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ABSTRACT

The paper gives a theoretical study of the Benguela upwelling system by means of a relatively simple conceptual
model that allows an analytical treatment. The model consists of a stratified, flat-bottomed coastal ocean. The
coast is idealized by a straight wall. The model ocean is forced by an alongshore wind band extending from
the area near Cape Town to the border of Angola and Namibia. The wind varies alongshore and cross-shore
(wind stress curl) and changes periodically in time.

The response of the coastal ocean is governed by coastal jets, upwelling, and Kelvin waves, as well as by a
current system driven by the wind stress curl. The model is able to reproduce several observed features such
as the poleward undercurrent, the northward coastal currents in most of the wind band, and a southward coastal
current near the northern edge of the wind band.

Export of coastal jets out of the forcing area by coastal Kelvin waves provide a mechanism to guide energy
into the area off Cape Town. The southward propagating Kelvin waves may bend around the southern tip of
Africa and provide a dynamic linkage between the Benguela coastal current and the Agulhas Current.

1. Introduction

The Benguela Current is a broad northward flow off
southwestern Africa and is part of the South Atlantic
subtropical gyre. It is driven by large-scale wind patterns
and thermohaline forcing (Garzoli and Gordon 1996).
The currents close to the coast are known as the Ben-
guela upwelling system, which is forced locally by the
wind stress field off Southwest Africa (Nelson and
Hutchings 1983). General descriptions of the Benguela
upwelling system are given, for example, in the review
articles of Shannon (1985) and Shannon and Nelson
(1996).

The Benguela upwelling system stretches from the
southern tip of Africa to about 158–168S where it is
bounded by the Angola front, which separates the warm
water of the Angola Current from the cold Benguela
water. A schematic of the Benguela, which was redrawn
after Nelson and Hutchings (1983), Shannon (1985), and
Shannon and Nelson (1996), is shown in Fig. 1. In the
northern part of the Benguela upwelling system a pole-
ward surface flow is found that extends as far south as
178–188S. Yamagata and Iizuka (1995) found some in-
dications that coastal Kelvin waves, which originate
from equatorial Kelvin waves, carry downwelling
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southward. These waves might be a possible reason for
the occurrence of a poleward flow south of the Angola
front. The upwelling varies alongshore. The strongest
signals are found off Lüderitz, Namibia (Shannon 1985).

The area of the Benguela is exposed to a persistent
alongshore wind associated with the St. Helena high
pressure system. The upwelling favorable alongshore
wind has a maximum at about 258S and decreases to-
ward the northern and southern boundaries of the Ben-
guela system at the Angola front and the southern tip
of Africa, respectively. In the south the winds are highly
seasonal and reach a maximum during spring and sum-
mer (Boyd 1987; Shannon and Nelson 1996). North of
318S the seasonal variation is weaker with permanent
alongshore winds with a spring–summer maximum and
autumn minimum as far north as 258S. North of that
latitude the maximum occurs in late winter to spring.
The wind increases somewhat away from the coast. This
manifests in wind stress curl, as discussed in Bakun and
Nelson (1991) and Shannon and Nelson (1996).

As a simple model of the Benguela upwelling system
we consider a coastal ocean, with a north–south oriented
coast, forced by a band of alongshore wind with a bell-
shaped alongshore structure and a gradual increase of
the wind with increasing distance from the coast. The
time behavior of the wind can be described roughly by
a small seasonal cycle added to a constant wind. Im-
portant features of the eastern boundary upwelling sys-
tems can be illuminated by analytically tractable linear
models that describe the response of a coastal f -plane
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FIG. 1. A schematic of the surface flow and undercurrent in the
Benguela region, redrawn after Nelson and Hutchings (1983), Shan-
non (1985), and Shannon and Nelson (1996).

ocean to a band of constant alongshore wind (e.g.,
McCreary 1981; Fennel 1988).

For an inviscid coastal ocean we have the following
scenario: After a sudden onset of the wind, an accel-
erating coastally trapped downwind jet associated with
coastal upwelling develops inside the wind band. At the
northern edge of the band, Kelvin waves are generated,
which propagate with the coast to the left in the Southern
Hemisphere. The Kelvin waves arrest the coastal jet,
stop the upwelling, and establish an undercurrent. At
the southern edge the Kelvin waves export the coastal
surface jet, the upwelling, and the undercurrent into the
unforced area outside the wind band. Thus, after a spin-
up time, which is set by the time the coastal Kelvin
waves need to cross the wind band, the upwelling ceas-
es. This implies that only temporal variations of the
alongshore wind can excite new events of upwelling
and downwelling. This simple picture is significantly
modified if friction is included because then the trav-
elling distance of the Kelvin waves is limited. Addi-
tional features emerge if spatial variations of the wind
field are involved.

