

RECRUITMENT OF A PARTIALLY OVERLAPPING NETWORK DURING IMPLICIT LEARNING IN ASD AND TYPICAL DEVELOPMENT

Children's

Barnes, KA¹, Della Rosa, A², Lee, PS¹, Howard, JH Jr^{3,4}, Howard, DV¹, Gaillard, WD^{2,4}, Kenworthy, LE², & Vaidya, CJ^{1,2}

¹Psychology, Georgetown University, ²Children's Research Institute, Children's National Medical Center, ³Psychology, Catholic University of America, ⁴Neurology, Georgetown University

INTRODUCTION

- Symptoms of Autism Spectrum Disorders (ASD) suggest impairment in social, language and motor skills (APA, 2000).
- In typically developing children, the acquisition of such skills is supported by implicit learning (Pacton & Perruchet, 2006).
- We have previously demonstrated that implicit sequence learning is intact in children with high-functioning ASD (Barnes et al., in press, but see Mostofsky et al., 2000).
- In typically developing adults, implicit sequence learning is known to depend upon dynamic changes in frontal, striatal, and cerebellar activation (Doyon & Benali, 2005). However, little is known about the neural basis of implicit sequence learning in childhood ASD.

FMRI PARAMETERS AND ANALYSIS

- Siemens 3T Trio magnet, T2* sensitive gradient EPI acquisition
- 152 images/run, 42 axial slices, 3.7 mm thick; TR 2500 ms, TE 30 ms, 90° flip angle, FOV = 256 x 256, 4 mm inplane resolution
- Data analysis in SPM5: Slice-time correction, motion correction, spatial normalization, spatial smoothing (8 mm FWHM gaussian); Region of Interest (ROI) analysis in MARSBAR
- First, to determine regions showing learning-related changes, linear, parametric changes in activation over time related to task (i.e., all correct High Probability and Low Probability trials; henceforth, TASK_{At}) and baseline (henceforth, Null_{At}) were computed for each subject.
- Second, to examine regions differing by group, a Group (ASD vs. CON) x Condition (Task_{At} vs. Null_{At}) ANOVA was computed.
- Third, significant clusters from the Group x Condition interaction were identified as ROIs, yielding 11 ROIs [from Anterior to Posterior: SFG (BA 8); IFG (BA 47); MFG (BA 6); SFG (BA 6); ACC (BA 24); MTG (BA 21); CC (BA 24); MTG (BA 21); SPC (BA 7); IOG (BA 18); Cerebellum].
- Fourth, a Group (ASD vs. CON) x Probability (High Probability vs. Low Probability) ANOVA was computed to test for Group x Probability interactions in each ROI.
- Thresholds: Group x Condition ANOVA: p < .005, uncorrected, k = 10; ROI Analysis: p < .05, uncorrected

QUESTION

 How do neural changes during the timecourse of probabilistic sequence learning differ between children with ASD and matched controls?

METHOD

Participants

Group	Sample Size (# male)	Age (SD)	Full Scale IQ (SD)
ASD	13 (11)	9.48	120.2 (19.8)
CON	13 (10)	(3:98)	121.5 (14.4)
		(1.17)	

- ASD diagnosis confirmed by clinician using ADI and ADOS
- Groups were matched for gender, age, and Full Scale IQ (ps > .38)
 Children with ASD were unmedicated at the time of the study

TASK PARAMETERS

Low Probability Trial (20% of Trials)

- Participants completed two runs lasting 6:20 min and comprising 135 trials each
- Event-related design; stimuli presented in fixed, pseudorandom order using OptSeq2
 Each trial comprised a three-event sequences [2 cues (red circles)
- and 1 target (green circles)]
- · Participants instructed to respond to target location with Right Hand
- Unbeknownst to participants, location of the 1st Cue location probabilistically predicted location of the Target
- High Probability Trials
- · Low Probability Trials
- · Cue and Target location counterbalanced
- Performance speed and accuracy examined in a Group x Run x Probability repeated measures ANOVA

BEHAVIORAL RESULTS

- Overall performance did not differ by group (RT, p = .86, Accuracy, p = .11).
- Performance was faster across runs (RT, p < .0001, Accuracy, p = .38).
- Performance was marginally faster on High Probability than Low Probability trials (p = .08; Accuracy p = .22)
- Learning did not differ by group (Group x Probability interaction: RT, p = .66; Accuracy, p = .88)

ROI RESULTS

Only one ROI (of 11) in the left cerebellum near Lobule VI was sensitive to group differences in the response to probability (Group x Probability interaction, p = .04).

fMRI RESULTS

A prefrontal-striatal-cerebellar network showed linear changes in activation during the task relative to baseline (Main Effect of Condition).

(v = -16)

A premotor-cerebellar network showed group differences in linear changes in activation during the task relative to baseline (Group x Condition interaction).

SUMMARY

- Overall, learning was associated with changes in activation of a prefrontal-striatalcerebellar network.
 - •This is consistent with studies examining the neural basis of implicit sequence learning in typically developing children and adults.
- Groups differed in activation of a premotor-cerebellar network during learning.
 - •This is consistent with functional neuroimaging studies in adolescents and adults with ASD (Müller et al., 2004) and extends them to a novel probabilistic sequence learning paradigm.
- Cerebellar activation was greater for novel sequences in children with ASD, whereas activation was greater for familiar sequences in control children.
 - Cerebellar sensitivity to probabilistic information is qualitatively different in children with ASD and control children.

REFERENCES

• American Psychiatric Association. (2000). Diagnostic and statistical manual of mental disorders - Text Revision (4th ed.).
• Barnes, KA, Howard, JH Jr., Howard, DV, Gilotty, L, Kenworthy, L, Gaillard, WD, & Vaidya, CJ (in press). Intact implicit learning of spatial context and temporal sequences in childhood Autism Spectrum Disorder. Neuropsychology.
• Doyon, J & Benali, H (2005). Reorganization and plasticity in the adult brain during learning of motor skills. Current Opinion in Neurobiology, 15(2), 161-167.

•Mostofsky, SH, Goldberg, MC, Landa, RJ, & Denckla, MB (2000). Evidence for a deficit in procedural learning in children and adolescents with autism: Implications for cerebellar contribution. J. of the Int. Neuropsychol. Soc, 6, 752-759.
•Müller, RA, Cauich, C, Rubio, MA, Mizuno, A, & Courchesne, E (2004). Abnormal activity patterns in premotor cortex during sequence learning in autistic patients. Biol. Psychiatry, 56, 323-332.

 Perruchet, P & Pacton, S (2006). Implicit learning and statistical learning: One phenomenon, two approaches. Trends Cogn. Sci., 10, 233-238.

Funding by Autism Speaks (NAAR), The Frederick & Elizabeth Singer Foundation, Georgetown University, and NIH