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ABSTRACT

Quasi-linear theory and numerical models are used to study the mean flow modification of a two-layer shallow
water baroclinically unstable flow as a function of Rossby number. This flow has an upper-layer potential vorticity
front overlying a quiescent lower layer and is used as a simple representation of the Gulf Stream.

Quantities derived from an analytical expansion in the small meander amplitude limit of the (quasi-linear)
equations are found to compare quantitatively well with numerical model simulations of the flow in small
amplitude and to pertain qualitatively even beyond the instability equilibration, where the meander amplitude
is as large as the meander wavelength. The baroclinic evolution is similar for all Rossby numbers, with differences
arising from increased asymmetry of the flow with increasing Rossby number. The equilibration of the instability
is similar for all Rossby numbers and is due to the acceleration of a strong barotropic shear. This acceleration
is predicted from the small amplitude analysis.

Quasigeostrophic diagnostics are shown to be useful even for large Rossby number flows such as the Gulf
Stream. One qualitative difference that appears is that as the mean flow is modified, a lateral separation of the
zonal mean potential vorticity front and the jet maximum appears, consistent with Gulf Stream observations.
This feature is found only for finite Rossby number flows.

1. Introduction

Oceanic fronts, regions where changes in density and
potential vorticity (PV) are observed over horizontal
scales of the baroclinic deformation radius, are found
in all of the world’s oceans, at wind-driven gyre bound-
aries, in areas of coastal upwelling, in regions of Ekman
convergence, and at river mouths. By geostrophy, PV
and density fronts are associated with strong baroclinic
jets.

The large available potential energy and kinetic en-
ergy stored in fronts often provide an energy source for
growing instabilities. These instabilities cause mean-
dering of the front and the formation of cyclones and
anticyclones in the growing meanders. Consistent with
linear stability theory, observations from the SYNOP
study of the Gulf Stream (Watts et al. 1995; Shay et al.
1995) show that growing meanders in the Gulf Stream
above the thermocline are always associated with cy-
clogenesis and strong velocities at depth (;0.4 m s21

at 3500 m). Linear stability theory has been used to
explain the growth rates and observed wavelengths of
the meanders in the Gulf Stream (Killworth et al. 1984;
Flierl and Robinson 1984). As one moves downstream
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in the Gulf Stream, the time-mean jet changes in re-
sponse to the growing meanders. It is this feedback
process that we study here.

Analysis of the effect of the growing instability on
the initial flow structure can be most easily studied by
constructing an initial flow with zonally periodic me-
anders. While not strictly applicable to oceanographic
currents such as the Gulf Stream where the meanders
grow in space (downstream of Cape Hatteras), the zonal-
mean theory can provide insight into the Gulf Stream
system by making the analogy between spatially grow-
ing meanders of the Gulf Stream and temporally grow-
ing meanders of zonally periodic models. In the context
of such models, past studies of the interaction of mean
flows and growing instabilities have been conducted in
three distinct ways: 1) Weakly nonlinear analysis, which
is an analytical approach that uses multiple timescale
analysis that provides predictions for both small and
large amplitude evolution but is limited to slightly su-
percritical flows (Pedlosky 1970). This method in many
cases cannot be used to analyze the most unstable wave,
the one most likely to be observed in geophysical flows.
2) Quasi-linear analysis (Phillips 1954), which is an
analytical approach in which linearized forms of the
governing equations are used by forming an amplitude
expansion of the flow variables and can be used to an-
alyze strongly supercritical flows but is limited to small
amplitude meanders with normal mode wave structure.
3) Numerical analysis using fully nonlinear models
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FIG. 1. Schematic of the depth (a) and velocity (b) fields of an
upper-layer potential vorticity front. The upper-layer flow is geo-
strophic and has piecewise constant PV, 5 q1j 5 f/H1j, where j0q1

denotes the side of the front (1 being south, y , 0), H1j denotes the
depth of the upper layer at y → 7`, respectively, and the lower layer
is quiescent. When H12 5 0, the interface between the layers intersects
the surface, resulting in an outcropping front.

(e.g., Rhines 1977; Ikeda 1981; Wood 1988; Onken
1992). This method provides the evolution of any de-
sired flow at all times. This analysis is, however, the
least amenable to generalization (to other flows) since
only a small subset of the flow parameter space can be
explored and the dependences of the results on these
parameters are not explicit in the numerical model.

In the present study the last two approaches, namely
a quasi-linear analytical analysis and analysis of nu-
merical model results, are employed to study the evo-
lution of a baroclinically unstable PV front. The Rossby
number of the flow is varied to allow comparison of the
mean flow evolution of a quasigeostrophic (QG) front
with that in a shallow water front with a large Rossby
number. Our study is a natural extension of the studies
of Phillips (1954) and Shepherd (1983), who analyti-
cally analyzed the small-amplitude quasi-linear mean
flow modification equations of QG flows.

Quasigeostrophic theory has been used extensively
in the examination and modeling of the Gulf Stream
(Kim and Watts 1994; Ikeda 1981). We have shown in
a previous paper (Boss et al. 1996, herein BPT) that in
many ways QG linear theory does better than one would
expect in the prediction of growth rates and wavelengths
of most-unstable modes in the instability of a two-layer
flow with a potential vorticity front in the upper layer.
We use the same model here to study mean-flow evo-
lution of a baroclinically unstable jet and show to what
extent the conclusions that we made from the linear
analysis apply to the quasi-linear and nonlinear situa-
tions and whether the quasi-linear predictions can be
used to explain nonlinear evolution.

This paper is organized as follows: we introduce the
PV-front model and derive the shallow water quasi-lin-
ear mean flow modification equations in section 2. The
results of the quasi-linear approach are presented in sec-
tion 3 where we compare them to numerical model re-
sults with small amplitude meanders. In section 4, the
numerical model results with large amplitude meanders
are presented. In sections 2 through 4 we concentrate
on three particular flows: a flow with an O(1) Rossby
number, its QG limit, and an outcropping front with
constant PV in the upper layer. In section 5 our results
are summarized and contrasted with previous studies
and Gulf Stream observations.

