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ABSTRACT

The applicability of the super-slip boundary condition in wind-driven quasigeostrophic ocean circulation
models is reexamined. The energy and enstrophy characteristics of the super-slip condition are discussed for
the equilibrium state. A model is constructed with super-slip on the western boundary and free slip on the other
boundaries. Both linear and nonlinear solutions are presented. Compared to the case with all free-slip boundaries,
this new model gives a more energetic and narrower western boundary current, but otherwise the differences
are not very great.

1. Introduction

One of the most important models in the development
of the theory of the general circulation of the ocean has
been the single-layer quasigeostrophic model with the
effect of turbulence parameterized by lateral diffusion
of relative vorticity. This turbulence parameterization
goes back to Rossby (1936) and its first application to
ocean circulation is due to Munk (1950). The equation
of evolution for this model is

] ]c 1
2z 1 J(c, z) 1 b 5 curl t 2 rz 1 A ¹ z, (1)z H]t ]x H

where c and z 5 ¹2c are the streamfunction and the
relative vorticity of the large-scale motions of the flow,
t is the wind stress divided by the density of water, and
H is the depth of the fluid. The details of (1) are ex-
tensively explained in many textbooks (cf. Pedlosky
1996); here we note only that the forcing is the z com-
ponent of the wind stress curl, and the 2rz represents
the effects of Ekman dynamics. The most important
point in the present context is that the term with the
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constant coefficient AH is the result of turbulence closure
modeling. It is derived by averaging over small-scale
eddies and replacing the average vorticity eddy flux by
the gradient of the large-scale potential vorticity, that
is, by setting

^u9z9& 5 2A =(z 1 by),H (2)

where the primes are used to indicate eddy quantities.
On taking the divergence of this term, the lateral dif-
fusion term in (1) is obtained.

For simplicity, the domain for the model will be taken
here to be a square box. The natural boundary condition
to impose is that of no flow through the boundary, which
implies c 5 0 on the boundary. The appearance of the
lateral diffusion term requires an additional boundary
condition, and there are several possibilities that are
often discussed and are referred to as dynamic boundary
conditions. Pedlosky (1996) considers four: no-slip ]c/
]n 5 0, free-slip (or stress free) z 5 0, super-slip ]z/
]n 5 0, and hyper-slip ](z 1 by)/]n 5 0, where ]/]n
5 n · =, and n is the outward normal on the boundary.
Note that, when applied to meridional boundaries, the
hyper-slip condition is equivalent to super-slip. Pedlos-
ky emphasizes that there is an important choice to be
made here, and the best choice is not obvious a priori.
If the lateral viscosity were meant to represent all scales
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down to those that actually bring the fluid to rest on the
boundary, then the no-slip condition requiring all mo-
tion to vanish on the boundaries would be appropriate,
but this is not the case when the model only resolves
the large-scale motions. For the Laplacian parameteri-
zation of small-scale processes used in (1), one cannot
declare what the appropriate boundary conditions
should be because there is no unique physically correct
boundary condition on the large-scale flow. Rather,
physical motivation can be used to give preference for
one boundary condition or another depending on the
circumstances.

Pedlosky (1996) argues that the large-scale flow is
buffered by the small-scale processes and should be
allowed to slip along the boundary. This would suggest
some form of slip boundary condition. The free-slip
condition is attractive because it allows no creation of
energy on the boundary. But the hyper-slip condition
offers a certain consistency with the turbulence mod-
eling that is also attractive. Pedlosky (1996) argues that
from the view point of the turbulence closure (2), from
which the lateral diffusion was derived, the hyper-slip
condition is an appropriate choice. On the boundary,
the normal component of the turbulent eddy velocity
must vanish, so we have from (2) that

0 5 ^n · u9z9& 5 2A n · =(z 1 by),H (3)

which gives the hyper-slip condition (Pedlosky 1996).
Furthermore, we can argue that in high Reynolds

number flow, a large-scale flow structure moving north-
ward or southward should preserve the potential vor-
ticity (z 1 y) on all of its elements. Consider a region
of flow being advected northward along the western or
eastern boundary. An element of this flow adjacent to
the boundary would have its relative vorticity increasing
to compensate for decreasing y. It would seem sensible
that the adjacent element of the flow slipping along the
boundary should also obey the same conservation law
and show an increase in relative vorticity at the same
rate. This is accomplished on the western/eastern bound-
aries by the super-slip condition ]z/]x 5 0, which forces
the adjacent vorticity elements to evolve similarly (cf.
Carnevale et al. 1999, 1997).

