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ABSTRACT

A linear stability problem is formulated to investigate the effect of turbulence on double-diffusively driven
thermohaline interleaving in rotating media. Three cases are considered: (a) intrusions with an alongfront slope
in rotating media, (b) intrusions with zero alongfront slope in nonrotating media, (c) intrusions with zero
alongfront slope, where the Coriolis force is retained. The physical reason for case c is that the large-scale
vertical geostrophic shear in baroclinic fronts will rotate any intrusion with nonzero alongfront slope as long
as the alongfront slope vanishes. In all three cases, turbulence works to suppress interleaving so that the growth
rate of the fastest growing intrusion decreases with the increase of turbulent diffusivity k*. However, in cases
a and b the growing intrusions exist for any finite value of k*, while in case c there is a marginal (maximum)
value of k* beyond which growing intrusions do not exist.

1. Introduction

Two papers investigating the influence of turbulent
mixing on double-diffusively driven thermohaline in-
terleaving have been published recently in the Journal
of Physical Oceanography (Walsh and Ruddick 2000;
Kuzmina and Zhurbas 2000). The results of these papers
seem to contradict each other somewhat. Walsh and
Ruddick (2000) in their linear stability analysis showed
that growing solutions exist for any finite value of the
turbulent diffusivity, suggesting that double-diffusively
driven intrusions can exist in the ocean even when dou-
ble-diffusive fluxes are much weaker than turbulent
fluxes. Kuzmina and Zhurbas (2000) in their linear sta-
bility analysis of interleaving at baroclinic fronts
showed that due to turbulence, growing solutions do not
exist for some range of input parameters and found cor-
respondent marginal stability criteria. This paper is just
to discuss this contradiction in more detail.

2. Governing equations and growth rate
polynomial

Following Stern (1967), Toole and Georgi (1981), and
Kuzmina and Rodionov (1992), we write linearized equa-
tions of motion for the intrusion-scale field in a form
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1
U9 2 f V9 5 2 P9 1 PrkU9 1 Prk*U9 , (1)t x zz zzr0

1
V9 1 f U9 5 2 P9 1 PrkV9 1 Prk*V9 , (2)t y zz zzr0

P9 5 2gr9, (3)z

U9 1 V9 1 W9 5 0, (4)x y z

S9 1 W9S 1 U9S 5 kS9 1 k*S9 , (5)t z x zz zz

r9 1 W9r 5 (1 2 g)kr bS9 1 k*r9 , (6)t z 0 zz zz

where r9 5 r0(2aT9 1 bS9), T9, S9, and P9 are density,
temperature, salinity, and pressure fluctuations, respec-
tively; U9, V9, and W9 are the x, y, and z velocity com-
ponents; x is the mean cross-front gradient of salinity;S

z, z, and z 5 r0(2a z 1 b z) are the mean verticalT S r T S
gradients of temperature, salinity, and density, respec-
tively; f is the Coriolis parameter; g is the gravitational
acceleration; r0 is the reference density; a and b are
the coefficients of thermal expansion and haline con-
traction; g 5 aFT/bFS is the nondimensional flux ratio
for salt fingering; k and k* are salt finger and turbulent
diffusivities, respectively; and Pr is the Prandtl number.
In deriving (6) it is assumed that x 5 r0(2a x 1r T
b x) 5 0, where x and x are the cross-front meanS r T
gradients of density and temperature. Equations (1)–(6)
with Pr 5 0, k* 5 0 were first analyzed by Stern (1967),
then Toole and Georgi (1981) took into account friction
(Pr . 0, k* 5 0), and finally Kuzmina and Rodionov
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FIG. 1. The growth rate l, cross-front slope rx, alongfront slope
ry, and vertical wavenumber m for the fastest-growing intrusion vs
the ratio of turbulent diffisivity to salt finger diffusivity z (solid).
Values of input parameters are Pr 5 5, «x 5 0.02, «z 5 0.4, v 5
0.03. Dotted curves are z dependencies of l, rx, m for the 2D case
with no rotation (ry 5 0, v 5 0).

(1992) included into consideration the effect of turbu-
lent mixing (Pr . 0, k* . 0).