2. Formulation of the zonal mean equations

a. Governing equations and basic state

We construct a model that contains several essential
elements for the study of a baroclinically unstable jet.
A two-layer fluid with a meridionally confined zonal jet
in the upper layer is considered. The Boussinesq, hy-
drostatic, rigid-lid, and f -plane approximations are ap-
plied. We refer this set of approximations as the shallow-
water approximation (SW). For a two-layer SW flow,
the momentum and continuity equations are

(] 1 u · =)u 1 f k 3 u 5 2=p , (1)t n n n n

h 1 = · (h u ) 5 0, (2)nt n n

where the subscript n 5 1 (2) denotes the upper (lower)
layer, u 5 (u, y) is the horizontal velocity vector, f is
the Coriolis parameter, = is the horizontal differential
operator, and k is the vertical unit vector. The layer’s
reduced pressure (pn, the pressure divided by density)
and depth (hn) are related by the hydrostatic equation:

g9=h1 5 2g9=h2 5 =(p1 2 p2), (3)

where g9 [ g(r2 2 r1)/r1 is the reduced gravity. Po-
tential vorticity is conserved in each layer:

f 1 k · = 3 un(] 1 u · =)q 5 0, q [ . (4)t n n n hn

The basic flow whose nonlinear evolution is investi-
gated here is a jet confined to the upper layer and trapped
to the interface between two semi-infinite regions of con-
stant PV. The potential vorticity is given by

f
0q 5 q [ ,1 1j H1j

where j denotes the side of this PV front (1 being south,
y , 0), and H1j the fluid depth at y → 7` (Fig. 1).
Requiring that the basic flow (denoted by superscript 0)
be x independent, meridionally continuous in both layer
depth and velocity, steady, geostrophic, and confined to
the upper layer ( 5 0), the upper-layer depth is0u2

 1/2H12H 2 1 exp(y/R ) 1 1 for y , 011 d,111 2 2[ ]H 11
0 h 51

1/2H11H 2 1 exp(2y/R ) 1 1 for y . 0, 12 d,211 2 2[ ]H12

(5)
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and the upper-layer velocity

g9 dh exp(y/R ) for y , 01 d,10u 5 2 5 U (6)1 05f dy exp(2y/R ) for y . 0,d,2

where

1/2 1/2 1/2U 5 (g9H ) 2 (g9H ) and R [ (g9H ) / f0 11 12 d,j 1j

(7)

are the jet maximum speed and the (different) defor-
mation radii on each side of the front. The flow is con-
fined to within a deformation radius of the potential
vorticity front.

In order to study the mean flow modifications as a
function of the Rossby number of the flow, it is con-
venient to nondimensionalize the equations by trans-
forming

tRd
t → , (x, y) → (x, y)R , (u, y) → (u, y)U ,d 0U0

1/2h → h H , and c → p (g9H ) U ,i i 1 i i 1 0 (8)

where

H1 [ (H11 1 H12)/2, Rd [ (g9H1)1/2/ f, (9)

and H1 is the y-averaged upper-layer depth and Rd the
radius of deformation based on H1. The nondimensional
Rossby number, e [ |U0|/ fRd, is a measure of the
strength and asymmetry of the initial geostrophic flow.

We define a scaled (by H1) perturbation height,

eh [ h 2 1, eh [ h 2 r 1 1,1 1 2 2

that is, h 1 h 5 0, (10)1 2

where r [ HT/H1 is the ratio of the total fluid depth to
the mean upper-layer depth. The hydrostatic relation
becomes

=(c1 2 c2) 5 =h1. (11)

The resulting nondimensional governing equations [(1)–
(2)] are

e(] 1 u · =)u 1 k 3 u 5 2=c , (12)t n n n n

e(h 1 = · (h u )) 1 = · u 5 0, (13)1,t 1 1 1

e(h 1 = · (h u )) 1 (r 2 1)= · u 5 0, (14)2,t 2 2 2

and the nondimensional PV is given by

1 1 e= 3 u 1 1 e= 3 u1 2q 5 , q 5 . (15)1 21 1 eh r 2 1 1 eh1 2

The nondimensional basic flow variables are calcu-
lated from (5)–(6):

0 0u 5 2c 5 exp(2a |y|),1 1y j

1
0 0c 5 sgn(y) (exp(2a |y|) 2 1) , y 5 0,1 j 1[ ]aj

0 0 0y 5 u 5 c 5 0, (16)2 2 2

where aj 5 Rd/Rd,j. From the definitions of e and aj,
Williams (1991) derived two relationships,

e 5 1/a1 2 1/a2, (1/a1)2 1 (1/a2)2 5 2, (17)

which show that e uniquely determines the mean flow
in the upper layer. Together with r the basic state is
specified. Without loss of generality, the north side (y
. 0) is chosen to be shallower; H11 . H12 (or a2 .
a1); e varies between zero and 2 while r varies fromÏ
zero to infinity.

Special cases of the PV-front model used here were
considered in the past and applied to the Gulf Stream,
when e 5 2, H12 5 0, and the model reduces to theÏ
outcropping front studied by Killworth et al. (1984).
The QG case is recovered in the limit e 5 0 (BPT). The
above model in the limit r → ` becomes the 1 -layer1

2

model studied for e 5 2 by Stommel (1965) andÏ
Paldor (1983), for variable e by Williams (1991), and
for e 5 0 by Pratt and Stern (1986). In BPT and Boss
(1996) we summarize the results found in those studies
and interpret them in terms of the linearized waves
found in them. In particular, we find that the PV-front
model is baroclinically unstable for all values of e and
finite r and that the linearized QG solution approximates
well the solutions found for all values of e.

b. Zonal mean flow modification

To examine the modification to the zonal flow by the
waves, the governing equations (12)–(14) are zonally
averaged. Denoting the zonal average by an overbar and
the deviation from it by a prime superscript,

e(] 1 u · =)u 1 k 3 u 1 =c 5 2eu9 · =u9,t n n n n n n

(18)

e(h 1 = · (h u )) 1 = · u 5 2e= · (h9u9),1,t 1 1 1 1 1

(19)

e(h 1 = · (h u )) 1 (r 2 1)= · u 5 2e= · (h9u9).2,t 2 2 2 2 2

(20)

The time rate of change of the zonal mean flow is forced
by correlations of terms having no zonal mean structure
(Phillips 1954). Equations (12)–(14) and (18)–(20) are
applied in two different ways: first, we assume that the
instability has small amplitude (and is thus early in its
evolution) and expand the variables in the perturbation
amplitude to find the quasi-linear equations describing
the mean flow modifications. Then, the solutions of this
analytical approach are compared with numerical so-
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lutions of fully nonlinear and dissipative models by tak-
ing the results of the models and directly calculating
(18)–(20).

c. Quasi-linear formulation

We use a perturbation method similar to that of Phil-
lips (1954) and Shepherd (1983) to solve for the mod-
ification to the mean quantities using (12)–(14) and
(18)–(20). We extend the work of Phillips (1954) and
Shepherd (1983) by considering flow with finite Rossby
number.