On the other hand, one of the disconcerting things
about the super-slip condition is the possibility of energy
creation or loss on the super-slip boundary. The un-
forced energy evolution equation can be derived from
(1) by multiplying by c and integrating over the domain
to obtain

]E ]c
5 A z ds 2 2A Z 2 2rE, (4)H R H]t ]n

where E 5 # | =c | 2 dx dy is the total kinetic energy1
2

and Z 5 # z2 dx dy is the total relative enstrophy. Note1
2

that the boundary integral on the right-hand side van-
ishes under the assumption of the free-slip boundary
condition on all sides. On a super-slip boundary, the

integrand of that integral is of indefinite sign. Never-
theless, as we shall see, a reasonable circulation is pos-
sible even if the term acts as an energy source.

Pedlosky (1996) points out that ‘‘we can neglect the
eddy flux on the large scale unless we are in regions of
the general circulation possessing length scales consid-
erably smaller than the gyre-scale. Such regions do exist
near the regions of strong current on the western bound-
aries of the ocean . . . .;’’ Thus it should not make much
difference if we choose super-slip or free slip on the
eastern boundary, and this is indeed found to be the
case. For the work to be presented here, we consider a
‘‘mixed model’’ in which we take the super-slip con-
dition on the western boundary and free slip on the
remaining boundaries. We will refer to this as the super-
slip free-slip (SS–FS) mixed model. We will demon-
strate that this mixed model produces reasonable ve-
locity fields, unlike the model with super-slip on all
boundaries that Pedlosky (1996) indicates is problem-
atic.

The energetics of the SS–FS model is discussed in
section 2. Then, in section 3 we will analyze the linear
solution for this model. In section 4, we will compare
the fully nonlinear solution of this model to those for
the case with free slip on all boundaries.

2. Energetics of the unforced flow

It will prove convenient to rewrite the vorticity evo-
lution equation in nondimensional form as

] ]c
2z 1 RJ(c, z) 1 5 curl t 2 kz 1 e¹ z, (5)z]t ]x

where the timescale has been taken as T 5 (bL)21, with
L the horizontal length scale. The streamfunction is non-
dimensionalized by UL, and the parameters appearing
in the equation are given by R 5 U/(bL2), e 5 AH/
(bL3), and k 5 rU/(bL). Here t 5 t*/(HULb) is non-
dimensional (asterisk subscripts are used here to indicate
dimensional quantities where there may be ambiguity).

As noted in the introduction, the rate of change of
the energy for the unforced flow is indeterminate in sign
if we adopt super-slip boundary conditions on a portion
of the boundary. Nevertheless, as we will see below,
for a typical wind forcing the SS–FS model will reach
a reasonable equilibrium state. Here we examine some-
what further the energetics of the western boundary in
the SS–FS model. The full energy equation with forcing
is obtained from (5) by multiplying by c and integrating
over the domain. The result is

dE
5 2 c curl t dx dy 2 2kE 2 2eZE zdt

]c
1 e z ds. (6)R ]n

where the first term on the right-hand side, an integral
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over the full domain, is the power generated by the wind
forcing. We are concerned with the sign of the last term
on the right-hand side, the boundary integral. The in-
tegrand vanishes on all boundaries of the SS–FS model
except the western boundary. For simplicity, we will
take the model geometry to be a square with sides of
nondimensional length p. Thus the total boundary in-
tegral can be rewritten as

p 2]c 1 ]y
z ds 5 2 dy. (7)R E 1 2]n 2 ]x0 W

The subscript W indicates that the quantity in paren-
theses is evaluated on the western boundary. In the
forced equilibrium state, we should expect that the flow
will be western intensified, and because the super-slip
condition will allow a gradient of y to exist on the
boundary, we may anticipate that ]y 2/]x , 0 there. This
expectation will be verified analytically for the linear
solution and numerically for the fully nonlinear solution
in the next two sections. Thus the western boundary
will typically prove to be a source of energy in the SS–
FS model. The equilibrium state energy balance can be
written as