In this paper we develop an analytically tractable the-
ory that includes the cross- and alongshore structures
of the wind field and takes the annual cycle of the wind
into account. Cross-boundary wind variations, or equiv-
alently wind stress curl, drive Ekman divergences and
provide an additional source of upwelling as well as
downwind flows and countercurrents. Such flow pat-
terns are, for example, known in marginal ice zones
near ice edges (e.g., Fennel and Johannessen 1997). The
role of a wind-stress curl near a coastal boundary was

discussed by McCreary et al. (1987) to explain the oc-
currence of a coastal flow against the local wind off
California.

In the Benguela system the existence of southward
propagating Kelvin waves would imply an export of
energy outside the forcing area. The Kelvin waves can
bend around the southern tip of Africa and drive a west-
ward coastal flow along the southern coast, which may
affect the Agulhas Current south of Africa. The Agulhas
Current is the western boundary current of the southern
Indian Ocean, being most intense along the east coast
of southern Africa. South of Africa the Agulhas has
features of a free inertial jet, which starts to meander
and decays into eddies and rings in the Agulhas retro-
flection zone (see the review of Lutjeharms 1996).

There is some evidence of a certain dynamical linkage
between the Benguela coastal flow and the Agulhas.
Bang (1973) noted that nearly always vestiges of Agul-
has water can be observed west of Cape Town. Schu-
mann et al. (1982) and Shannon et al. (1983) showed
that upwelling extends along the south coast as far as
258E. In 1986 an intrusion of waters with the signature
of the Agulhas into the Benguela was observed (Shan-
non et al. 1990).

In this paper the following questions are addressed:

1) What part is played by coastal Kelvin waves and by
the wind stress curl in shaping the flows in the Ben-
guela upwelling system?

2) Is the poleward surface flow, which extends roughly
to Cape Frio at 178–188S, supported by wind stress
curl?

3) Is there a dynamical linkage between the northward
Benguela surface flow and the Agulhas Current?

The paper is arranged as follows. In section 2 the
theory and the model are outlined. Section 3 decribes
the analytical solution. A discussion of the results is
given in section 4 and the paper concludes with a sum-
mary and conclusions in section 5.

2. The model ocean

a. The model

We consider an f -plane ocean with a flat bottom at
depth H, bounded by a north–south oriented straight
coast. We assume a band of alongshore, southerly wind
field of the length 2a, which roughly covers the area
from Cape Town to the border of Angola and Namibia
in the north. A schematic of the model is shown in Fig.
2. The wind band has a length of roughly 158, which
corresponds to 1650 km, that is, a 5 825 km. We assume
a depth of H 5 1 km and choose the mean inertial
frequency as f (258S) 5 2p/1.2 d. Moreover, we use for
the first mode Rossby radius the value R1 5 55 km,
which is consistent with the global distribution of Ross-
by radii as discussed by Emery et al. (1984). Thus, the
length of the wind band equals 30R1 and the barotropic
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FIG. 2. A schematic of the simplified model of the eastern bound-
ary of Southwest Africa.

Rossby radius is R0 5 gH/ f 5 30R1. The scale ofÏ
the phase speed associated with the first baroclinic mode
is c1 5 fR1 5 290 km d21. A first mode baroclinic signal,
which propagates with the phase speed c1, would cross
the wind band in 6 days.

b. Basic equations

The theory is based on the linear, hydrostatic Bous-
sinesq equations for a flat-bottomed f -plane ocean in
the Southern Hemisphere, bounded by a north–south
oriented straight coast with vertical walls:

u 1 ru 1 fy 1 p 5 X, (1)t x

y 1 ry 2 fu 1 p 5 Y, (2)t y

2p 1 rp 2 N w 5 0, (3)zt z

u 1 y 1 w 5 0. (4)x y z

Here u, y , and w are the cross-shore, alongshore, and
vertical current components, respectively; p is the per-
turbation pressure divided by the density; f is the Cor-
iolis parameter; r is a linear friction rate; N is the Brunt–
Väisälä frequency; and X and Y are wind forces in the
x and y direction. The coast is along the y axis, that is,
x 5 0. The subscripts x, y, z, and t refer to partial
differentiation.