To understand the first-order effect of the unstable
waves on the mean flow, the deviation from the basic-
state flow is assumed to be small relative to the scales
of the basic state [i.e., max(u9) K 1] and to have me-
ridionally varying amplitudes and normal-mode struc-
ture,

i(kx2vt)u9 5 aRe{u9(y)e },

where u denotes any variable and a denotes the initial
amplitude of the perturbation. For unstable flows the
frequency v is complex with its imaginary part, vI, the
growth rate. The solution for u9(y) is found by linear-
izing (12)–(14) about the basic zonal-mean flow and
solving for the normal modes (BPT).

The modification of the mean flow in the quasi-linear
theory is then found by substituting the perturbation
solution found by BPT into the rhs of (18)–(20). Since

1
if if 2Im{f}Re{A( y)e }Re{B( y)e } 5 Re{A( y)B( y)*}e ,

2

where the asterisk denotes the complex conjugate and
f the phase, the mean flow modifications are O(a2) and
are proportional to . The mean flow variables are2v tIe
thus expanded in two orders in amplitude, u 5 u0(y) 1

.2 2v tIa ũ(y)e
Following the above prescription and keeping terms

only to O(a2), the mean flow acceleration is given by
22v t 0Ieu e 5 2v eũ 5 2ỹ (eu 2 1) 2 ey9u9 , (21)nt I n n ny n ny

22v tIey e 5 2v eỹ 5 2ũ 2 c̃ 2 eu9y9 2 ey9y9 .nt I n n ny n nx n ny

(22)

Likewise, the zonal mean mass balance is

5 5 2( 2 e( )y. (23)22v t 0Ieh e 2v eh̃ h ỹ ) h9y9nt I nt n n y n n

Since there is no mean zonal pressure gradient, there
cannot be a zonal-mean meridional geostrophic velocity.
Thus is O(e).ỹ n

First, the mean meridional mass balance is consid-
ered; the total meridional mass transport in each layer
is y nhn . Summing over the layers (i.e., vertically inte-
grating) and performing the amplitude expansion, the
total mean meridional mass transport is to O(a2):

1 1 e ( 2 ) 5 0.0 0h ỹ h ỹ h9 y9 y91 1 2 2 1 1 2 (24)

The first two terms make up what we term the Eulerian

mean (EM) mass transport, which vanishes identically
for a geostrophic perturbation (where 2 5 )y9 y9 h91 2 1x

and is in general nonzero, even for some stable waves.
The total mass transport given by (24) leads to the def-
inition of a velocity that is nondivergent and zero for
stable waves. This velocity is termed the transformed
Eulerian mean (TEM) velocity (Andrews and McIntyre
1976; Shepherd 1983: also referred to as residual mean
velocity) and is given by

e(h9y9) h yn n n ny* [ ỹ 1 5 . (25)n n 0 0h hn n

The meridional TEM velocity is the total meridionaly*n
mass (heat) transport in a layer, hny n , divided by the
zonal-mean layer depth. As for the EM meridional ve-
locity , the TEM meridional velocity is O(e). Sub-ỹ y*n n

stituting into (22)–(23) gives

2v ey* 1 ũ 1 c̃ 5 2eu9y9 2 ey9y9I n n ny n nx n ny

(h9y9)n n21 2e v (26)I 0hn

and

1 ( 5 0.02v eh̃ h y*)I n n n y (27)

An additional advantage of the TEM formulation is
that under nonacceleration conditions (Charney and
Drazin 1961), when the motion is linear, steady, and
adiabatic, the TEM meridional velocity vanishes al-
though the EM may not (Andrews and McIntyre 1976).
Thus, the presence of a TEM circulation is evidence of
processes that are changing the mean flow.

The zonal mean-flow acceleration (21) can be re-
written as

2vIeũn 5 1 ) 5 y nza,n .0 0h (y*q y9q9n n n n n (28)

The mean-flow acceleration is driven by the meridional
flux of absolute vorticity (za). Rhines (1977) derived
this equation for the QG case, and here it is shown to
be true for a shallow-water layered fluid with finite
Rossby number as well.

3. Small amplitude mean flow modifications

In this section we compute the mean flow modifi-
cations and the meridional mass balance using the the-
ory introduced above. A depth ratio r 5 8 is chosen so
that, at least qualitatively, the result could be applied
the results to the Gulf Stream east of Cape Hatteras
where the total depth is ;4000 m and the mean ther-
mocline depth is ;500 m. Flows with several different
Rossby numbers are considered. For e 5 2/2 the jetÏ
speed is 1.91 m s21, similar to that observed in the Gulf
Stream (Johns et al. 1995) while the baroclinic transport
is 73 Sv (Sv [ 106 m3 s21), 40% higher than the ob-
served transport (Hogg 1992). With g9 5 0.0153 m s22

(Kim and Watts 1994) and H1 5 500 m, the Gulf Stream
Rossby number is 0.72. For the SW model with e 5
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FIG. 2. The transformed Eulerian mean meridional velocity (upper panels), Eulerian mean meridional velocity (middle panels), and mean
zonal acceleration (bottom panels) multiplied by the zonal-mean layer thickness (hn 5 ). Solid line (dotted line) denote the upper (lower)0hn

layer. For QG (left panels), e 5 0.71 is assumed. All variables are normalized by a2, where a 5 [2 max(m1(0))]/l, for each case. An asterisk
at the origin denotes a negative d function of the zonal mean-flow acceleration (see text). A broken line denotes the position of the outcropping
front.

2/2, the instability’s maximum growth rate is 0.05e · fÏ
; 0.27 day21 (BPT, Fig. 7), slightly higher than 0.22
day21 observed in the Gulf Stream by Watts and Johns
(1982). The maximum jet velocity, its transport, and the
growth rate all decrease with e and t (BPT, Fig. 7). The
model’s mean flow and linear characteristics seem to
reproduce those of the Gulf Stream reasonably well.