Proceeding as is usually done in the linear stability
approach, we seek harmonic solutions of the form
exp[ t 1 i(r̂xx 1 r̂yy 1 m̂z)] to Eqs. (1)–(6), wherel̂ l̂
is the growth rate and (r̂x, r̂y, m̂) are (x, y, z) waven-
umbers. A solution of this form exists only if the de-
terminant of the coefficient matrix, obtained after sub-
stitution, vanishes. After nondimensionalization, the fol-
lowing quartic equation in l results:

4 3 2l 1 C l 1 C l 1 C l 1 C 5 0,3 2 1 0 (7)

where
2C 5 m [1 1 2 Pr 1 2z(1 1 Pr)], (8)3

2 4 2C 5 v 1 m [Pr(2 1 Pr)(1 1 z)2

2 21 z(1 1 z)(1 1 2 Pr)] 1 (r 1 r ), (9)x y

2 2 6 3 2C 5 v m (1 1 2z) 1 m (1 1 z) Pr1

6 21 m z(1 1 z) Pr(2 1 Pr)
2 2 21 m [1 1 Pr 1 « 1 z(1 1 Pr)](r 1 r )z x y

22 m « r , (10)x x

8 3 2 4 2C 5 m z(1 1 z) Pr 1 m z(1 1 z)v0

4 2 21 m (1 1 z)(1 1 « 1 z) Pr(r 1 r )z x y

2 22 m « [m (1 1 z) Prr 1 vr ]. (11)x x y

Nondimensional growth rate l, wavenumbers (rx, ry,
m), and parameters («z, «x, v, z) are defined as

2r̂l̂ r̂ km̂yx 2l 5 , r 5 , r 5 , m 5 ,x yN m̂ m̂ N

(1 2 g)gbS S fz x« 5 , « 5 « , v 5 ,z x z2N S Nz

k*
z 5 ,

k

where N 2 5 2g z/r0 is the squared Brunt–Väisälä fre-r
quency. Note that «z can be rewritten as «z 5 (1 2 g)/
(Rr 2 1), where Rr 5 a z/b z is the density ratio.T S

It can be easily shown that in the case of no turbulence
(z 5 0) the growth rate polynomial (7)–(11) reduces to
Eq. (25) of Toole and Georgi (1981) rewritten for the
hydrostatic approximation.

3. Instability models

Since we look for positive roots of (7)–(11), let us
first consider the criterion for them to exist. The issue
is a bit complicated because it is possible that not only
the zero-power coefficient C0 but also the first-power
coefficient C1 can be negative. If C0 , 0, we are assured
of one positive real root (e.g., Stern 1967), and a grow-
ing, nonoscillating intrusion exists. In other words, C0

, 0 is a sufficient condition for monotonic instability.
Moreover, applying the Descartes’s rule of signs (e.g.,
Korn and Korn 1968), we conclude that polynomial (7)–
(11) has one and only one positive root if C0 , 0 and
C1 . 0, and no one positive root if C0 . 0 and C1 .
0. Therefore, C0 , 0 becomes the criterion for instability
(i.e., the necessary and sufficient condition), provided
that C1 . 0 when C0 . 0. In section 3c this criterion
will be considered in detail.

To examine if the instability can be fully suppressed
by turbulence, let us analyze (11) for three different cases.

a. 3D interleaving: Intrusions with alongfront slope
in rotating media

If intrusions in rotating media (v ± 0) are allowed
to have alongfront slope (ry ± 0), growing solutions
(i.e., l . 0) will exist for any (large) value of turbulent
diffusivity. To prove it, we are to show that there is a
locus of points (rx, ry, m2) where C0 , 0 for any z .
0. We take any positive values for z, Pr, v, «z, «x, rx,
and ry, and decrease the vertical wavenumber m2 in (11)
until C0 is negative. Doing that we are assured that C0

will inevitably become negative because the term
2m2«xvry is the major term of (11) when m2 → 0.