p 21 ]y
P 2 e dy 5 2kE 1 2eZ, (8)E 1 22 ]x0 W

where P is the power generated by the wind forcing.
We have grouped the energy source terms on the left
and the sink terms on the right. It is difficult to assess
a priori the relative magnitudes of the source and sink
terms proportional to e. As we shall see, stationary states
can be achieved even when k 5 0, and so it appears
that at least under certain conditions the source term
proportional to e will be smaller in magnitude than the
sink term.

We next turn to the equation for the enstrophy evo-
lution. From (5), we obtain

dZ
25 P 2 2kZ 2 e z=z z dx dyz Edt (9)

1 ]z
22 z=c z dy 1 e z ds,R R2 ]n

where Pz is the rate of enstrophy input from the forcing.
The last integral on the right-hand side of (9) vanishes
identically for the SS–FS boundary conditions. The re-
maining boundary integral involves only dy and, thus,
can be rewritten in terms of the meriodional velocity
on the eastern and western boundaries. Hence, the en-
strophy balance in equilibrium is

p1
2 2 2P 1 (y 2 y ) dy 5 2 kZ 1 e |=z | dx dy, (10)z E W E E2 0

where yW and yE are the meridional velocities on the
western and eastern boundaries, respectively. The in-
tegral on the left-hand side would be positive in a west-

ern intensified equilibrium flow; hence, again we have
sources on the left-hand side and sinks on the right. It
is interesting to consider the different origins of the
source terms in the energy and enstrophy balances. The
western boundary appears as an energy source through
a term proportional to e, which is proportional to AH, a
coefficient associated with dissipation. This is not the
case for the source term on the right-hand side of (10).
If we trace the origin of this source term by referring
back to the dimensional equation (1), we see that in
dimensional form it would be proportional to b and,
hence, is an effect of the variation of the Coriolis pa-
rameter with latitude.

3. Linear solution

Here we investigate the linear solution to the wind-
forced version of our SS–FS model. For simplicity we
will neglect the bottom friction term (i.e., we take k 5
0). We will adopt the traditional assumption of a lati-
tudinally sinusoidal wind stress curl. We set curlzt 5
2siny in order to induce a rudimentary subtropical gyre
in the domain D 5 [0 # x # p] 3 [0 # y # p].
Therefore, the stationary form of the vorticity equation
(5) reduces to

]c
25 2siny 1 e¹ z. (11)

]x

We look for a solution of the form

c(x, y) 5 X(x) siny, (12)

which automatically satisfies no mass flux (c 5 0) on
the meridional boundaries. To satisfy the remaining
boundary conditions as well as (11), the problem for
X(x) becomes

iyX9 5 21 1 eX 2 2eX0 1 eX, (13)

X(0) 5 X(p) 5 0, (14)

X-(0) 5 X9(0), (15)

X0(p) 5 X(p), (16)

X0(p) 5 0, (17)

where we have used (14) in simplifying (16).
To obtain an explicit solution of the problem (13)–

(17), we must fix the value of e. Several conditions must
be matched. First of all, for this linear problem to be a
valid approximation to the full nonlinear problem re-
quires that the Rossby number R be sufficiently small
with respect to e. Specifically the linearization is valid
when

1/2 1/3R K e . (18)

Thus, if a typical interior current U is O(1022 m s21)
with a horizontal length scale L 5 O(5 3 105 m) and
b 5 2 3 10211 m21 s21, then condition (18) becomes
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FIG. 1. Graphs of the solutions X(x) for e 5 0.0695, 0.0781, and
0.0868 (solid, long dash, and short dash, respectively).

FIG. 2. Graphs of the midlatitude meridional velocity y 5 X9(x)
for e 5 0.0695, 0.0781, and 0.0868 (solid, long dash, and short dash,
respectively).

FIG. 3. Comparison of the midlatitude meridional velocity y 5
X9(x) given by the mixed model (solid), Welander’s model (short dash)
and Munk’s model (long dash) (e 5 0.0868 in each case).

