

THE ROLE OF WHITE MATTER INTEGRITY IN TWO FORMS OF IMPLICIT LEARNING

Ilana J. Bennett¹, Philip S. Lee¹, Kelly Anne Barnes¹, Chandan J. Vaidya¹, David J. Madden², James H. Howard, Jr.^{3,4}, Darlene V. Howard¹

¹Department of Psychology, Georgetown University; ²Center for the Study of Aging and Human Development, Duke University Medical Center; ³Department of Psychology, The Catholic University of America; ⁴Department of Neurology, Georgetown University Medical Center

SCCT TASK:

View arrays of 11 distractors

Spatial contextual regularity

distractors predict target

- Novel arrays: generated each trial

location, not response

BEHAVIORAL ANALYSIS:

Reaction Time (sec)

(mean of median)

Epoch

(rotated, offset L's)

target (horizontal T)

- 6 repeated arrays:

Respond to orientation of

SPATIAL CONTEXT LEARNING

Repeated and novel arrays compared across 6 epochs

(5 exposures to each repeated array per epoch)

INTRODUCTION

IMPLICIT LEARNING: Non-conscious acquisition of regularities from the environment (Frensch, 1998)

TWO FORMS OF INTEREST:

Differ in the type of regularity to be learned
Rely on different gray matter regions, as seen in multiple functional imaging and patient studies (Chun & Phelps, 1999; Prull et al., 2000)

IMPLICIT SEQUENCE	IMPLICIT SPATIAL
LEARNING	CONTEXT LEARNING
Regularity across time	Regularity in spatial layout
Frontal (DLPFC, premotor,	Hippocampus
supplementary motor)	Parahippocampal gyrus
Striatum (caudate, putamen)	(entorhinal, perirhinal,
Cerebellum	parahippocampal cortices)

AIM: Do the two forms of implicit learning relate to white matter integrity from distinct neural regions?

METHOD

PARTICIPANTS

• 14 young adults (18.9 \pm 0.7 years; 9 female)

GENERAL PROCEDURE

- DAY 1: Diffusion Tensor Imaging (DTI)
- DAY 2: Alternating Serial Reaction Time (ASRT)
- DAY 3: Spatial Contextual Cueing Task (SCCT)

DTI METHODS

- 3T Siemens Trio
- One EPI sequence acquired per participant
- Diffusion weighted gradients b=0 and b=1000 s/mm² applied in 35 orthogonal directions
- 55 axial interleaved slices
- 2.5 mm³ spatial resolution
- TR/TE=7700/100ms
- FOV=240x240 mm
- Data processed with FMRIB's diffusion toolbox (Behrens, 2003; Smith et al., 2004)
- Eddycorrect: corrected eddy current distortion
- BET binary brain mask: limited tensor fitting to brain space
- DTIfit: independently fit diffusion tensors to each voxel
- Fractional Anisotropy (FA) maps derived from eigenvalues of the diffusion tensor
- Voxel-wise whole brain positive correlations between individual measures of FA and last epoch learning scores conducted in SPM2 (p < .03, k = 500)

SEQUENCE LEARNING

ASRT TASK: • Respond to stimuli at 1 of 4

- locations with right hand
- 2nd order sequence structure
- e.g. 1r2r3r4r
 1, 2, 3, 4 = target location follows a repeating pattern
 r = target location is
- r = target location is randomly determined

0000

- Response

BEHAVIORAL ANALYSIS:

Last trial of <u>high-frequency</u> (e.g. 112) and <u>low-frequency</u> (e.g. 113) triplets compared across 9 epochs (45 sequence repetitions per epoch)

IMPLICITNESS

ASRT TASK:

• Recognition task: High-frequency triplets equally sorted as occurring more and less often (*p* > .48)

SCCT TASK:

Respond RIGHT

espond LEFT

Repeated

-O- Novel

Accuracy

(proportion correct)

Epoch

 Recognition task: Equal recognition of target quadrant for repeated and novel arrays (p > .99)

 Post-experiment interview: Five participants felt some arrays were familiar

SUMMARY AND DISCUSSION

- Superior learning in the ASRT task was related to higher white matter integrity in:
- Frontal regions adjacent to right dorsolateral prefrontal (DLPFC) and right premotor cortices, and the cerebellum – consistent with activation patterns from functional imaging studies of implicit sequence learning
- Parietal and posterior corpus callosum regions (data not shown) – involved in perceptual-motor learning and interhemispheric transfer, respectively
- Superior learning in the SCCT task was related to higher white matter integrity from the corticospinal tract involved in motor aspects of the task
- These findings are consistent with previous research showing that implicit sequence learning and implicit spatial context learning rely on different neural systems
- Future analyses will use tractography to examine the white matter networks involved

Society For Neuroscience 37th Annual Meeting, November 2007 San Diego, CA

Email: ijb5@georgetown.edu

Supported by NIH/NIA Grants R37AG15450 and F31 AG030874-01 and GCRC NIH/NCRR Grant M01 RR023942-01