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Abstract

New collision-finding attacks on widely used crypto-
graphic hash functions raise questions about systems
that depend on certain properties of these functions
for their security. Even after new and presumably
better hash functions are deployed, users may have
digital signatures and digital time-stamp certificates
that were computed with recently deprecated hash
functions. Is there any way to use a new and cur-
rently unassailable hash function to buttress the se-
curity of an old signature or time-stamp certificate?
The main purpose of this note is to remind the
technical community of a simple solution to this prob-
lem that was published more than a decade ago.

1 Introduction

With advances in computational power and re-
sources, as well as the discovery of entirely new crypt-
analytic algorithms, particular instances of crypto-
graphic primitives that were secure when they were
first deployed may become insecure several years
later. In the last couple of years, the cryptographic
community has been surprised by powerful new at-
tacks on the hash functions MD5 and SHA-1, among
others [8, 7]. This raises the question of how best to
introduce a new and presumably more secure hash
function into a system that now uses an older hash-
function design that may soon be subject to devas-
tating compromise. In particular, what can be done
with digital signatures and time-stamp certificates
that were computed using the original system’s hash

function? This is no longer the merely academic ques-
tion it was when it was first raised by the authors of
[5], who proposed an incorrect solution, and then cor-
rectly solved by [1].

2 Renewing integrity certifi-

cates

2.1 Time-stamp certificates

Here we describe the process of “renewing” digital
time-stamp certificates, as presented by [1].

Suppose that an implementation of a particular
time-stamping system is in place, and consider the
pair (z,c1), where ¢; is a valid time-stamp certifi-
cate (in this implementation) for the bit-string x.
Now suppose that some time later an improved time-
stamping system is implemented and deployed—by
replacing the hash function used in the original sys-
tem with a new hash function, or even perhaps af-
ter the invention of a completely new algorithm. Is
there any way to use the new time-stamping system
to buttress the guarantee of integrity supplied by the
certificate, c1, in the face of potential later attacks on
the old system?

One could simply submit = as a request to the new
time-stamping system. But this would lose the con-
nection to the original time of certification.

Another possibility is to submit ¢; as a request to
the new time-stamping system. But that would be
vulnerable to the later existence of a devastating at-
tack on the hash function used in the computation



of ¢1, as follows: if an adversary could find another
document z’ with the same hash value as x, then he
could use this renewal system to back-date z’ to the
original time. (In fact, resubmission of ¢; was erro-
neously suggested by the authors of [5] as a solution
to this problem.)

Suppose instead that the pair (x,¢;) is time-
stamped by the new system, resulting in a new cer-
tificate ¢g, and that some time after this is done (i.e.
at a definite later date), the original method is com-
promised. The certificate ¢y provides evidence not
only that the document content x existed prior to
the time of the new time-stamp, but that it existed at
the time stated in the original certificate, ¢;. Prior to
the compromise of the old implementation, the only
way to create a valid time-stamp certificate was by
legitimate means.

2.2 Digital signatures

Similar logic applies in the case of digital signatures.
Let s be a digital signature for the document z, to
be verified with respect to a particular public key,
perhaps as part of a particular PKI.

The PKI adds an extra complication. Specifically,
let V' denote the extra data—public-key certificates,
certificate revocation lists (CRLs), signed statements
by trusted parties such as Online Certificate Status
Protocol (OCSP) servers, etc.—mneeded in this PKI
in order to validate the public key for the signature
s. Here are two different ways to integrate time-
stamping securely:

1. The receiver of (z,s) assembles the key-
validating data V', requests a time-stamp certifi-
cate c for (z,s,V), and saves (z,s,V,c). A later
verifier needs to revalidate each of s, V, and c.

2. The signer of = computes a time-stamp certifi-
cate ¢ for (x, s) and saves (z, s, ¢). Later verifiers
of this triple must retrieve (from an appropriate
service) a trustworthy archived version of V', and
revalidate all the data.

Naturally, other choices are possible for dividing up
the responsibilities.

Now suppose, as in §2.1, that s and ¢ were com-
puted with an old hash function, and now a newer
hash function is being used by a currently deployed
time-stamping system.

To renew a digital signature with a PKI managed
according to the first method above, a new time-
stamp request for (z, s, V, ¢) should be submitted to
the current system, and the resulting certificate ¢’
must be saved along with (x,s,V,¢). Now a later
verifier needs to revalidate each of s,V, ¢, and c'.

To renew a digital signature following the second
method, (z, s, ¢) should be submitted as a request to
the current time-stamping system, and the resulting
certificate ¢ must be saved along with (z, s, ¢). Once
again, later verifiers retrieve a trustworthy archived
version of V—Ilikely one that has been “renewed” as
well—and revalidate all the data.

3 Remarks

3.1 A challenge for theorists?

Observe that the security offered by an “updated”
time-stamp certificate computed as above depends on
the arguably questionable assumption that the first
time-stamping system will not be compromised until
a definite time after the second system was launched.
But in practice, this is not an unreasonable assump-
tion. Advances in cryptanalytic attacks on hash func-
tions typically proceed incrementally, and well before
a hash function is completely broken, fielded systems
can swap in a new hash function. (Of course, this is
much easier said than done. The authors of [2] report
on the practical challenges of deploying a new hash
algorithm in widely-used systems.)

But this does raise the question of whether it is
possible to capture in a mathematically satisfying
way the actual state of affairs in cryptographic se-
curity, which is that the computational difficulty of
the cryptanalyst’s algorithmic task is a moving tar-
get.



3.2 Practical implementation

A version of the time-stamping services described by
[1] and [3] has been offered commercially by Surety
since 1995 [6]. Originally, the service used MD5 and
SHA-1, evaluated in parallel, as its hash function.
Last year, in light of recent attacks on both of these
functions, Surety deployed a new version of its ser-
vice, using SHA-256 and RIPEMD-160 (also evalu-
ated in parallel), and offered the renewal capability
described above for records that were originally time-
stamped with the older version of the service.

3.3 A generalization

Updating the time-stamp certificate accompanying
a digital document is just one example of the sort
of transformation that objects in a long-lived digi-
tal archive will undergo from time to time. In [4],
the authors generalize this procedure to a broad class
of transformations, describing a service that can be
used to prove the integrity of the contents of a well-
managed digital archive over the course of its lifetime.
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