26e k 6.56 3 10 . (19)

Second, solutions of (13)–(17) with e ‘‘too large’’ would
tend to smooth the western intensification to the point
of producing an almost symmetrical gyre. On the other
hand, solutions with e ‘‘too small’’ exhibit a secondary
gyre in the eastern area of the basin, which is also un-
realistic. A trial and error procedure showed that values
of e close to 0.0868 give a reasonable solution subject
to the constraint of linearity. Graphs of the solutions
X(x) are shown in Fig. 1 for e 5 0.0695, 0.0781, and
0.0868. We have taken three values of e simply to il-
lustrate the stability of the solution to small variations
in e. In Fig. 2, we graph the meridional velocity for the
midlatitude line y 5 0; that is y 5 X9(x). There we see
an intense northward transport near the western bound-
ary that is accompanied by a countercurrent that weak-
ens rapidly with x. For these solutions, we can evaluate
two important quantities: the dimensional northward
transport M* that takes place in the western area of the
basin and the dimensional meridional current y* along
the western boundary. For simplicity we consider here
only the case e 5 0.0868. We can estimate M* by M*ø HDc* 5 HULcmax, where H is the depth of the north-
ward moving current and the nondimensional cmax is
provided by our solution. There is some flexibility in
choosing the scales U and L; however, we should keep
in mind the constraint that by writing curlzt 5 siny, we
have set t0 5 bHUL, where t0 is the dimensional mag-
nitude of the wind stress (divided by the density of
water), which is typically taken to be O(1024 m2 s22).
With b 5 10211 m21 s21 and H 5 O(103 m) this implies
HUL 5 5 Sv (Sv [ 106 m3 s21). With cmax ø 7, we
obtain M* ø 35 Sv. This value is much larger than
those inferred from some classical linear models (Hen-
dershott 1987) but, at the same time, it is very close to
that of the Gulf Stream off the Florida coast. Moreover,
from y 5 X9(x) and X9(0) 5 27.029, we can calculate
y* 5UX9(0). Note that fixing the depth H 5 103 m
imposes the restriction that UL 5 5 3 103 m2 s21.
Choosing U 5 O(1022 m s21), which would be a typical

eastern basin value, would correspond to taking L 5 5
3 105 where the domain size is (pL 3 pL). Proceeding
with those values leads to y* ø 0.845 m s21, which is
a realistic westward intensified current.

It is interesting to compare X9(x) with the profiles
corresponding to the Munk (1950) model using the no-
slip condition on the meridional boundaries and free
slip along the zonal boundaries, and the Welander
(1964) model assuming free-slip boundary conditions
on all sides, all with the same value of e. In Fig. 3, we
see that the our SS–FS mixed model exhibits very large
transport localized in a narrow boundary layer. On the
other hand, in order to obtain transport M and current
width W of the western boundary current comparable
to those of Welander and Munk reported in Table 1 with
the SS–FS model, we would need to take values of e
considerably higher than 0.0868. This is shown in Table
2 where we give the values obtained from two simu-
lations with the SS–FS model with larger values of e.
In one case the results are similar to those for the Munk
model, while in the other they are similar to Welander’s
model results, both using the smaller value of e 5
0.0868.
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TABLE 1. Comparison of the northward transport M and the western
boundary layer width W from SS–FS model with the values obtained
from the Welander (1964) and Munk (1950) models: W is given in
nondimensional units in which the width of the basin is p .

M W Model

7.109 Sv
2.266 Sv
1.385 Sv

0.198p
0.319p
0.402p

SS–FS mixed
Welander
Munk

TABLE 2. These are the values of e that would be needed in the
SS–FS model to obtain a northward transport M and a western bound-
ary layer width W close to those of the classical Welander and Munk
models in which we use e 5 0.0868. The values of M and W are
calculated with the SS–FS model. Here, W is given in nondimensional
units in which the width of the basin is p .

e M W Notes

0.276

0.443

2.277 Sv

1.388 Sv

0.314p

0.366p

M and W near Welander’s
model values

M and W near Munk’s mod-
el values

FIG. 4. Contour plots from the linear solution (i.e., R 5 0) with e 5 0.0868 and forcing curlzt 5 2sin(y ).
The domain size is p 3 p. (a) Contour plot of c with contour interval 1 in units of UL (see text). The solid
lines represent positive valued contour levels. (b) Contour plot of z with contour interval 50 in units of U/
L. The dashed lines all represent negative valued contour levels. The zero line is dotted. Positive values
were insignificant on this scale.