The boundary conditions on u and w are

u 5 0 for x 5 0, |u| , ` for x → 2` (5)

and

ptw 5 for z 5 0, w 5 0 for z 5 2H. (6)
g

The vertical coordinate z can be separated by expanding
the dynamical quantities into a series of vertical eigen-
functions, Fn(z),

`

f(x, y, z, t) 5 f (x, y, t)F (z), (7)O n n
n50

where f stands for u, y , and p. The Fn(z) are subject
to the vertical eigenvalue problem,

d 1 d
21 l F (z) 5 0, (8)n n21 2dz N dz

with the boundary conditions

2N (0)
F9(0) 1 F (0) 5 0, F9(2H ) 5 0.n n ng

For a constant N we have F0 5 1/ H, l0 5 1/ gH,Ï Ï
and

2 npz
F (z) 5 cos ,n 1 2!H H

np
l 5 , (n 5 1, 2, . . . ).n NH

Note that cn 5 1/ln 5 c1/n and Rn 5 R1/n.

c. Formal solution

A formal solution of the response of the sea to the
wind forcing is given by Fennel (1988). We use the
Fourier transforms with respect to y and t,

` dk dv
iky2ivtf (x, y, t) 5 e f (k, v, x), (9)n E n2p 2p

2`

where f stands for u, y , p, X, and Y. In the Fourier
domain Eqs. (1), (2), and (4) have the form

2ivu 1 fy 1 p 5 X , (10)n n nx n

2ivy 2 fu 1 ikp 5 Y , (11)n n n n

2u 1 iky 2 ivl p 5 0, (12)nx n n n

where v 5 v 1 ir. An equation for un alone can easily
be derived:

2 2 2 2d i(v l 2 k )n2u (x) 2 a u (x) 5 Xn n n n2dx v

k d
21 l f 1 Y , (13)n n1 2v dx
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where 5 ( f 2 2 v 2) 1 k2. Next we introduce a2 2a ln n

Green’s function by means of

2d
2G (x; x9) 2 a G (x; x9) 5 d(x 2 x9), (14)n n n2dx

with d(x 2 x9) being a Dirac function. The solution is

1
a (x1x9) 2a |x2x9|n nG (x; x9) 5 (e 2 e ). (15)n 2an

A formal solution for un can readily be obtained in terms
of a source representation by combining (13) and (14)
and using Green’s theorem.

The formal solution is

i k
2 2 2 2u (x, v, k) 5 (v l 2k )G · X 1 l fG · Y 1 G · Y , (16)n n n n n n n n nx9v v

2y (x, v, k) 5 2 fl G · X 1 G · Xn n n n nx n

2 2i vl kn2 2 21 vl Y 1 G · Y 1 k fl G · Y 2 fkl G · Y 2 G · Y , (17)n n nx n n n nx9 n nx n nx nx92 2 2 21 2v l 2 k R vn n

k
p (x, v, k) 5 2 G · X 2 G · Xn n n nx nv

2i k
2 21 kY 2 vl fG · Y 2 kG · Y 1 l fkG · Y 2 G · Y . (18)n nx n nx nx9 nx9 n nx nx92 21 2vl 2 k vn

Expressions like Gn · Yn stand for convolution integrals
of the Green’s function, Gn, and the forcing function
Yn:

0

G · Y 5 dx9G (x; x9)Y (x9). (19)n n E n n

2`

The set (16)–(18) gives the formal solution in the v–k
domain. In order to find an explicit solution we have to
specify the forcing functions.

d. Forcing function and parameter choices

The model is forced by an alongshore wind that varies
in space and time. For simplicity we use a smoothly
increasing and decreasing alongshore wind approaching
zero values near the southern tip of Africa at about 308S
and in the north at the border of Angola at 158S. We
choose the positive half-wave of a cosine profile; that
is,

Q(y) 5 u(a 2 |y|) cos(k0y), (20)

with k0 5 p/(2a) where 2a is the length of the wind
band. Here u(x) is the step function (u(x) 5 1 for x .
0 and u(x) 5 0 for x , 0).

The yearly cycle is simulated by a sinusoidal variation
added to a constant wind:

T(t) 5 1 1 f sc sin(v0t), (21)

where f sc controls the amplitude of the seasonal cycle
and with v0 5 2p/366 d21. Moreover, it is assumed that
the alongshore wind decreases toward the coast by about

25% within a strip of width l, which is assumed to be
of the order of the first mode Rossby radius, R1. We
choose the cross-shore wind profile P(x) as

P(x) 5 P u(2x 2 l)`

1 u(x 1 l)[P 2 g(x 1 l)], (22)`

where g 5 (P` 2 P0)/l determines the slope of the
decrease of the wind toward the coast. We set P` 5 1
and P0 5 0.75.

The maximum alongshore wind stress is assumed as
t y 5 1.2 dyn cm22, which is equivalent to the friction
velocity y 2

* 5 1.2 cm2 s22. This implies a maximum
wind stress curl of 4.5 3 1028 dyn cm23. This order of
magnitude is consistent with the findings of Shannon
and Nelson (1996), where the maps Bakun and Nelson
(1991) are slightly modified.