We define the perturbation amplitude a [ 2m9(y 51

/l, which is the ratio of the maximum horizontal dis-0)
placement of the front [ (y 5 0), see (A4)] to them91
(dimensional) meander wavelength l. The horizontal
displacement of the front (dimensional) will be given
by al/2 and since the most unstable wave has length
typically 10.5Rd, (y 5 0) 5 a 3 5.25Rd. We nor-m91
malize all solutions by O(a2). We also multiply all the
computed meridional velocities by the zonal-mean
thickness (h n) so that we are considering mass transport,
and the quantities have a meaningful value at y 5 0 in
the case of the outcropping front (where h 1 5 0).

In order to find the mean-flow modification, the pro-
cedure is to first solve for the TEM velocity and then
use that result to find the EM velocity and the mean-
flow acceleration. The solution method for finding the
TEM velocity is described in appendix A. The mean-
flow quantities are computed for three different cases.
The first case has e 5 2/2, but the QG approximationÏ
is assumed (with most unstable wavenumber k 5 0.58).
In the second case, the same e is used, but the SW

equations are used (k 5 0.6), and in the final case, the
front outcrops (which implies e 5 2, k 5 0.63). Cal-Ï
culations were also done for values of e in the nonout-
cropping SW up to e 5 1.3. In all of the mean-flow
quantities, the nonoutcropping SW results seem to ap-
proach those of the outcropping front as e approaches

2. The outcropping case requires special consider-Ï
ation, applying boundary conditions at the outcrop (ap-
pendix A).

A cautionary note is warranted here. The outcropping
problem can be solved for an infinitesimal perturbation
for its linear stability characteristics by arguing that a
streamwise coordinate system can be assumed (Kill-
worth et al. 1984; BPT). Some difficulty arises when
zonal averaging is applied to regions where only part
of the latitude line is covered with fluid (Hayashi and
Young 1987). A satisfactory answer to this problem is
beyond the scope of this paper, yet it is self-consistent
to solve the quasi-linear equations, which apply on the
undistorted band of latitudes (Hayashi and Young 1987)
using boundary conditions that take the frontal mean-
dering into account (appendix A). It should be kept in
mind that the quasi-linear results cannot be compared
to numerical results in the areas of a distorted band of
latitudes near a finite-amplitude meandering front.

In the upper layer the mean flow is accelerated ev-
erywhere except for a d-function deceleration at the
origin ( ũnt, Fig. 2), where the eddy forcing is con-0hn
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centrated due to the discontinuity in PV [(28) and (A7)].
In the case of an outcropping front, the singularity dis-
appears since PV in the upper layer is constant. In the
lower layer, mean-flow acceleration occurs below the
jet and deceleration occurs at the flanks; the maximum
in zonal acceleration (multiplied by ) in the lower0hn

layer is slightly south of the front for e 5 2/2 andÏ
this shift increases with increasing e. This results be-
cause in the lower layer, the maximum in the mean PV
gradient shifts south as e increases and with it the max-
imum in perturbation amplitude (BPT, Fig. 6). When
the front outcrops, the maximum in zonal acceleration
in both layers is well away from the front. The accel-
eration in both layers is sensitive to the presence of mean
flow meridional shear (28) and thus varies significantly
in the different flow configurations [see also Shepherd
(1987)].

The EM transports ( ) are vertically nondivergent0h ỹn n

for QG (24) and only slightly nondivergent for SW (Fig.
2). In the nonoutcropping cases, the EM circulation con-
sists of three meridional cells similar to the results of
Phillips (1954) and Shepherd (1983). In the outcropping
case, only two counterrotating cells are present. The
lower-layer mean flow modification vanishes north of
the front since there are only evanescent tails of the
perturbation variables (Killworth et al. 1984) there and

5 0. The EM meridional transport decreases to zeroh9n
at the front as e increases and the outcropping case is
approached. The maximum in the EM velocity shifts to
the south with increasing e in the lower layer but not
in the upper layer.

The TEM transport or meridional mass transport is
in the direction to reduce potential energy, a signature
of baroclinic instability (Fig. 2). It has opposite direction
to that of the EM transport in much of the domain. In
all cases, is maximum at the PV front, y 5 0 (Fig.0h y*n n

2) where the thickness gradient is the largest. In the
upper layer of the outcropping case, the mass flux at
the front is performed only by eddies (note that the EM
transport is zero there). Under the QG approximation,
both the EM and the TEM velocities are O(e) and we
find that in SW, the amplitude of is a continuous0h y*n n

monotonic function of e (not shown).
The meridional structure of the TEM transport is gov-

erned by the baroclinic deformation radius (1/Rd,i51 1
1/Rd,i52)21, which in QG appears as (r 2 1)/r in (A9),
the scale of the homogeneous solution. The meridional
scale of the eddy fluxes is shorter and contributes to the
solution as can be seen in the EM velocity (Fig. 2). The
upper-layer zonal acceleration is proportional to the
TEM velocity everywhere (28), except at the origin,
where is a d function in the opposite direction (A7).y9q91 1

The north–south asymmetry that appears in the calcu-
lation in SW exists because the Rossby radii are dif-
ferent on either side of the front, changing the decay
scales of all of the flow variables.

Numerical models results with a small
amplitude meander

The changes in the mean flow and the meridional
mass transports described in the previous section should
only hold for small amplitude meanders as they are
derived by performing an amplitude expansion. We
check the quasi-linear results against numerical models
results with small (but finite) meander amplitudes. We
use two different models: a semispectral, doubly peri-
odic rigid-lid QG model as described in Flierl et al.
(1987) and a free surface isopycnal model developed
by Hallberg (1995). We find in most cases that the small
amplitude theory does well in predicting the changes to
the mean flow. The details of the model runs and their
parameters can be found in appendix B.

The QG results compare well with the theoretical ones
(compare the left panels of Figs. 2 and 3). The meander
amplitude is 0.1 (dimensionally, the displacement of the
front is 1.05Rd). The numerical model results are
smoother because there is diffusion in the numerical
model. The initial maximum jet velocity is therefore
reduced in the upper layer. Differences in circulation
intensity are expected due to errors in the amplitude
estimation (;615%) and in maximum mean zonal ve-
locity, which was about 30% smaller than U0. We use
(21) and (25) to compute the EM velocities from the
acceleration and neglect the dissipation (see appendix
B). According to theory, the TEM velocity should be
equal and opposite in the two layers, but because dis-
sipation acts differently in the two layers (the velocity
shear is larger in the upper layer and thus diffusion is
more important there) and because the TEM is a di-
agnostic quantity in QG, small differences appear. This
error also appears in the EM velocities that are not ex-
actly equal and opposite at the front. All variables are
symmetric. This symmetry persists as the instability de-
velops and is a strong constraint on the QG dynamics
(see below and Nakamura 1993b).