Contour plots of the streamfunction and vorticity
from the total solution of (12) are shown in Fig. 4, again
for e 5 0.0868. We note the north–south reflection sym-
metry typical of the linear models, and also the west-
ward intensification, which is an immediate conse-
quence of the structure of X(x). For e 5 0.0868, the
linearized SS–FS model gives a relatively broad flow.
In contrast, for smaller values of e the flow is far more
confined to the western boundary layer. For example,
the streamfunction and vorticity contour plots for the
linear solution with e 5 0.0009 (shown in Figs. 6a and
7b) are much narrower than those shown in Fig. 4.

Due to the fact that z ø 0 for large x, the gradient
of z is large only in the area near the western boundary.
However, because of the super-slip condition on the
western boundary, the isolines of vorticity are orthog-
onal to the boundary. There must be a meridional strip
near the boundary in which ]z/]x ø 0. But this means
that z 5 F(y) in that strip, for some function F(y). Thus,
in the strip we have

(X0 2 X) siny 5 F(y), (20)

which means that X0 2 X 5 c. From condition (14) we
have c 5 X0(0). We can then write a simplified solution
in the strip by solving

X0 2 X 5 X0(0), (21)

X(0) 5 0. (22)

The solutions of (21) and (22) take the form
2xX(x) 5 (X9(0) 1 X0(0)) sinh(x) 2 X0(0)[1 2 e ]. (23)

Unfortunately, no a priori estimate of X9(0) and X0(0)
is possible; however, we can take their values from our
full solution and compare the result from (23) to the
full solution. These values are X9(0) 5 27.029 and X0(0)
5 259.1926. The comparison is shown in Fig. 5, where
we see that the full solution and the approximation (23)
are essentially the same in the boundary strip 0 # x #
0.056p, demonstrating the validity of the approximation
in that strip.

Finally, we note that the interior part of the linear
solution obtained here is not linear in x. This is rather
different than the interior solution obtained from the
Sverdrup balance (Pedlosky 1996) that derives from a
local balance of the beta term and the wind forcing. In
the interior of the Sverdrup solution, X behaves as
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FIG. 5. Comparison between the complete solution X(x) of (13)
close to the western boundary (upper graph) and the approximate
solution (23) to the approximate problem (21) and (22) in the bound-
ary region. Here we have used the values X9(0) 5 27.029 and X0(0)
5 259.1926 taken from the full linear solution (e 5 0.0868).

FIG. 6. Contour plots of c for e 5 9 3 1024 and four different values of R. The domain size is p 3 p
and the forcing is curlzt 5 2siny as in Böning (1986). (a) R 5 0 (contour interval 5), (b) R 5 3.72 3 1024

(contour interval 1.25), (c) R 5 2.33 3 1023 (contour interval 1), and (d) R 5 5.96 3 1023 (contour interval
2). The solid/dotted/dashed lines represent positive/zero/negative valued contour levels.

X(x) 5 1 2 x, which is rather different from the behavior
seen in Fig. 1. It seems that the super-slip western
boundary affects the interior as well as the boundary
currents significantly, even in the linear solution. Ped-
losky (1996, p. 42) states that there is ‘‘no boundary
layer solution possible’’ with the super-slip western
boundary. Thus, we are unable, with simple analytical
methods, to deduce the behavior of M and W as e →
0. From the numerical simulations here and an addi-
tional linear dynamics solution with much smaller e
presented in the next section, we can roughly estimate
that W ; e0.3 and M ; W21.

