c*g g g

h*g
scaled variables associated with the gyres
on the left

b variation of the Coriolis parameter with lat-
itude

« small parameter equal to bRd/ f 0

f boundary of integration area S
r, Dr density and density difference between the

layers
n gyre viscosity coefficient
c streamfunction (defined by ]c/]y 5 2uh;

]c/]x 5 yh)
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Viúdez, Á., 1997: An explanation for the curvature of the Atlantic
jet past the Strait of Gibraltar. J. Phys. Oceanogr., 27, 1804–
1810.
, and R. L. Haney, 1997: On the relative vorticity of the Atlantic
jet in the Alboran Sea. J. Phys. Oceanogr., 27, 175–185.
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