The wind is considered to enter the ocean as a volume
force evenly distributed over an upper mixed layer of
thickness Hmix. The forcing has the analytical shape

2y*Y(x, y, z, t) 5 u(z 1 H )T(t)Q( y)P(x). (23)mixHmix

The seasonal cycle and spatial structure of the model
wind are shown in Fig. 3. After Fourier transformation
with respect to t and y and expansion into vertical modes
we find

2y*Y (x, v, k) 5 T(v)Q(k)P(x), (24)n hn

where
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FIG. 3. The annual cycle (top) and the spatial structure (bottom) of
the model wind.

np
sin Hmix1 2H1 1 1 2

5 ; 5 for n $ 1! !h H h H np0 n

H (25)

and

T(v) 5 2pd(v)

p
1 f [d(v 1 v ) 2 d(v 2 v )], (26)sc 0 0i

sin[a(k 1 k )] sin[a(k 2 k )]0 0Q(k) 5 1 . (27)
k 1 k k 2 k0 0

3. Calculation of the response

Inserting the forcing (24) into (16) to (18) gives the
formal solution of our problem in Fourier space. Next
we have to estimate the convolution integrals Gn · P,
Gn · Px9, and Gnx · P, which are defined by (19) in an
obvious manner. The integration can easily be done if
the properties of Green’s function are used as described
in the appendix. In the following we employ the long-
wave approximation, kR1 K 1, and consider the low-
frequency limit v K f, and r K f. Then we find

2y gRnx/R (x2l)/R (2|x1l |)/R* n n nu (x, v, k) 5 T(v)Q(k) 2P(x) 1 P e 1 (e 2 e ) , (28)n 01 2fh 2n

2y l gRn nx/R x/R (x2l)/R x/R (x2l)/R (2|x1l |)/R* n n n n n ny (x, v, k) 5 T(v)Q(k)i P e 2 gR (e 2 e ) 1 (2e 2 e 2 e ) , (29)n 0 n1 2[ ]h k 1 vl 2vn n

2y 1
x/R x/R (x2l)/R* n n np (x, v, k) 5 T(v)Q(k)i 2P e 1 gR (e 2 e )n 0 n5 [h k 1 vln n

2fR gn x/R (x2l)/R (2|x1l |)/Rn n n1 P (x) 1 (22e 1 e 2 sgn(x 1 l)e ) . (30)x1 2 6]v 2

The Fourier transforms with respect to k amounts to
the estimation of the integral

` dk Q(k)
ikyI (y, v ) 5 e , (31)n E 2p k 1 vln2`

which gives explicitly

1
I (y, v ) 5 vl Q( y) 1 ik ^u(a 2 y){exp[ivl (a 2 y)] 2 sin(k y)}1n n 0 n 02 2 2v l 2 kn 0

1 u(2a 2 y){exp[2ivl (a 1 y)] 1 sin(k y)}& . (32)2n 0
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The Fourier transformation with respect to v involves
the integrals

` dv T(v)
2ivtT (t) 5 i eint E 2p v

2`

1 fsc5 1 [r sin(v t) 2 v cos(v t)] (33)0 0 02 2r v 1 r0

and

` dv
2ivtL (y, t) 5 iT(v)I (y, v )en E n2p

2`

fsc 2iv t05 iI (y, ir) 1 [I (y, 2v 1 ir)en n 02
iv t02 I (y, v 1 ir)e ].n 0 (34)

With (28)–(30) and (34) we find in the physical space

2y gRnx/R (x2l)/R (2|x1l |)/R* n n nu (x, y, t) 5 T(t)Q( y) 2P(x) 1 P e 1 (e 2 e )n 0[fh 2n

g
2 x/R (x2l)/R (2|x1l |)/Rn n n1 fT Q (y)R P 1 (22e 1 e 2 sgn(x 1 l)e ) , (35)int y n x1 2]2

2y
x/R x/R (x2l)/R x/R (x2l)/R (2|x1l |)/R* n n n n n ny (x, y, t) 5 l L (y, t)[P e 2 gR (e 2 e ) 1 T (t)Q( y)gR (2e 2 e 2 e )] , (36)1 2n n n 0 n int nhn

2y
x/R x/R (x2l)/R* n n np (x, y, t) 5 L (y, t)[2P e 1 gR (e 2 e )]n n 0 n[hn

g
2 x/R (x2l)/R (2|x1l |)Rn n n1 fQ( y)T (t)R P (x) 1 (22e 1 e 2 sgn(x 1 l)e ) . (37)int n x1 2]2

The complete solution follows after summation over all
vertical eigenfunctions, Fn(z), according to (7).