4. Nonlinear solutions

In this section, we will present some nonlinear so-
lutions obtained with the SS–FS mixed model. We find
that qualitatively these solutions are not very different
from those obtained with free slip on all boundaries.
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FIG. 7. Contour plots of ¹2c for e 5 9 3 1024 and four different values of R. The domain size is p 3
p and the forcing is curlzt 5 siny as in Böning (1986). (a) R 5 0 (contour interval 1000), (b) R 5 3.72
3 1024 (contour interval 500), (c) R 5 2.33 3 1023 (contour interval 150), and (d) R 5 5.96 3 1023

(contour interval 50). The dashed lines represent negative valued contour levels. The zero line is not drawn.
Positive values were insignificant on this scale.

We will make our comparison with the solutions with
free-slip conditions on all boundaries found in Böning
(1986), which is a standard reference on the subject (cf.
Pedlosky 1996). We obtained our solutions using a finite
difference code based on the streamfunction–vorticity
formulation. Following Böning, we make the compu-
tational domain D 5 [p 3 p] and apply a wind stress
curl given by curlzt 5 siny. In one set of simulations,
Böning set the bottom drag coefficient equal to zero and
kept the coefficient of lateral diffusion fixed at e 5 9
3 1024, while varying the value of the Rossby number
R. We began by repeating this series of simulations at
the same resolution used by Böning (64 3 64) and found
that we could reproduce his results. Then we repeated
this series of simulations with the only difference being
that the western boundary condition became super slip.
The parameters that define Böning’s first four experi-
ments are given in Table 3, where the experiment num-

bers correspond to those used by Böning.1 Also included
in the table are the maximum values for c obtained with
Böning’s model and with our SS–FS mixed model. The
streamfunction and vorticity fields for these experiments
from our SS–FS model simulations are shown in Figs.
6 and 7.

The streamfunction patterns shown in Figs. 6a–c are
steady, while that in Fig. 6d oscillates with the ampli-
tudes of the two cells varying in time. Experiment 1
gives the linear solution (i.e., R 5 0), and we see in
Fig. 6a that the flow is far more confined to the western
boundary than in the linear solution presented in the
previous section (Fig. 4a), where we used a larger value
of e. It is also far more confined to the western boundary
than Böning’s linear solution (not shown), which is

1 It appears that the transport value entries for experiments 2 and
3 in Böning’s Table I have been mistakenly interchanged.
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TABLE 3. The values of R and cmax in experiments 1–4 of Böning
(1986, cf. his Table I). Here we list the nondimensional values for
cmax from Böning’s model with free slip on all boundaries and the
corresponding values from the mixed model, with a super-slip western
boundary. The only parameter varied in this series of experiments
was the Rossby number R. In each experiment the value of e was
fixed at e 5 9 3 1024 as in Böning’s experiments. In experiment 4,
the value of cmax was found to oscillate between 10.6 and 11.7 in the
mixed model.

Expt R cmax Böning cmax SS–FS model

1
2
3
4

0
3.72 3 1024

2.33 3 1023

5.96 3 1023

3.82
3.46
3.81
5.34

27.4
11.8
9.98

10.6–11.7

somewhat intermediate between our mixed model so-
lutions in Figs. 4a and 6a. As the value of R increases,
our SS–FS model solution becomes less confined, and,
in Fig. 6c for R 5 2.33 3 1023 (expt 3), we see a
streamfunction that resembles very much that found by
Böning for the somewhat higher value of R 5 5.96 3
1023 (expt 4). The oscillating solution with the two
gyres in Fig. 6d appears similar in structure to Böning’s
R 5 9.31 3 1023 case (his expt 5). Considering the
vorticity fields displayed in Fig. 7, again we find that
the fields are more confined and intense than Böning’s
results for the same values of R. However, if we compare
our results to Böning’s at somewhat larger values of R,
then there is a good deal of agreement, at least quali-
tatively. For example, our vorticity field for experiment
3 is very similar to that of Böning’s for experiment 4.2

So, at least over some broad parameter range, it appears
that the SS–FS mixed-model solutions are similar to
those with free slip everywhere, but with somewhat
larger values of R.