In the SW case of e 5 2/2 and a meander amplitudeÏ
of 0.17 (center panels of Figs. 2 and 3) the TEM is equal
and opposite between the layers (a statement that the
model conserves mass). The meridional scale of most
variables is larger than predicted by the small amplitude
theory due to the finite meander amplitude, which in
the numerical runs is comparable to the meridional scale
in the small amplitude theory. As for QG, the model
variables are continuous, smoother than in the theoret-
ical solutions, and agree well in both structure and mag-
nitude (Figs. 2 and 3). Potential errors are due to the
perturbation amplitude estimation (610%) and the re-
duction of the maximum mean-flow velocity (;40%)
from U0. Unlike QG, the SW, EM, and TEM velocities
are slightly asymmetric, consistent with the asymmetry
of the mean flow (5)–(6) and the perturbations as found
in the linear stability analysis (BPT). There is a small
EM velocity in regions where TEM is zero. This feature
was absent when we analyzed the same mean flow with
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FIG. 3. TEM meridional velocity, EM meridional velocity, and mean-flow acceleration multiplied by the mean layer depth hn for model
of PV front ranging from QG (assuming e 5 0.71) to a SW outcropping front. Solid (dotted) line denotes upper (lower) layer values. All
the variables are normalized by the square of the perturbation amplitude, which for the model ranged from a ; 0.1–0.26 as e varied from
QG to the outcropping front (for the meander amplitude in Rd multiply by ;5.25). Theoretical predictions for the various cases are displayed
in Fig. 2.

a rigid-lid configuration of the isopycnal Miami Com-
munity Model (MICOM; Bleck and Boudra 1981), and
it is therefore concluded that this result is due to an
external (barotropic) mode.

In the previous section it was argued that near the
meandering front (2a , y , a, a 5 2.73Rd for the
results of Fig. 3) the quasi-linear solution, derived as-
suming undistorted latitudes, does not represent well
those of the numerical model. Indeed, agreement be-
tween the two improves with distance from the front.

In both the zonal acceleration and EM velocity, a
strong peak is observed at the southern edge of the
outcropping front. In the acceleration, it is reminiscent
of the spike observed in the nonoutcropping front due
to the singularity in [(28), bottom panels of Figs.y9q91 1

2 and 3]. The outcropping case in the numerical model
has a PV source due to viscous processes damping the
mean flow at the meandering front. The zonal velocity
has the three cell structure of the nonoutcropping front,
the third to the north of the initial frontal position, where
the theoretical result is not expected to apply. The mean
Eulerian circulations of the outcropping front are very
similar to those of the nonoutcropping front (compare
center and right panels of Fig. 3), although the south-
ward shifts of the circulation maximum are more ap-
parent in the outcropping case. As in the nonoutcropping
case, an external (barotropic) mode with a large merid-
ional scale (the barotropic deformation radius) is ob-

served. This mode does not grow and is overwhelmed
by the growing baroclinic mode as the meander ampli-
tude grows.

4. Large amplitude evolution and equilibration

As the meanders grow and equilibrate, the structure
of the flow fundamentally changes. The question ad-
dressed in this section is whether the insight gained from
the quasi-linear theory can help to understand the sub-
sequent evolution of the flow field. We find that the
qualitative structure of the mass flux predicted by the
quasi-linear theory holds even at finite amplitude and
that the seeds of equilibration of the instability can also
be found in the quasi-linear theory. Qualitative differ-
ences between QG and SW predictions become more
pronounced as the meanders grow to large amplitude.

To set the analysis in a context, the energetics of the
unstable system is considered. The energetics evolution
is very similar among the different flow configurations
(Fig. 4). In each case, prior to equilibration, the per-
turbation energy grows exponentially with a growth rate
similar to but slightly less than that predicted by the
linear stability calculation for the most unstable wave.
The reduction of growth is most likely due to the pres-
ence of dissipation in the numerical model (e.g., Ped-
losky 1987, his section 7.12). The depth-integrated zon-
al mean kinetic energy decreases (in the lower layer it
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FIG. 4. The evolution of total energy (solid), zonal mean energy (dashed), perturbation energy (dotted), and mean kinetic energy (dot-
dashed) as a function of time for models ranging from a QG PV front to the outcropping SW front. The solid line parallel to the perturbation
energy curve represents the theoretical growth rate of the instability, exp(2vIt). Open circles on the x axis denote the times at which the
analysis of data was performed. Note the different axes scale for the different model runs.

FIG. 5. TEM (left panels), EM (center panels) velocities, and zonal acceleration (right panels) at large amplitude for the QG PV front.
Upper (lower) layer values are denoted by solid (dotted) lines. All are normalized by the square of the meander amplitude with a 5 (0.75,
1.8, 2.4).

increases, not shown) even though the y-integrated zonal
momentum is conserved because, as predicted from the
quasi-linear theory, the upper-layer jet decelerates at the
center but accelerates at the flanks (Fig. 3). The per-
turbation energy increases until equilibration where it
is begins to oscillate (Fig. 4), with a superimposed slow
(algebraic) growth over a longer timescale (not shown).
Note that the perturbation derives its energy from both
the kinetic and potential energy of the mean flow and
thus the flow may (erroneously) be interpreted as evi-
dence of a mixed (barotropic–baroclinic) instability. The

mean flow satisfies only the criteria for baroclinic in-
stability, pointing to the fact that the energetics does
not provide sufficient information about the type of in-
stability taking place (Plumb 1983).

QG

As the primary instability equilibrates both the EM
and TEM, meridional velocities of the QG case have a
similar meridional structure to that of the linear phase
of the instability (compare Figs. 3 and 5). The magni-
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FIG. 6. Barotropic (dotted line) and baroclinic (solid line) mean zonal velocity (left panels, normalized by U0), upper-layer depth (center
panels, normalized by mean upper-layer thickness), and position of the PV front (right panels). The PV front position is represented by the
location where q1 5 q1(t 5 0, y 5 0).

tudes of both velocities are reduced (when normalized
by the perturbation squared; their absolute magnitude
actually increases, as long as the perturbation energy
does), and their meridional extent increases with the
increase in the growth of the meandering front (Fig. 5).