The vertical velocity is determined by the pressure
according to

1 ]
w 5 2 1 r p .z21 2N ]t

With (37) we find explicitly

` F9(z) ]n2 x/R x/R (x2l)/Rn n nw(x, y, z, t) 5 2y 1 r L (y, t)(2P e 1 gR (e 2 e ))O n 0 n2* 1 2[N h ]tn51 n

g
2 x/R (x2l)/R (2|x1l |)/Rn n n1 fQ( y)T(t)R P (x) 1 [2e 2 w 2 sgn(x 1 l)e ] , (38)n x1 2]2

where, from (32) and (34), it follows that

]
1 r L (y, t)n1 2]t

fsc 2iv t05 irI (y, ir) 1 [(iv 1 r)I (y, 2v 1 ir)en 0 n 02
iv t01 (iv 2 r)I (y, v 1 ir)e ].0 n 0

(39)

In (38) the very small contribution of the barotropic
mode, which is scaled by a factor y*/ gH, was omitted.Ï

The coefficients wn(x, y, t) are defined by
` np

w(x, y, t) 5 sin z w (x, y, t)O n1 2Hn51

and (38) in an obvious manner. In order to visualize the
results we have to perform the mode sums numerically.
We choose 100 vertical modes although the results are
virtually the same as for 50 modes. The involved pa-
rameters are y 5 1.2 cm2 s22, H 5 1 km, Hmix 5 602

*
m, R1 5 55 km, f 5 6 3 1025 s21, N 5 1023 s21, r 5
0.02 f, l 5 R1, P0 5 0.75, P` 5 1, and f sc 5 0.2.

The simple linear friction r sets a timescale but is not
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FIG. 4. The steady alongshore flow for finite r 5 0.02 f (top) and
small friction r 5 0.005 f (bottom). The positive contours (solid) are
1, 5, and then progressing in intervals of 5 cm s21. The negative
contours (dashed) are 20.1, 21, and then progressing in intervals of
25 cm s21.

FIG. 5. Cross sections of the steady alongshore flows for r 5 0.02 f
(top) and r 5 0.005 f (bottom) at y 5 22R1. The contour intervals
are 61, 65, and then progressing in steps of 65 cm s21.

scale selective with respect to the spatial scales. In order
to compare the order of magnitude of r with an eddy
viscosity approach we may consider a coastal jet with
u ; exp(x/Rn). Comparing ru with

2] AHA u ; u ,H 2 2]x Rn

we find as a rough estimate r ; AH/ . Thus the choice2R1

of r 5 0.02 f corresponds to AH 5 3.3 3 106 cm2 s21,
which is a reasonable order of magnitude for numerical
shelf ocean models.

4. Discussion

The oceanic response is composed of the steady-state
contributions, the part due to the seasonal cycle con-
trolled by f sc, and by the wind stress curl, controlled
by g.

We start the discussion of the results with the case
of a nonrotational stationary wind, that is, g 5 0, im-
plying P` 5 P0 5 1, and f sc 5 0. This corresponds to
the case where the wind was switched on at t → 2`.
The alongshore flow consists of a directly wind driven
coastal jet arrested by wave processes. Since we ignore
planetary Rossby waves and continental shelf waves,

the adjustment is established through Kelvin waves. The
coastal flow increases from north to south within the
wind band. This is because the weak wind, Y, in the
ramp region (see Fig. 3) forces a weak local coastal jet
and southward propagating Kelvin waves strengthen the
coastal current to the south in an inviscid ocean. In other
words, the Kelvin waves stop the acceleration of the
coastal jet later in the middle and southern parts of the
wind band. In the viscid ocean the shape of the sta-
tionary coastal current is controlled by the propagation
distances of the Kelvin waves, which depend on the
friction parameter r and modenumber n. Note the ex-
ponential exp[ivln(a 2 y)] in (32) becomes

r (a 2 y)
exp[2rl (a 2 y)] 5 exp 2 ,n 1 2f Rn

where fRn/r is the e-folding scale of the nth-mode
Kelvin wave. For r 5 0.02 f the e-folding scale of the
first mode Kelvin wave, n 5 1, is fR1/r 5 50R1 5 2750
km and fR10/r 5 5R1 5 275 km for the mode n 5 10;
that is, the higher modes are damped more than the
lower ones.

In Fig. 4 the steady alongshore flows are shown for
r 5 0.02 f (top). A reduction of the friction parameter,
r 5 0.005 f, increases the speeds due to the reduced
damping and the longer propagation distances of the
Kelvin waves (Fig. 4, bottom). The alongshore current
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FIG. 6. The steady vertical flows for r 5 0.02 f (top) and r 5
0.001 f (bottom). For very small friction the upwelling tends to zero.
The contour intervals are 0.5, 1, 5, and then progressing in steps of
5 cm s21.