It is interesting to note that in establishing a steady
state in these cases with no bottom drag, the flow must
be such that the input of vorticity is balanced by a vis-
cous diffusion of vorticity through the free-slip bound-
aries. This can be seen by integrating (5) over the entire
domain, which for k 5 0 gives the result

]z
curl t dx dy 5 2e ds. (24)E z R ]n

Since ]z/]n vanishes on the western boundary in the
SS–FS model, the viscous diffusion necessary for the
steady-state balance must occur on the free-slip bound-
aries. In the nonlinear cases, this diffusion appears to
be occurring primarily on the northern boundary (see
Figs. 7b,c). This is rather different from what happens
in the Munk and Welander models where the diffusion
is primarily through the western boundary.

Quantitatively, the SS–FS model gives larger values
of the streamfunction and vorticity maxima than Bön-

2 The vorticity contour plots for experiments 1 and 2 in Böning’s
Figs. 3 and 4 have been rotated by 6908.

ing’s model for the corresponding simulations. For
comparison, in Table 3 we have reported the values of
cmax for both Böning’s simulations and our SS–FS
model. Consider again the case of experiment 3, which
has a streamfunction pattern much like that in Böning’s
experiment 4. In the SS–FS model results for experi-
ment 3, we find cmax ø 10 in nondimensional units as
compared to Böning cmax ø 3.8 for R 5 2.33 3 1023

(expt 3) or cmax ø 5.3 for R 5 5.96 3 1023 (expt 4).
Using Böning’s physical scaling, this would imply a
maximum transport in our case, shown in Fig. 6c, of
about 100 Sv. This is obtained, following Böning, by
assuming the magnitude of the wind stress to be t 0 /r 0

5 2 3 1024 m2 s22 and b 5 2 3 10211 m21 s21 giving
a typical scale for the transport of HUL 5 t 0 /(r 0b) 5
10 Sv (cf. Pedlosky 1987, p. 261), and that the total
transport would be this times our nondimensional cmax ,
as discussed in the previous section. Another reason-
able choice for t 0 /r 0 would be 1 3 1024 m2 s22 (cf.
Pedlosky 1986, p. 261), thus reducing our transport to
50 Sv. Alternatively, we note that the values of cmax

are also decreased by the addition of some Ekman
damping. In fact, with k 5 9.7 3 1023 and k 5 2.4 3
1023 , the two lowest nonzero values used by Böning,
we obtain transports of 73 and 50 Sv, respectively, even
assuming his higher value of t 0 , while the overall flow
pattern remains similar to that in Fig. 6c. Thus, the
super-slip boundary condition on the western boundary
produces general circulation patterns that are both
quantitatively and qualitatively as reasonable as those
produced with free-slip on all boundaries. In fact, the
super-slip boundary on the western boundary may be
said to produce superior results because it produces
less damped and more confined boundary currents than
the free-slip condition.

5. Conclusions

The strong differences between simulations with all
free-slip versus all super-slip boundaries noted in Ped-
losky (1996) suggested that the super-slip boundary may
not be appropriate for general circulation modeling. This
was in spite of the physical argument made by Pedlosky
in favor of super-slip as appropriate for the western
boundary where the currents are most intense. However,
there is no reason why we cannot consider a mixed
model with super-slip applied to the western boundary
and free slip elsewhere. We have shown that although
the linear solution (R 5 0) with a super-slip western
boundary does not give the simple Sverdrup interior
solution, it produces, nevertheless, streamfunctions with
boundary layer thickness and current intensities that ap-
pear physically reasonable both quantitatively and qual-
itatively. Futhermore, we demonstrated that super-slip
western boundary in the mixed model can result in rea-
sonable flows in the wind-forced fully nonlinear ex-
periments suggested by Böning (1985).

One may question whether or not the super-slip con-
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dition should be extended to the northern boundary
where the currents can also be intense. Recall that Ped-
losky’s argument was in favor of the hyper-slip bound-
ary condition, which is equivalent to the super-slip con-
dition only on the meridional boundaries. If applied to
the northern boundary, the hyper-slip condition would
not reduce to super-slip. Without the motivation based
on (3), it is difficult to argue for super-slip on the north-
ern boundary, and we have not performed the necessary
simulations to comment further on this possibility.

We conclude, on the basis of our numerical and an-
alytical reanalysis of the super-slip condition, that it is
premature to rule it out as a western boundary condition
for basin-scale modeling.
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