The only dramatic change as a function of time is
observed in the mean flow, which becomes barotropic
at the center of the jet while becoming strongly baro-
clinic on the jet’s flanks (Fig. 6). This structure is con-
sistent with the quasi-linear theory, which predicts a
deceleration of the flow in the upper layer at the front,
acceleration on the flanks, and an acceleration at the
front in the lower layer. As the instability equilibrates
and meander growth is slowed, the northern and south-
ern side of the front are sheared eastward relative to the
center.

The presence of barotropic shear was found to reduce
the growth rate of baroclinic instability (James 1987;
Nakamura 1993b). Together with the reduction in the
available potential energy at the flanks, subsequent (sec-
ondary) instability growth is expected to be slower than
the primary instability. Barotropization of the flow is
expected from (28). The equilibration therefore results
as from the action of the barotropic shear, accelerated
by the growing instability, which causes a reduction in
growth and subsequent shearing of the coherent struc-
ture of the primary instability. This scenario was termed
the barotropic governor by Nakamura (1993a,b).

The QG model equations and initial profile are sym-
metric about y 5 0 for all amplitudes (for a proof in a
similar case see Nakamura 1993a). This symmetry con-
straint does not appear in the SW, resulting in a major

difference at finite amplitude between the QG and non-
QG flows studied here.

1) INTERMEDIATE e

Shallow water mean flow evolution proceeds simi-
larly to that of QG except for the increase in the north–
south asymmetry as time increases, especially in the
EM meridional transport, although the three-cell struc-
ture is maintained. The quasi-linear predictions quali-
tatively hold and the small-amplitude structure is main-
tained (compare Figs. 3 and 2 to Fig. 7). The EM me-
ridional velocity becomes more asymmetric with time.
Unlike QG, the barotropic flow becomes more antisym-
metric after equilibration (t ; 225), which results in
strong asymmetries in the shape of the front (Fig. 8).
The baroclinic flow remains fairly symmetric as it did
in QG.

2) OUTCROPPING FRONT

The evolution and mean-flow structures of the out-
cropping front evolution are qualitatively similar to the
nonoutcropping ones. There is a slight difference in me-
ridional scale (Figs. 9,10). The outcropping front has a
cusplike structure (with long tendrils that are formed as
the amplitude grows and are mixed into the surrounding
fluid). The evolution of the h1 5 1 (500 m) isobath
looks very similar to the frontal evolution seen for the
asymmetrically evolving nonoutcropping front.

Unlike QG, the location of the PV front is displaced
relative to the jet maximum (close to where h1 5 1 in



282 VOLUME 29J O U R N A L O F P H Y S I C A L O C E A N O G R A P H Y

FIG. 7. Same as Fig. 5 but for the SW PV front with e 5 0.71.

FIG. 8. Same as Fig. 6 but for the SW PV front with e 5 0.71.

Fig. 10). This is due to the southward displacement of
the maximum in the lower-layer wave amplitude to
where there is a PV gradient (BPT, Fig. 6). The sepa-
ration of the PV front and jet occurs for all e . 0, being
most pronounced for the outcropping front. Numerical
dissipation of the jet at the outcropping front in the upper
layer also contributes to the shift southward of the jet.

5. Discussion and conclusions
In this paper, we formulated and solved the quasi-

linear mean-flow modification for small amplitude me-

anders for a two-layer baroclinically unstable current.
We then proceeded to calculate the same quantities in
numerical models both at small and finite amplitude. We
find the results to be similar for flows ranging from a
QG PV front to a SW outcropping front and to hold
qualitatively from small to finite amplitude.

The quasigeostrophic approximation misses the
asymmetry inherent in SW when the layer depths vary
meridionally and the Rossby radius changes. Thus, the
fixed stratification assumed in QG causes qualitative
errors in the structure of the mean-flow variables. How-
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FIG. 9. Same as Fig. 5 but for the outcropping front.

FIG. 10. Same as Fig. 6 but for the outcropping front. Front position is contoured by the position where h1 5 0.0002 (the outcrop), and
the h1 5 1 contour is also shown for comparison with Fig. 8.

ever, the baroclinic evolution is similar for all models
as well as the structure of the mass transport. This sim-
ilarity also validates the use of R d as the horizontal scale
of the problem for all e [as opposed to, for instance,
max(Rdj)]. This is important when one is interested in
using the QG approximation to model geophysical flows
with O(1) Rossby numbers.

A second difference between QG and non-QG dy-
namics is that in finite amplitude the meandering jet is

displaced relative to the PV front. This can be traced
to the small-amplitude analysis (BPT) where we find
the lower-layer perturbation maximum to shift to the
south of the PV front, to where the mean PV gradient
shifts in the lower layer. As the perturbation grows, the
jet’s core shifts south relative to the PV front. This shift
was found by Wood (1988) in a numerical model anal-
ysis of an outcropping front, yet he was not able to
explain why it was not found in Ikeda’s (1981) QG
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model. Wood found this shift to be consistent with ob-
servations from the Gulf Stream where deep westward
recirculation is displaced south relative to the surface
jet.

The results of the small-amplitude analysis are found
to have predictive value for finite-amplitude perturba-
tions, even beyond the primary instability equilibration.
The TEM cell is unidirectional as long as the mean layer
interface slope is monotonic with some modification in
structure as it reverses sign. Barotropization of the mean
flow is predicted by the small-amplitude theory, with
the mean barotropic velocity being larger than the mean
baroclinic velocity in regions where instability has al-
ready taken place. This barotropization has a funda-
mental role in equilibrating the instability. The small-
amplitude theory breaks down in the prediction of the
meridional length scale as the meander amplitude grows
and the meridional length scale changes from the Rossby
radius to the meander amplitude.

The similarities between outcropping and nonout-
cropping SW front in the evolution of the h 5 1 isobath
and the structure of the mean variables suggests that the
outcrop, while a material barrier, does not influence the
qualitative evolution of the instability. This implies that
the specific choice of discretization into isopycnal layers
for model design is not very important, even when out-
cropping isopycnals are incorporated. Of course, the
number of layers, their angle to the horizontal, and the
density differences between the layers are all crucial for
the dynamics.