FIG. 7. Cross sections of the steady vertical flows for r 5 0.02 f
(top) and r 5 0.001 f (bottom) at y 5 28R1. The contour intervals
are as in Fig. 6.

is not very sensitive to changes of the friction parameter
r. Differences occur mainly in the southern part of the
wind band where the surface flow and the undercurrent
increase with decreasing friction. Corresponding cross
sections of the flow are shown in Fig. 5. The enhance-
ment of the flow due to the reduction of friction is
located near the coastal boundary.

In the steady-state case the upwelling consists of local
Ekman upwelling and the reduction due to the Kelvin
waves. Steady upwelling is only possible for nonzero
friction, which limits the propagation distance of the
Kelvin waves, in particular for the higher modes. The
decrease of the steady vertical current due to a reduction
of the friction is illustrated in Fig. 6, where the steady
vertical currents parallel to the coast are shown for finite
friction, r 5 0.02 f (top), and small friction, r 5 0.001 f
(bottom). The corresponding cross sections of the ver-
tical velocities at y 5 28R1 are shown in Fig. 7.

Next we look at the effects of a nonzero wind stress
curl; that is, f sc 5 0 and g ± 0. The wind stress curl,
given by the profile P(x), implies a divergence of the
Ekman transport. The associated upwelling is centered
x 5 2l. Seaward of this line a downwind surface current
is generated while in the coastal strip, where the wind
weakens, a countercurrent emerges. Since, contrary to
a coastal boundary, the wind stress curl does not provide

a waveguide mechanism, the magnitude of the current
system is rather sensitive to the friction parameter. This
is quite similar to the oceanic response in the marginal
ice zone, where wind stress variations due to changes
of the drag coefficient can generate piecewise linear
wind stress profiles (see Fennel and Johannessen 1997).

The southward countercurrent reduces the equator-
ward coastal flow. In the northern part of the wind band,
where the coastal flow is weak relative to the middle
and southern part of the wind band, the countercurrent
can overcompensate the coastal current. Hence, a pole-
ward coastal flow exist in the northernmost part of the
forcing area (Fig. 8, top). A reduction of friction en-
hances the role of the countercurrent and the poleward
coastal flow occupies a wider area of the wind band,
Fig. 8 (bottom). The corresponding cross-shore sections
are shown in Fig. 9 for y 5 22R1.

The contribution to the vertical velocity forced by the
wind stress curl is independent of friction. This contri-
bution decreases the resulting upwelling in the southern
part of the wind band, as shown in Fig. 10. Note that
in this case the wind is reduced by 25% near the coast
due to the shape of the wind profile P(x). Thus the
pattern of coastal upwelling is affected by wind stress
curl. The corresponding cross-shore sections are shown
in Fig. 11.

Next we consider the effect of the seasonal cycle of
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FIG. 8. The steady alongshore flows for a nonzero wind stress curl
for r 5 0.02 f (top) and r 5 0.005 f (bottom). A reduction of the
friction strengthens the role of the countercurrent (bottom). The con-
tour intervals are as in Fig. 4.

FIG. 9. Cross sections of the steady alongshore flows for a nonzero
wind stress curl for r 5 0.02 f (top) and r 5 0.005 f (bottom) at y
5 22R1. The contour intervals are 61, 65, and then progressing in
steps of 65 cm s21.

the wind on the vertical flow. We start with f sc ± 0 and
g 5 0. The seasonal variation of the wind modifies the
stationary signal. For small values of the friction pa-
rameter the steady signal tends to zero due to the effect
of Kelvin waves, as mentioned above. The oscillatory
part of the wind drives local Ekman upwelling and
downwelling and generates Kelvin waves, which are
associated with downwelling and upwelling, respec-
tively, and propagate southward through the wind band.

For example, the positive (northward) half-wave of
the wind oscillation drives coastal Ekman upwelling,
which is reduced by downwelling Kelvin waves until
the wind assumes the maximum value. After the max-
imum of the wind oscillation is reached, the down-
welling Kelvin waves overshoot the Ekman upwelling
and the resulting vertical flow is negative. For the neg-
ative (southward) half-wave of the wind oscillation the
response is analogous but with opposite sign. The ver-
tical current is out of phase with the wind variation (Fig.
3, top) by p/2. This is shown in Fig. 12 (top) by means
of alongshore-time plot of the first mode vertical ve-
locity, w1.

