

ADULT AGE DIFFERENCES IN POSITIVE VERSUS NEGATIVE FEEDBACK LEARNING IN PROBABILISTIC SELECTION

Jessica R. Simon¹, James H. Howard, Jr.^{2,3}, Michael J. Frank⁴, and Darlene V. Howard¹

¹Department of Psychology, Georgetown University, ²Department of Psychology, The Catholic University of America, ³Department of Neurology, Georgetown University, ⁴Department of Psychology and Program in Neuroscience, University of Arizona

BACKGROUND AND PURPOSE

FEEDBACK LEARNING is learning based on positive and negative outcomes of similar decisions in the past

DOPAMINERGIC (DA) MECHANISMS

- Parkinson's Disease (PD) Study (Frank et al., 2004)
- Striatal Dopamine Genes Study (Frank et al., 2007)

LEARNING BIAS	
"Go" (↑ DA)	"No-Go" (↓ DA)
PD patients on medication	PD patients off medication
Polymorphism of D1	Polymorphism of D2

AGING AND DOPAMINE HYPOTHESIS

 Dopamine levels decline as individuals age (Van Dyck et al., 2002; Volkow et al., 1996a)

· Are there age-related differences in feedback learning?

METHOD

PARTICIPANTS

- 16 Younger adults (M=18.9 ± .7 years)
- 18 Older adults (M=70.2 ± 5.4 years)

PROBABILISTIC SELECTION TASK

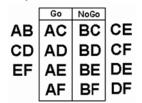
- · Procedural learning via trial-and-error learning
- Taps decision making processes
- · Forced-choice

ACQUISITION PHASE · 3 training pairs

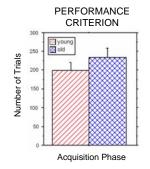
C (70%) D (30%)

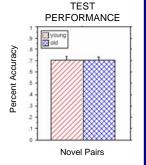
· Train to performance criterion POST ACQUISITION TEST PHASE

• 20 trials with each stimulus, per block

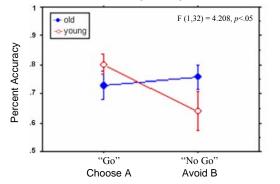

· 15 pairs: 3 trained, 12 novel

· Probabilistic feedback


- · No feedback
- · 1 block of 60 trials

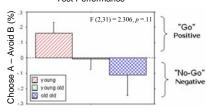

FEEDBACK LEARNING

- · "Go" learning tested by transfer pairs with A
- Do subjects choose most reinforced stimulus?
- "No-Go" learning tested by transfer pairs with B
- Do subjects avoid least reinforced stimulus?


RESULTS: PROBABILISTIC SELECTION

FEEDBACK LEARNING

TEST PHASE



RESULTS: CLOSER LOOK AT OLDER ADULTS

Test Performance

PARTICIPANTS

- 16 Young adults $(M=18.9 \pm .7)$
- 14 'Young' Old adults $(M=68.0 \pm 2.4)$
- 4 'Old' Old adults $(M=77.8 \pm 6.5)$

NO SIGNIFICANT DIFFERENCES BETWEEN YOUNG, 'YOUNG' OLD AND 'OLD' OLD

- Training required to reach performance criterion
- · Overall accuracy on novel pairs, at test

RESULTS SUMMARY

- No significant differences between old and young:
- Training required to reach performance criterion
- Accuracy on novel test pairs
- Significant interaction with age
- Young showed less No-Go learning
- Old showed equal Go and No-Go learning
- Closer look at older adults demonstrates a trend toward increasing No-Go learning with advanced

DISCUSSION

- Relative effectiveness of positive versus negative feedback differs for young and old
- Young learn more from positive feedback
- Older learn more from negative feedback
- Use of more risk-avoidant behaviors with age Psychogenic: Enhanced ability to focus on avoiding negative outcomes
- Neurogenic: Possibly linked to functional changes in the dopaminergic system

REFERENCES

Frank, M.J. & Kong, L. (in press). Learning to Avoid in Older Age. Psychology and Aging.

Frank, M. J., Moustafa, A. A., Haughey, H., Curran, T., & Hutchison, K. (2007a). Genetic triple dissociation reveals multiple roles for dopamine in reinforcement learning. Proceedings of the National Academy of Sciences, 104, 16311-16316.

Frank, M. J., Seeberger, L. C., & O'Reilly, R. C. (2004). By carrot or by stick: Cognitive reinforcement learning in Parkinsonism. Science, 306, 1940-3.

van Dyck, C. H., Seibyl, J. P., Malison, R. T., Laruelle, M., Zoghbi, S. S., Baldwin, R. M., & Innis, R. B. (2002). Age-related decline in dopamine transporters: analysis of striatal subregions, nonlinear effects, and hemispheric asymmetries. American Journal of Geriatric Psychiatry, 10, 36-43.

Volkow, N. D., Ding, Y. S., Fowler, J. S., Wang, G. J., Logan, J., Gatley, S. J., Hitzemann, R., Smith, G., Fields, S. D., & Gur, R. (1996a). Dopamine transporters decrease with age. Journal of Nuclear Medicine, 37, 554-559

Cognitive Aging Conference Atlanta, GA 2008 Email: jrs92@georgetown.edu Supported by NIH Grant R37AG15450