The PV-front model analyzed here does not include
planetary PV gradient (the b effect), continuous strat-
ification, topographic slope, and wind-driven conver-
gence, all of which probably have an important influence
on Gulf Stream meandering. Another limitation in ap-
plication of the PV-front model to the Gulf Stream is
that the analytical methods used in our study allow only
the study of modal waves that are periodic in both the
alongfront direction and time [see Boss (1996) for a
detailed treatment of these limitations].

Despite its limitations the PV front exhibits several
features that are consistent with Gulf Stream observa-
tions. First, the basic flow structure captures the PV front
observed (Hall and Foffonof 1993) and the baroclinicity
of the jet as it leaves the coast. The growth rate of the
most-unstable mode is similar to the growth rate of Gulf
Stream meanders. Hogg (1992) finds the Gulf Stream
alongstream transport relative to 1000 db (a surface-
layer transport) to be constant from 738W near Cape
Hatteras to 558W where Gulf Stream meanders are O(1).
Similarly, in the PV-front model, the upper layer has
the same transport through the development of the in-
stability, which for the model is a statement of conser-
vation of zonal momentum (] t ∫ hnun dy 5 0).

Watts and coworkers found that QG diagnostics are
very useful for interpretation of Gulf Stream data and
give similar results to those derived without the QG
assumptions (Lindstrom and Watts 1994). This is true

in spite of the large Rossby number of the Gulf Stream
flow (;0.7, based on Kim and Watts 1994). Through
our analysis, we find that for geostrophic instabilities,
QG flows approximate well non-QG flows.

Bower et al. (1985) and Hall and Fofonoff (1993)
found the PV front of the Gulf Stream to be displaced
to the north (the cyclonic side) of the jet in regions
where the jet meanders are O(1). Hall and Fofonoff
(1993) PV sections at 688W and 558W suggest that this
separation increases downstream, where meander am-
plitude increases. This is consistent with our finding that
for a finite Rossby number flow, the two will be dis-
placed and that this displacement increases with the me-
ander amplitude.

The general conclusions of our study have implica-
tions for the way the Gulf Stream and similar oceano-
graphic currents have been dynamically interpreted.
Quasigeostrophic theory has been used extensively for
the dynamical understanding of the Gulf Stream. Our
study shows that QG theory does work well for geo-
strophic instabilities, as long as the appropriate scaling
is used. While linear analysis has also been used in the
past for the interpretation of Gulf Stream meanders, we
use quasi-linear theory to find mean-flow modification
from the unstable waves. This allows the study of the
causes of the changes in the mean structure of the current
as one moves downstream. This analysis of mean-flow
modification also allows the explicit linkage of the un-
stable waves to mean-flow modification and the sub-
sequent increase of the barotropic current and the gen-
eration of the Gulf Stream recirculation by eddy poten-
tial vorticity fluxes. The evolution of the Gulf Stream
as it moves into the extension region can also be inter-
preted as the equilibration of the Gulf Stream as an
unstable flow, and we provide a scenario for under-
standing how this takes place and, in the process, show
that additional effects such as topography are not needed
to understand the equilibration.
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APPENDIX A

Method of Solution of the Mean-Flow
Quasi-Linear Equations

In order to solve for the TEM meridional velocity we
combine (21), (26), and (27) to get an equation for

[ 5 h1y 1 ,V* h y*1 1 1
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1 1
0 0 2 2V* 2 V* q 1 q 1 4v e 11yy 1 1 2 I 0 01 2[ ]h h1 2

05 h y9q91 1 1

0 22 h y9q9 2v e (u9y9 1 y9y9 2 u9y9 1 y9y9 )2 2 2 I 1 1x 1 1y 2 2x 2 2y

(h9y9) (h9y9)1 1 2 22 324v e 2 ,I 0 01 2h h1 2

(A1)

where we have substituted 2vI for ] t.
Equation (A1) is a second-order ODE, whose rhs we

know from the O(a) solutions. The growth rate (vI) is
small [O(0.1)] for all e and therefore the same terms
that dominate in QG dominate in the SW solution.

The boundary conditions (BCs) and matching con-
ditions for the nonoutcropping front are

V*(y 5 6`) 5 0 and1

b

1 0[dV*/dy] 5 lim h q9y9 dy, (A2)1 2 E 1 1 1
b→0 2b

where [ u(01) 2 u(02). The BC is that the solution1[u]2

is trapped to the front (as are the perturbations), while
the matching condition is derived from (A1) requiring
that , the mass flux, be continuous at y 5 0.V*1

For the outcropping case there is an additional bound-
ary condition at the outcrop, y 5 0. There is finiteỹ (0)1

while (0) 5 0 in (25) so that0h1

5 e (y 5 0).2V*(y 5 0 ) h9y91 1 1

The PV flux composes part of the forcing terms on
the rhs of (A1) and can be found as follows. The PV
is governed by Dqn/Dt 5 0. The O(a) PV evolution
equation is (after division by ei(kx2vt))

Dn 5 ik( 2 c) 5 2 ,0 0q9 u q9 y9qn n n n ny (A3)

which can be combined into

Dn( 1 ) 5 0,0q9 m9qn n ny (A4)

where the meridional displacement is found from /Dm91
Dt 5 ik( 2 c) 5 . If we assume no initial per-0u m9 y91 1 1

turbation in the PV (Rhines and Holland 1979), then

5 2 .0q9 m9qn n ny (A5)

For the PV-front model

5 d(y)(q12 2 q11)0q1y (A6)

so that

5 2 5 d(y)(q11 2 q12) .0y9q9 q y9m9 y9m91 1 1y 1 1 1 1 (A7)

Here d(y) denotes a d function centered at y 5 0. Thus,
the matching condition in (30) becomes

5 (q11 2 q12) (0) (0) (0) .1 0[dV*/dy] h y9 m91 2 1 1 1 (A8)

For a QG flow the TEM equation (A1) simplifies to

r
V* 2 V* 5 ey9u9 1 ey9u9 2 e(h9y9)1yy 1 1 1y 2 2y 1 11 2r 2 1

e(h9y9)2 21
r 2 1

0 05 h y9q9 2 h y9q9 .1 1 1 2 2 2 (A9)