For finite friction the Kelvin waves are damped and
do not cancel the steady Ekman upwelling. The response
of the vertical flow to the seasonal variations of the wind
is now dominated by the Ekman upwelling and down-

welling because of the reduced effect of the Kelvin
waves. The resulting upwelling signal is almost in phase
with the wind variations (Fig. 12, bottom).

In the case of a nonzero wind stress curl, g ± 0, there
is a further source of upwelling independent of friction.
This upwelling signal is not affected by Kelvin waves
and has the same alongshore structure as the wind field
[see Eq. (38)]. Therefore, the resulting upwelling de-
creases near the southern edge of the wind band, as
shown in Fig. 13 (bottom). Owing to the wind-stress
curl contribution the resulting upwelling is almost in
phase with the wind, even in the small friction limit
(see Fig. 13, top). In Figs. 12 and 13 the first mode, w1,
is shown. The behavior of the first few modes, which
dominate the resulting signals, is quite similar as w1.

For nonzero f sc and g, the current system, which is
composed of the coastal currents and the flows in re-
sponse to the wind stress curl, varies with time. Along-
shore sections of the time-dependent alongshore cur-
rents are shown in Fig. 14 for January and July. Owing
to the wind maximum in austral summer and the min-
imum in austral winter, both the surface current and the
undercurrent are significantly stronger in January than
in July. The poleward surface flow near the northern
boundary of the wind band has an alongshore scale of
a few first-mode Rossby radii and shows only little sea-
sonal variation.
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FIG. 10. The steady vertical flows for a nonzero wind stress curl
for r 5 0.02 f (top) and r 5 0.001 f (bottom). The contour intervals
are as in Fig. 6.

FIG. 11. Cross sections of the steady vertical flows for a nonzero
wind stress curl for r 5 0.02 f (top) and r 5 0.001 f (bottom) at y
5 28R1. The contour intervals are as in Fig. 6.

Sections of the alongshore current normal to the coast
are shown in Fig. 15 for January and Fig. 16 for July,
for different locations: y/R1 5 10, y/R1 5 0, and y/R1

5 210. The alongshore currents broaden toward the
southern border of the wind band.

Alongshore sections of the vertical velocities are
shown in Fig. 17 for January and July. Cross-shore sec-
tions of the vertical velocity at different locations are
shown in Figs. 18 and 19 for January and July. Owing
to the seasonal variation of the wind the upwelling is
stronger and broader in summer (January) than in winter
(July).

At the southern border of the wind band the currents
are rather strong owing to the Kelvin waves, which have
to propagate longer distances before they can arrest the
coastal jet. The coastal flows and the upwelling will be
exported southward by a second set of Kelvin waves.
The export of the coastal current and the upwelling out-
side the forcing area along a straight coast is shown in
Fig. 20 and Fig. 21 for January and July. For a curved
coast the Kelvin waves follow the coastline (Clarke
1977) and may propagate around the southern tip of
Africa. Thus the theory implies that a remotely forced
westward coastal jet may be generated south of Africa,
which transports Agulhas waters into the Benguela up-
welling system off southwest Africa.

South of Africa the Agulhas has features of a free

inertial jet that starts to meander and decays into eddies
and rings in the Agulhas retroflection zone (Lutjeharms
1996). Since Kelvin waves propagate with the coast to
the left there is, from the theoretical viewpoint, no prop-
erty of the Agulhas that forces the current to follow the
coastline off southwest Africa. Hence the theory sug-
gests that the coastal jet, which is exported outside the
Benguela upwelling system, provides a dynamic linkage
between the westward Agulhas off the southern coast
of Africa and the northward coastal current of the Ben-
guela upwelling system.

5. Summary and conclusions

Owing to Kelvin waves, which are generated contin-
ously in response to the changing wind forcing, the
signals of the coastal jet propagate poleward leaving a
relatively weak coastal jet in the northern part of the
area. Due to the Kelvin waves the coastal jet and up-
welling are stronger near the southern border of the wind
band. The upwelling maximum is shifted somewhat
southward of the location of the wind maximum. This
seems to be in accordance with the strong upwelling
observed off Lüderitz, Namibia.

The wind stress curl, due to the decrease of the along-
shore wind near the coast, appears to be an important
dynamic feature in shaping the upwelling system. It
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FIG. 12. Alongshore–time view of the first mode vertical velocity
for zero wind stress curl and for a very small (r 5 1025f ) (top) and
finite friction parameter (r 5 0.02 f ) (bottom). FIG. 14. Yearly variation of the alongshore current shown in terms

of the extremes in summer and winter. Shown are alongshore sections
for January (top) and July (bottom). The positive contours (solid) are
1, 5, and then intervals of 5 cm s21. The negative contours (dashed)
are 20.1, 21, and then progressing in intervals of 25 cm s21.