Numerically calculated z dependencies of rx, ry, m,
and l for the fastest-growing intrusion at Pr 5 5, «z 5
0.4, «x 5 0.02, and v 5 0.03 are shown in Fig. 1 (solid
curves). Values of Pr, «z, and «x were chosen the same
as those of Walsh and Ruddick (2000) for comparison.
The growth rate l, vertical wavenumber m, and cross-
front slope rx for the fastest-growing intrusion are de-
creasing monotonically with z to vanish at z → `. The
alongfront slope for the fastest-growing intrusion ry is
increasing monotonically with z approaching asymp-
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totically a finite value at z → `. If «z is not too large,`ry

can be approximated as ø (5/3)v(1 1 Pr)21/2.` `r ry y

b. 2D interleaving: Intrusions with zero alongfront
slope in nonrotating media

Let us consider a partial case of (7)–(11) when ry 5
0 (intrusions with zero alongfront slope only) and v 5
0 (Earth’s rotation unimportant). Like the previous case,
in this case the growing solutions exist for any finite
value of z. To prove it, we proceed as follows. First,
we substitute ry 5 0 and v 5 0 into (11), and consider
a partial case rx 5 m2. Then, we decrease m2 [ rx in
(11) until C0 is negative. We are guaranteed to satisfy
condition C0 , 0, because the term 2m4«x (1 1 z)Prrx

is the major term of (11) with ry 5 0 and v 5 0 in the
limit m2 [ rx → 0. This very result was obtained by
Walsh and Ruddick (2000), who considered a similar
problem of 2D double-diffusively driven thermohaline
interleaving at ry 5 0, v 5 0 in the presence of tur-
bulence, provided that the flux ratio g is a function of
the density ratio Rr (e.g., Schmitt 1979).

The z dependencies of rx, m, and l for the fastest-
growing intrusion at the same values of parameters Pr,
«x, and «z but for the 2D case are shown in Fig. 1 by
dots. One cannot miss the full coincidence of respective
solid and dotted (rx, m, l) curves. This coincidence was
first pointed by McDougall (1985). He showed that the
fastest-growing intrusions (in nonturbulent case) move
directly across the front with zero velocity component in
the alongfront direction so that the only effect of rotation
is to introduce an alongfront tilt to the intrusions: the
wavenumbers, velocity components, and the growth rate
are independent of the rotation rate. Therefore, McDou-
gall’s finding is valid for double-diffusively driven in-
trusions even in the presence of turbulence. In general,
the z dependencies of rx, m, and l in Fig. 1 are similar
to that obtained by Walsh and Ruddick (2000). Some
quantitative differences between Walsh and Ruddick’s
results and our results presented in Fig. 1 are likely due
to the fact that we do not consider the Rr dependence of
g [in contrast to Walsh and Ruddick (2000)].

c. 2D interleaving: Intrusions with zero alongfront
slope where the Coriolis force is retained

If an intrusion with nonzero alongfront slope was
considered in the baroclinic front, the large-scale ver-
tical geostrophic shear would stretch/rotate the intrusion
kinematically until the alongfront slope vanished. For
this reason, Kuzmina and Rodionov (1992), May and
Kelley (1997), and Kuzmina and Zhurbas (2000) in their
analysis of interleaving at baroclinic fronts considered
intrusions with zero alongfront slope (ry 5 0). However,
treating intrusions with zero alongfront slope at baro-
clinic fronts we do not see any reason to suggest the
Coriolis force is unimportant. The above does explain

the physical meaning for considering the case ry 5 0,
v ± 0. Substituting ry 5 0 into (11), we obtain

4 4 2 2 2C 5 m (1 1 z)[m z(1 1 z) Pr 1 zv0

21 (1 1 « 1 z) Prr 2 « Prr ]. (119)z x x x

Analyzing (119), it is worthwhile to address the term
zv2. It is the term that makes all the difference. Being
positive at v, z ± 0 this term vanishes if turbulence and/
or rotation vanish. Therefore, this term describes a specific
stabilization of the process by coupled effect of turbulence
and rotation. As a result, growing intrusions do not exist
if the turbulent diffusivity and/or the rotation rate are large
enough. To prove it, we rewrite (119) in a form

4 4 2C 5 m (1 1 z) m z(1 1 z) Pr 1 (1 1 « 1 z)0 z5
2«x3 Pr r 2x[ ]2(1 1 « 1 z)z

2« Prx 22 1 zv . (110)64(1 1 « 1 z)z

It is easily seen from (110) that the sufficient condition
for growing intrusions to exist is

2« Prx2zv , . (12)
4(1 1 « 1 z)z

Indeed, if we take for the wavenumbers rx 5 0.5«x/(1
1 «z 1 z) and m2 → 0, the right side of (110) will be
negative in view of (12). Note that if z K 1, Eq. (12)
reduces to Eq. (23.2) of Kuzmina and Zhurbas (2000).