Equation (A9) can be solved analytically, once the rhs
is evaluated from the O(a) solution. Substituting (A7),
(A9) becomes

r
V* 2 V* 5 d(y)(q 2 q )y9m91yy 1 11 12 1 11 2r 2 1

2 (r 2 1)y9q9 . (A10)2 2

Using the Green’s function technique (e.g., Bender and
Orzag 1978, 16–19),

`(r 2 1)g
2|y2a| /gV*(y) 5 e y9q9(a) da1 E 2 22

2`

2|y| /gge
1 (q 2 q )y9(0)m9(0), (A11)12 11 1 12

where the Green’s function is 2ge2|y2a|/g/2 and g [
(r 2 1)/r. u 1(0) 5 1 and q12 2 q11 5 2e 1 O(e2)Ï

(BPT) so that
`(r 2 1)g

2|y2a| /gV*(y) 5 e y9q9(a) da1 E 2 22
2`

2|y| /g1 ege y9(0)m9(0). (A12)1 1

We solve (A1) for finite e using a relaxation technique
with the forcing given from the O(a) solution. Since the
domain is infinite, we first map to a finite domain, using
the monotonicity of U 5 in each of the half-infinite0u1

domains. Then (A1) is

1 2 5 F(U), (A13)2 2 2a U V* a UV* G(U)V*j 1UU j 1U 1

where ]y 5 6a jU]U and with

1 1 1
2 2 2G(U ) 5 a 1 1 4v e 1 ,j I0 0 01 2h h h2 1 2

0 0F(U ) 5 h y9q9 2 h y9q91 1 1 2 2 2

21 22v e (u9y9 2 u9y9 2 y9y9 1 y9y9 )I 2 2x 1 1x 1 1y 2 2y

(h9y9) (h9y9)1 22 32 4v e 1 .I 0 01 2h h1 2

The boundary conditions are 5 0 andV*(y 5 6`)1

(A2). The domain is discretized using O(100–1000) grid
intervals of equal DU. Writing the derivatives in their
finite difference form [we used second-order accurate
O(DU)2, e.g., Abramowitz and Stegun 1965], (A13) is
written as a matrix equation with the jump condition in

/dy used to patch the two half domains. In the out-dV*1
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TABLE B1. The different runs analyzed here: RE 5 U0 Rd /k for
QG and R 5 U0 R /n for the isopycnal SW model where k is the3

d

numerical Fickian diffusion coefficient (QG) and n the biharmonic
diffusion coefficient (SW). All the variables are nondimensionalized
by U0 and Rd.

Model Profile Dx 5 Dy Dt Re or R

QG QG 0.254 0.05 104

SW Ï2
e 5

2
0.247 0.015 5800

SW e 5 Ï2 0.235 0.03 795

cropping case the solution is calculated only in the south
side.

We tested our relaxation scheme by making sure the
QG solution is retrieved when e → 0 and by making
sure that zonal momentum is conserved.

APPENDIX B

Numerical Models Used and Their Parameters

We use two different numerical models: a semispec-
tral, doubly periodic rigid-lid QG model as described
in Flierl et al. (1987) and a free surface isopycnal model
developed by Hallberg (1995). The QG model has La-
placian dissipation, while the isopycnal model uses bi-
harmonic diffusion. Quantitative comparisons with a
rigid-lid version of the Miami community model (cour-
tesy of E. Chassignet) find good agreement for cases
with no outcropping layers. Unfortunately the rigid-lid
model was unsuccessful in the outcropping front case
because of a problem in the boundary conditions of the
Poisson solver for the barotropic mode (E. Chassignet
1996, personal communication). We therefore use a free-
surface model, even though it has additional dynamics
not encompassed by our analytical model, namely those
of barotropic waves.

All of the model runs are initialized with (5)–(6) as
the initial mean-flow profile with no flow in the lower
layer. The flow domain is chosen to be square with a
length three times the most unstable wavelength, as cal-
culated from theory (BPT). In order to accelerate the
growth of the most unstable normal mode, the flow in
the upper layer is initialized with a small-amplitude pe-
riodic perturbation (a 5 [2 (y 5 0)]/l ; 0.001–0.01)m91
that has some energy in the most unstable mode. The
perturbation has some PV signature (unlike the pure
normal mode), but it is much smaller then the back-
ground PV. Since the energy of the initial perturbation
is not only in the most unstable wave, the growth rate
of the perturbation energy does not initially increase
exponentially, nor can we observe the most unstable
mode (against its background) until its amplitude reach-
es O(0.05). One could not use a much smaller initial
perturbation because numerical dissipation would
strongly affect the mean flow before the perturbation
grows to O(1). The model runs analyzed are included
in Table B1. We performed many more runs, varying
dissipation, grid size, number of grid points (and thus
number of wavelengths in the domain), and time steps,
and did not find notable differences with the results
presented here.

We calculate the perturbation amplitude (a) as the
distance between the southern and northern maximum
(D) in zonal velocity divided by 2 and normalized by
half the meander wavelength, a 5 2D/l 6 2Dy/l. The
error in the estimation of a is due to the finite size of
grid boxes, and we used contour plots of the PV front
to refine the estimate of a at small amplitude. Until the

primary instability equilibrates, the amplitude is ob-
served to grow like . The meander propagation speedv tIe
(cr) also agrees well with linear instability calculation
(not shown).

In the QG approximation we cannot estimate the EM
and TEM velocities directly from the numerical output
since they are O(e) quantities. They are calculated di-
agnostically using the mean-flow acceleration equation
(28), which with a viscous term added is

eu 2 h (q y* 1 y9q9) 5 eu 2 h q ynt n n n n n nt n n n

1
5 u , (B1)nyyRe

where Re 5 n/(U0R d) is the Reynolds number and n
the numerical Laplacian viscosity. Since Re 5 104 for
the QG run presented here, the diffusive term is ne-
glected and we use (21) and (25) to calculate andy*n

: ũnt and the zonally averaged eddy correlations areỹ n

calculated directly from the numerical simulation (e.g.,
unt). The error is expected to be largest at the front in
the upper layer where the rhs of (42) is maximum.

In the shallow water case the mean zonal accelera-
tions hn unt and the mean meridional mass fluxes hny n

were calculated directly by zonally averaging the model
output. The EM velocity was calculated from (25).

All the results are nondimensionalized by U0 the ini-
tial maximum jet velocity H1, the initial meridional
mean upper-layer depth, and the Rossby radius based
on it, Rd 5 g9H1/ f.Ï

The model energetics are calculated using the stan-
dard method of dividing each variable to a zonal mean
(u) and a perturbation from it (u9 5 u 2 u). We then
calculate the mean zonal kinetic and potential energy
(calculated using u) and the perturbation energy that
results from correlation between perturbation quantities.
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