FIG. 13. Alongshore–time plot of the first mode vertical velocity
for nonzero wind stress curl and with very small (r 5 1025f ) (top)
and finite friction (r 5 0.02 f ) (bottom).

produces a secondary divergence of the offshore Ekman
transport and forces upwelling and a downwind surface
flow in the offshore area (x , 2l) where the wind
reaches its maximun and a countercurrent in the coastal
strip (2l , x , 0).

The countercurrent reduces the equatorward coastal
jet. Near the northern border of the wind band, where
the coastal current is weak due to the effect of Kelvin
waves, the counterflow exceeds the coastal jet and pro-
duces even a poleward surface flow. Thus the model
study shows that the poleward surface flow can be lo-
cally forced. It is not necessarily driven remotely by
equatorial Kelvin waves. A similar mechanism was
studied by McCreary et al. (1987) to explain the oc-
currence of the poleward coastal surface flow in the
California Current system.

The response to the wind curl is not affected by
Kelvin waves because the wind variation provides no
wave guide at the coastal boundary. Thus the horizontal
component of this flow is completely balanced by fric-
tion, while the vertical component is independent of the
friction parameter. Both components have the same
alongshore shape as the wind field.

Near the southern border of the wind band the vertical
component is somewhat reduced. This is due to the con-
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FIG. 15. Cross-shore sections of the alongshore current at three
locations for January. For y 5 10R1 (top) the contour intervals are
60.5, 62.5, and then progressing in steps of 62, 5 cm s21. For y 5
0 (middle) and y 5 210 R1 (bottom) the contour intervals are 61,
65, and then progressing in steps of 65 cm s21. Negative contours
are dashed.

FIG. 16. Same as Fig. 15 but for July.

FIG. 17. Yearly variation of the vertical velocity shown in terms
of the extremes in austral summer and winter. Shown are alongshore
sections for January (top) and July (bottom). The contour intervals
are 0.5, 1, 5, and then progressing in steps of 5 cm s21.

tribution of the wind stress curl. Without this contri-
bution the upwelling would be higher in the south due
to the Kelvin waves.

At the southern border of the wind band a second set
of Kelvin waves exports the coastal currents and the
upwelling along the coastline. The exported coastal jet
flows westward off the southern coast of Africa and can
drain Agulhas waters into the upwelling area off south-
west Africa. This suggests a dynamic linkage between
the the Benguela upwelling system and the Agulhas.

The theory is strongly simplified and therefore has
several deficiencies, which is the price to obtain an an-
alytically tractable set of equations. The wind field is
strongly idealized and the differences in the seasonal
cycles in the southern and northern part off southwest
Africa are not resolved. The theory is linear and, there-
fore, formation of fronts and instabilities are not con-
sidered. The coast is replaced by a straight vertical wall
and the shelf was negelected. This implies that the only
boundary waves seen by the model are Kelvin waves.
Moreover the b effect, which gives rise to a shedding
of Rossby waves, was excluded.

Nevertheless, the model is able to simulate major fea-
tures of the circulation, suggesting that it contains much
of the fundamental dynamics involved in the Benguela
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FIG. 18. Cross-shore sections of the vertical velocity at three lo-
cations for January. The contour intervals are 0.5, 1, 5, and then
progressing in steps of 5 cm s21.

FIG. 19. Same as Fig. 18 but for July.

FIG. 20. Same as Fig. 14 but extended to the south to illustrate the
southward export of the coastal current. The thick line indicates the
forcing area.

upwelling system. The findings may provide some guid-
ance for a discussion of the results of ocean general
circulation models of this area.
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APPENDIX

Convolution Integrals

The calculation of the convolution integrals of the
type of (19) amounts to estimating the integral

0

G ∗P 5 dx9 G (x; x9)P(x9), (A1)n E n

2`

where Gn is given by (15) and P by (22). Rewriting
(14) as

21 d
G (x; x9) 5 2d(x 2 x9) 1 G (x; x9) ,n n2 21 2a dx9n

and inserting this in (A1), we can solve the integral
easily by integration by parts:
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FIG. 21. Same as Fig. 17 but extended to the south to illustrate the
southward export of upwelling. The thick line indicates the forcing
area.

1
a xnG ∗P 5 (P e 2 P(x) 1 gG (x; l)).n 0 n2an

In a similar manner we find

1
G ∗P 5 (2P (x) 1 g(G (x; 0) 2 G (x; l))n x9 x nx9 nx92an

and

1
a xnG ∗P 5 (a P e 2 P (x) 1 gG (x; l)).nx n 0 x nx2an
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