To examine when the sufficient condition (12) is the
criterion for instability, let us present (10) with ry 5 0
in a form

2 4 2C 5 m [m Pr(1 1 z) (2z 1 2z Pr 1 Pr)1

21 (1 1 2z)v
21 (1 1 « 1 z 1 Pr 1 z Pr)r 2 « r ]z x x x

2m
4 2 2 25 [Am 1 Br 1 C 1 zv (Pr 2 1) 1 zvxPr

21 (1 1 « 1 z) Prr 2 « Prr ],z x x x (109)

where A, B, and C are some positive functions of pa-
rameters z, v, and Pr. Equation (109) shows that C1 .
0 if zv2 . Pr/[4(1 1 «z 1 z)] (i.e., C0 . 0) and Pr2«x

$ 1. Therefore, Eq. (12) becomes the criterion for in-
stability, provided that Pr $ 1.

The z dependencies of rx, m, and l for the fastest-
growing intrusion at Pr 5 5, «x 5 0.02, «z 5 0.4, and
v 5 0.03 for the case of no alongfront slope intrusions
(ry 5 0) are shown in Fig. 2. In accordance with (12),
the growth rate l for the fastest-growing intrusion van-
ishes when the ratio of turbulent diffusivity to double-
diffusive diffusivity z approaches from below a mar-
ginal value zmar.
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FIG. 2. The same as in Fig. 1 but for the case ry 5 0, v ± 0.

2 2 22z 5 0.5[2(1 1 « ) 1 Ï(1 1 « ) 1 « Prv ]. (13)mar z z x

Note that zmar → ` when v → 0. This is just in accor-
dance with results of Walsh and Ruddick (2000), who
found that in nonrotating media the double-diffusively
driven intrusions could grow at any (large) value of
turbulent diffusivity.

In view of (110), respective marginal values of the
cross-front slope and vertical wavenumber are

«x(r ) 5 , m 5 0. (14)x mar mar2(1 1 « 1 z )z mar

Substituting Pr 5 5, «x 5 0.02, «z 5 0.4, and v 5
0.03 into (13) and (14), we obtain zmar 5 0.322, (rx)mar

5 5.81 3 1023 in accordance with Fig. 2. The obtained
value of zmar seems surprisingly small because intrusions
are observed in the ocean to grow in many areas where
turbulent diffusivity is likely comparable with or larger
than the double-diffusive diffusivity. We can suggest at
least three possibilities to explain this discrepancy be-
tween observations and the theory.

First, the values of parameters Pr and «x that we chose
may be underestimated. For example, if we choose for
Pr and «x greater but still reasonable values of Pr 5 10
and «x 5 0.05, we will get zmar 5 2.03.

Second, David Walsh (2000, personal communica-
tion) suggests that the discrepancy may be resolved if
one takes into account the Rr dependence of double-
diffusive diffusivity. Walsh and Ruddick (1995) found
that the main effect of an Rr dependent diffusivity on
interleaving could be reproduced by replacing the finger
diffusivity k by an ‘‘effective’’ diffusivity keff 5 k 1 (g
2 Rr)dk/dRr. The effective diffusivity keff is larger than
k if dk/dRr is negative, and keff may be substantially
larger than k if Schmitt’s (1981) formulation for k(Rr)
is correct. Thus it seems possible that k*/keff, the phys-

ically valid analog of z, may be quite small even when
z 5 k*/k is of O(1).

Third, growing intrusions at z . zmar may be related
to a specific type of the baroclinic instability developed
in baroclinic fronts in the presence of double-diffusive
convection (Kuzmina and Rodionov 1992; May and
Kelley 1997; Kuzmina and Zhurbas 2000).

4. Conclusions

Coming back to the question in the title, the answer
depends on the approach we used. If intrusions in rotating
media are allowed to have nonzero alongfront slope or
if intrusions with zero alongfront slope are considered in
nonrotating media, growing intrusions exist for any finite
value of the turbulent diffusivity—the result obtained by
Walsh and Ruddick (2000). If intrusions with zero along-
front slope are considered while the Coriolis force is
retained [an approach applied to interleaving at baroclinic
fronts by Kuzmina and Rodionov (1992), May and Kelley
(1997), and Kuzmina and Zhurbas (2000)], there is a
marginal (maximum) value of the turbulent diffusivity
beyond which growing intrusions do not exist. However,
more study is needed to decide which approach is more
relevant to ocean intrusions.
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